秦麗歡,曾慶慧,李敘勇,秦耀民
(1:中國(guó)科學(xué)院生態(tài)環(huán)境研究中心城市與區(qū)域生態(tài)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100085)(2:中國(guó)科學(xué)院大學(xué),北京 100049)
?
北京密云水庫(kù)內(nèi)湖消落帶有機(jī)質(zhì)、營(yíng)養(yǎng)鹽(氮/磷)含量分布特征*
秦麗歡1,2,曾慶慧1,2,李敘勇1**,秦耀民1
(1:中國(guó)科學(xué)院生態(tài)環(huán)境研究中心城市與區(qū)域生態(tài)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100085)(2:中國(guó)科學(xué)院大學(xué),北京 100049)
消落帶是河流、湖泊和水庫(kù)特有的一種現(xiàn)象,也是水陸生態(tài)系統(tǒng)間物質(zhì)能量轉(zhuǎn)換最活躍、最重要的區(qū)域,消落帶的淹水-落干的頻率和時(shí)間對(duì)消落帶有機(jī)質(zhì)和營(yíng)養(yǎng)鹽的形態(tài)轉(zhuǎn)化與水界面的交換過(guò)程有重要影響. 在密云水庫(kù)的平水期(3月),對(duì)內(nèi)湖消落帶有機(jī)質(zhì)、氮、磷含量分布進(jìn)行調(diào)查,研究不同高程、土地利用和土壤深度的情況下,有機(jī)質(zhì)和各營(yíng)養(yǎng)鹽含量的分布情況及相關(guān)關(guān)系,計(jì)算有機(jī)質(zhì)和各營(yíng)養(yǎng)鹽在各高程下的儲(chǔ)量,為消落帶氮磷入庫(kù)風(fēng)險(xiǎn)負(fù)荷量的評(píng)估,維護(hù)密云水庫(kù)的水質(zhì)安全提供依據(jù). 結(jié)果表明,密云水庫(kù)內(nèi)湖消落帶有機(jī)質(zhì)、總磷、總氮、氨氮、硝態(tài)氮、亞硝態(tài)氮和無(wú)機(jī)磷含量分別為23.15±13.65 mg/g、0.17±0.09 mg/g、1.44±0.81 mg/g、10.86±3.54 μg/g、8.07±2.73 μg/g、0.41±0.71 μg/g、9.09±4.18 μg/g;土地利用情況對(duì)總氮、氨氮和硝態(tài)氮含量影響較大,而對(duì)有機(jī)質(zhì)和總磷含量分布沒(méi)有顯著影響;在垂直分布上,有機(jī)質(zhì)、總磷和總氮含量有隨土壤深度增加而降低的趨勢(shì);利用相關(guān)分析得出有機(jī)質(zhì)和土壤水分是影響氮、磷轉(zhuǎn)化的重要因素;133~146 m高程范圍內(nèi)有機(jī)質(zhì)、總磷和總氮的儲(chǔ)量分別為5324.07、59.56和414.02 t. 密云水庫(kù)內(nèi)湖消落帶是有機(jī)質(zhì)和營(yíng)養(yǎng)鹽的重要貯存庫(kù).
消落帶;有機(jī)質(zhì);氮;磷;密云水庫(kù);高程;土地利用;土壤深度
消落帶是河流、湖泊、水庫(kù)特有的一種現(xiàn)象,主要由于湖庫(kù)河流水位的季節(jié)性消漲和周期性蓄水,形成的分布在最高水位線與最低水位線之間的區(qū)域[1]. 消落帶是銜接水-陸生態(tài)系統(tǒng)的生態(tài)交錯(cuò)帶,同時(shí)也是水陸生態(tài)系統(tǒng)間物質(zhì)能量轉(zhuǎn)換最活躍、最重要的區(qū)域[2-3]. 消落帶由于階段性的淹沒(méi)-落干過(guò)程,使其在營(yíng)養(yǎng)鹽的分布和貯存方面與長(zhǎng)期處于淹水狀態(tài)的沉積物存在明顯差異,消落帶的淹水-落干的頻率和時(shí)間對(duì)消落帶營(yíng)養(yǎng)鹽的形態(tài)轉(zhuǎn)化與水界面的交換過(guò)程有重要影響. 周期性的淹水對(duì)消落帶的影響主要表現(xiàn),導(dǎo)致土壤中的氮磷營(yíng)養(yǎng)鹽向水中轉(zhuǎn)移,造成水體的富營(yíng)養(yǎng)化,影響母巖養(yǎng)分的釋放[4-5]. 有研究表明,消落帶是庫(kù)區(qū)流域富營(yíng)養(yǎng)化的主要來(lái)源[6]. 因此研究消落帶營(yíng)養(yǎng)鹽的儲(chǔ)量和分布情況,對(duì)進(jìn)一步管理和防護(hù)水體富營(yíng)養(yǎng)化有顯著作用和意義[7].
目前,國(guó)內(nèi)外針對(duì)消落帶的研究側(cè)重各有不同,國(guó)外的研究對(duì)象大多針對(duì)河流[8]、湖泊[9-11]以及濕地[12-13]自然水位的漲落或者強(qiáng)降雨事件下消落帶與水界面進(jìn)行的物質(zhì)交換及營(yíng)養(yǎng)鹽的形態(tài)轉(zhuǎn)化,而國(guó)內(nèi)對(duì)消落帶的研究則集中在三峽地區(qū)[14-17],由人為對(duì)水資源的調(diào)控造成的水位落差形成的消落帶.
圖1 密云水庫(kù)2003-2011年水位變化Fig.1 Water-level fluctuation of Miyun Reservoir from 2003 to 2010
然而,密云水庫(kù)作為北京市重要的飲用水源地,同樣值得關(guān)注. 密云水庫(kù)建于1960年,水庫(kù)庫(kù)容40×108m3,多年蓄水量為6.5×108~12×108m3,歷年水位在131~137 m之間. 由于受到降雨和人為調(diào)控水量的影響,其水位呈現(xiàn)出季節(jié)性的波動(dòng)[18],每年都會(huì)形成1~4 m左右的消落帶. 除此之外,考慮到“南水北調(diào)”工程作為一項(xiàng)浩大的國(guó)家性工程,為流經(jīng)城市帶來(lái)珍貴的水資源之外,可能也會(huì)對(duì)受水區(qū)的生態(tài)環(huán)境帶來(lái)影響. 由于密云水庫(kù)是“南水”調(diào)入北京的儲(chǔ)存庫(kù),一方面水庫(kù)的水源得到補(bǔ)給,另一方面由于儲(chǔ)量的增加,勢(shì)必在原有基礎(chǔ)上水位有所抬升,最初的消落帶可能會(huì)成為永久的淹沒(méi)帶,庫(kù)岸帶部分也會(huì)有新的消落帶形成. 這對(duì)密云水庫(kù)的水質(zhì)安全可能造成一定的風(fēng)險(xiǎn). 因此,本研究以密云水庫(kù)內(nèi)湖為研究對(duì)象,考慮到“南水北調(diào)”來(lái)水后,不同時(shí)間段對(duì)水量有不同調(diào)度要求,蓄水量可能存在階段性變化,將蓄水量分12×108m3(對(duì)應(yīng)水位137 m)、17×108m3(對(duì)應(yīng)水位142 m)、22.3×108m3(對(duì)應(yīng)水位146 m)和30×108m3(對(duì)應(yīng)水位152 m)4個(gè)階段,研究分析4個(gè)不同高程下(133~137、137~142、142~146、146~152 m)消落帶碳、氮、磷的分布特征,為評(píng)估消落帶氮、磷入庫(kù)風(fēng)險(xiǎn)負(fù)荷量,維護(hù)密云水庫(kù)的水質(zhì)安全提供依據(jù).
1.1 采樣點(diǎn)設(shè)置與樣品采集
消落帶樣品于2012年3月進(jìn)行采集,采樣點(diǎn)主要分布在內(nèi)湖區(qū)域. 采集不同高程梯度(133~137、137~142、142~146、146~152 m)、土層深度(0~20 cm,現(xiàn)場(chǎng)5 cm分層)和土地利用類型(農(nóng)田、草地、林地),共54個(gè)采樣點(diǎn)(圖2),112個(gè)消落帶樣品. 采集的樣品立即放入封口袋,4℃保存帶回實(shí)驗(yàn)室,用于各指標(biāo)分析.
圖2 密云水庫(kù)內(nèi)湖采樣點(diǎn)分布Fig.2 The distribution of sampling sites of inner lake in Miyun Reservoir
1.2 樣品分析方法
消落帶樣品總磷和有機(jī)磷分析方法采用歐洲標(biāo)準(zhǔn)測(cè)試委員會(huì)框架下發(fā)展的SMT(the Standards Measurements and Testing Program of the European Commission)法,即稱取0.2 g樣品,加20 ml 1 mol/L HCl,振蕩16 h后提取無(wú)機(jī)磷;稱取0.2 g樣品,于450℃馬弗爐中灰化3 h,加20 ml 3.5 mol/L HCl,振蕩16 h后提取總磷,總磷和無(wú)機(jī)磷提取液采用鉬銻抗分光法進(jìn)行測(cè)定[19-20]. 全氮含量采用凱氏定氮法測(cè)定,土壤有機(jī)質(zhì)含量采用重鉻酸鉀氧化-外加熱法測(cè)定[21],氨氮采用KCl浸提-蒸餾法測(cè)定,硝態(tài)氮采用酚二磺酸比色法測(cè)定[22],土壤含水率采用鋁盒烘干差減法測(cè)定,容重采用環(huán)刀法進(jìn)行[23]測(cè)定.
1.3 數(shù)據(jù)處理和統(tǒng)計(jì)方法
研究數(shù)據(jù)中Duncan多重比較以及相關(guān)性分析均用SPSS 16.0軟件進(jìn)行統(tǒng)計(jì)分析,圖表由Excel和Origin軟件進(jìn)行繪制. 消落帶有機(jī)質(zhì)、總氮和總磷含量計(jì)算公式為:
(1)
式中,F(xiàn)為研究區(qū)域內(nèi)消落帶有機(jī)質(zhì)、營(yíng)養(yǎng)鹽(碳、氮、磷)儲(chǔ)量(t),n為土層劃分層數(shù),L為常數(shù),5 cm,代表土層厚度(cm),Conik、ρik、Areaik和φik分別代表第i層第k種土地利用類型的土壤全氮、全磷和有機(jī)質(zhì)含量(g/kg)、土壤容重(g/cm3)、面積(m2)和含水率(%),10為單位轉(zhuǎn)換系數(shù).
2.1 133~146 m高程范圍內(nèi)消落帶有機(jī)質(zhì)和營(yíng)養(yǎng)鹽含量
密云水庫(kù)內(nèi)湖133~146 m高程范圍內(nèi)農(nóng)田和林地消落帶(0~20 cm均值)有機(jī)質(zhì)、總磷、總氮、氨氮、硝態(tài)氮、亞硝態(tài)氮、無(wú)機(jī)磷含量分別為23.15±13.65 mg/g、0.17±0.09 mg/g、1.44±0.81 mg/g、10.86±3.54 μg/g、8.07±2.73 μg/g、0.41±0.71 μg/g、9.09±4.18 μg/g. 土壤濕容重和含水率分別為0.94±0.08 g/cm3和12.54%±3.49%(表1).
2.2 消落帶有機(jī)質(zhì)和營(yíng)養(yǎng)鹽分布特征影響因素分析
2.2.1 高程對(duì)消落帶(0~20 cm)有機(jī)質(zhì)和營(yíng)養(yǎng)鹽含量的影響同一高程,不同土地利用類型各營(yíng)養(yǎng)鹽含量有明顯變化(表1). 林地的有機(jī)質(zhì)、總氮和硝態(tài)氮含量較高,分別是均值的1.66、1.54、1.22倍. 而農(nóng)田的營(yíng)養(yǎng)鹽含量皆處于較低的水平,或與均值持平(無(wú)機(jī)磷、氨氮、硝態(tài)氮)或低于均值水平(總磷、有機(jī)質(zhì)、總氮為均值的0.7倍). 因此分析高程對(duì)營(yíng)養(yǎng)鹽分布的影響,分別就同一土地利用類型進(jìn)行討論. 對(duì)林地而言,有機(jī)質(zhì)和硝態(tài)氮受高程影響,主要表現(xiàn)在133~137 m和142~146 m有機(jī)質(zhì)與硝態(tài)氮含量差異顯著(P<0.05),而137~142 m與133~137 m和142~146 m有機(jī)質(zhì)和硝態(tài)氮含量差異不顯著(P>0.05). 對(duì)農(nóng)田而言,133~137與137~142 m高程范圍為總氮和氨氮含量無(wú)顯著差異(P>0.05),而與142~146 m高程范圍內(nèi)總氮和氨氮含量具有顯著差異(P<0.05). 分析主要原因可能是目前密云水庫(kù)的水位在132~138 m范圍之間變動(dòng),對(duì)此范圍的消落帶影響更加頻繁,因此133~137和137~138 m范圍內(nèi)消落帶的總氮、氨氮無(wú)顯著差異. 研究表明,一定的淹沒(méi)不利于氮磷元素的累積,同時(shí)也會(huì)加速氮的礦化[24-25],因此在高程梯度上,總氮、氨氮、硝態(tài)氮含量總體表現(xiàn)是隨著高程的增加而增加,這與水位的消長(zhǎng)、氮元素的累積和礦化產(chǎn)生的影響不無(wú)關(guān)系. 而高程對(duì)總磷和磷酸鹽含量無(wú)顯著影響(P>0.05). 王業(yè)春等[26]對(duì)三峽消落帶的研究同樣得到類似結(jié)果,這可能是因?yàn)椴煌叱痰耐寥滥纲|(zhì)具有相似性.
表1 消落帶不同高程和土地利用情況下有機(jī)質(zhì)和營(yíng)養(yǎng)鹽含量*
*同一土地利用類型不同高程下有機(jī)質(zhì)和各營(yíng)養(yǎng)鹽含量上標(biāo)相同字母代表無(wú)顯著差異(P>0.05),不同字母代表有顯著性差異(P<0.05).
表2 農(nóng)田與林地各營(yíng)養(yǎng)鹽差異性分析
*代表農(nóng)田與林地兩組數(shù)據(jù)有顯著性差異,P<0.05.
2.2.2 土地利用類型對(duì)消落帶(0~20 cm)有機(jī)質(zhì)和營(yíng)養(yǎng)鹽含量的影響土地利用類型對(duì)各營(yíng)養(yǎng)鹽含量的影響在不同高程情況下有所不同(表2). 在133~137、137~142 m高程范圍內(nèi),土地利用類型對(duì)有機(jī)質(zhì)、總氮和氨氮含量有顯著影響(P<0.05),在142~146 m高程范圍內(nèi),土地利用類型對(duì)有機(jī)質(zhì)、總氮和硝態(tài)氮含量有顯著影響(P<0.05). 在各高程范圍內(nèi)土地利用類型對(duì)總磷、磷酸鹽含量影響不顯著(P>0.05). 有相關(guān)研究表明,不同土地植被覆蓋下,土壤碳氮含量存在很大差異[27-29],這可能是因?yàn)榱值氐目萋湮镓S富,且根系較多,交錯(cuò)復(fù)雜,其土壤具有良好透性,能夠促進(jìn)土壤微生物活動(dòng),對(duì)土壤氮素循環(huán)和土壤礦化過(guò)程有積極的促進(jìn)作用[30],所以林地總氮和有機(jī)質(zhì)含量比農(nóng)田高(表1). 而農(nóng)田和林地的總磷和磷酸鹽含量差別較小,表明土地利用類型不是影響密云水庫(kù)消落帶總磷和磷酸鹽含量的主要因素.
2.2.3 土壤深度對(duì)消落帶總氮、總磷、有機(jī)質(zhì)的影響有機(jī)質(zhì)、總磷和總氮含量隨著深度的增加而遞減(圖4). 在133~137、137~142、142~146 m高程范圍內(nèi),有機(jī)質(zhì)隨土層深度增加而降低,總磷、總氮含量變化趨勢(shì)相似,先增高后降低,在5~10 cm土壤深度達(dá)最大值. 說(shuō)明有機(jī)質(zhì)、總磷、總氮含量分布有較強(qiáng)的表聚性,有隨土層增加而降低的趨勢(shì)[31-32]. 此種現(xiàn)象可能與地表植被根系吸收土壤營(yíng)養(yǎng)物質(zhì)進(jìn)行生長(zhǎng),再以枯落物的形式歸還土壤,營(yíng)養(yǎng)元素的循環(huán)過(guò)程有關(guān)[33]. 有機(jī)質(zhì)、總磷和總氮含量在各土壤深度的變化范圍也有明顯趨勢(shì),其中0~5和5~10 cm的變異系數(shù)較大,在10~15、15~20 cm土壤深度變異系數(shù)較小,表明在表層0~10 cm土壤各營(yíng)養(yǎng)物交換較為頻繁,可能受地表覆蓋物、表層水分及光照的影響較大.
圖4 不同高程和土壤深度有機(jī)質(zhì)、總氮、總磷含量分布Fig.4 The nutrient contents under different altitudes and soil depths
2.3 消落帶土壤基本理化特征及其與各營(yíng)養(yǎng)鹽間的相互關(guān)系
有機(jī)質(zhì)與總氮、氨氮含量呈極顯著正相關(guān)(P<0.01)(表3), 表明有機(jī)質(zhì)與總氮、氨氮含量存在相似的消長(zhǎng)關(guān)系,這也與之前的研究結(jié)論一致[34-35]. 總磷與磷酸鹽、總磷與亞硝態(tài)氮含量呈顯著正相關(guān)(P<0.05),這與孫斌[36]得到的結(jié)果一致. 硝態(tài)氮與含水率、磷酸鹽與濕容重呈顯著正相關(guān)(P<0.05),由于土壤含水率與土壤容重的比值是常數(shù),表明土壤水分可能是影響土壤硝態(tài)氮和磷酸鹽的因素. 因土壤水分影響微生物的活性,從而影響氮磷的形態(tài)轉(zhuǎn)化.
表3 消落帶土壤基本理化特征及其與各營(yíng)養(yǎng)鹽間的相互關(guān)系
*代表0.05水平下顯著相關(guān),**代表0.01水平下顯著相關(guān);樣本數(shù)n=40.
表4 不同高程各土地利用類型面積(km2)
2.4 消落帶各營(yíng)養(yǎng)鹽儲(chǔ)量估算
2.4.1 不同土壤深度各營(yíng)養(yǎng)鹽儲(chǔ)量分布特征內(nèi)湖消落帶0~5、5~10、10~15、15~20 cm土壤深度有機(jī)質(zhì)儲(chǔ)量分別為2630.27、1610.58、1268.07、974.57 t,儲(chǔ)量由表層到深層有逐漸降低的趨勢(shì);總磷儲(chǔ)量分別為18.75、18.40、11.92、10.47 t,表層10 cm磷儲(chǔ)量差別不大,隨后有緩慢降低的趨勢(shì);總氮儲(chǔ)量分別為142.20、117.38、89.73、64.70 t,儲(chǔ)量也隨著土層深度增加而降低.
表5 不同高程下各土地利用類型有機(jī)質(zhì)、總氮和總磷儲(chǔ)量分布
2.4.2 不同高程和土地利用類型各營(yíng)養(yǎng)鹽儲(chǔ)量分布特征在133~137和137~142 m高程范圍內(nèi),林地和農(nóng)田中有機(jī)質(zhì)、總磷和總氮儲(chǔ)量有顯著變化. 其中,在133~137 m高程內(nèi),農(nóng)田的營(yíng)養(yǎng)鹽儲(chǔ)量顯著高于林地,有機(jī)質(zhì)、總磷和總氮儲(chǔ)量分別為林地儲(chǔ)量的4.8、10.38和9.38倍. 而在137~142 m高程范圍內(nèi),林地有機(jī)質(zhì)、總磷和總氮儲(chǔ)量分別為農(nóng)田的1.7、2.8和4.1倍. 142~146 m高程范圍內(nèi),林地與農(nóng)田各營(yíng)養(yǎng)鹽含量差別不大(表5).
1)密云水庫(kù)內(nèi)湖消落帶有機(jī)質(zhì)、總磷、總氮、氨氮、硝態(tài)氮、亞硝態(tài)氮和無(wú)機(jī)磷含量分別為23.15±13.65 mg/g、0.17±0.09 mg/g、1.44±0.81 mg/g、10.86±3.54 μg/g、8.07±2.73 μg/g、0.41±0.71 μg/g和9.09±4.18 μg/g.
2)土地利用類型和高程是影響消落帶有機(jī)質(zhì)和氮含量的重要因素,而對(duì)于磷的作用不顯著.
3)內(nèi)湖消落帶在133~137 m高程范圍內(nèi)有機(jī)質(zhì)、總磷和總氮儲(chǔ)量分別為566.32、20.93和100.97 t;137~142 m高程范圍內(nèi)有機(jī)質(zhì)、總磷和總氮儲(chǔ)量分別為2407.62、14.00和116.03 t, 有機(jī)質(zhì)儲(chǔ)量與133~137 m高程范圍內(nèi)差別較大,總磷和總氮儲(chǔ)量相近. 在133~146 m高程范圍內(nèi)有機(jī)質(zhì)、總磷和總氮的儲(chǔ)量分別為5324.07、59.56 和414.02 t.
4)因此,需要加強(qiáng)對(duì)133~142和142~146 m高程范圍的消落帶進(jìn)行防護(hù),以防止水位的波動(dòng)使大量有機(jī)質(zhì)和總氮進(jìn)入水體.
5)密云水庫(kù)內(nèi)湖消落帶是巨大的有機(jī)質(zhì)、氮磷等元素的儲(chǔ)藏庫(kù),階段性的淹水-落干過(guò)程對(duì)水庫(kù)水質(zhì)有重要的影響,需要進(jìn)一步研究.
[1]Ai Lijiao, Wu Zhineng, Zhang Yinlong. A summary of water-level-fluctuating zone.EcologicalScience, 2013, 32(2): 259-264(in Chinese with English abstract). [艾麗皎, 吳志能, 張銀龍. 水體消落帶國(guó)內(nèi)外研究綜述. 生態(tài)科學(xué), 2013, 32(2): 259-264.]
[2]Guo Jinsong, Huang Xuanmin, Zhang Binetal. Distribution characteristics of organic matter and total nitrogen in the soils of water-level-fluctuating zone of Three Gorges Reservoir area.JLakeSci, 2012, 24(2): 213-219(in Chinese with English abstract). DOI 10.18307/2012.0207. [郭勁松, 黃軒民, 張彬等. 三峽庫(kù)區(qū)消落帶土壤有機(jī)質(zhì)和全氮含量分布特征. 湖泊科學(xué), 2012, 24(2): 213-219.]
[3]Fu Yangwu, Chen Mingjun, Pan Jieetal. Dynamic simulation of change of soil property of flooded-belt in Three Gorges Reservoir area after flooding.JournalofAnhuiAgriculturalScience, 2010, 38(20): 10783-10784, 10821(in Chinese with English abstract). [傅楊武, 陳明君, 潘杰等. 三峽庫(kù)區(qū)消落帶淹水后土壤性質(zhì)變化的動(dòng)態(tài)模擬. 安徽農(nóng)業(yè)科學(xué), 2010, 38(20): 10783-10784, 10821.]
[4]Xie Deti, Fan Xiaohua, Wei Chaofu. Effects of riparian zone of the Three Gorges Reservoir on the water-soil environment of the area.JournalofSouthwestUniversity:NaturalScience, 2007, 29(1): 39-47(in Chinese with English abstract). [謝德體, 范小華, 魏朝富. 三峽水庫(kù)消落區(qū)對(duì)庫(kù)區(qū)水土環(huán)境的影響研究. 西南大學(xué)學(xué)報(bào): 自然科學(xué)版, 2007, 29(1): 39-47.]
[5]Watts CJ. Seasonal phosphorus release from exposed, re-inundated littoral sediments of two Australian reservoirs.Hydrobiologia, 2000, 431(1): 27-39.
[6]Shi Xiaohong. Eutropication and phosphorus release of soil in drawdown area of Three Gorges Reservoir.SoilsandFertilizers, 2004, (1): 40-43(in Chinese with English abstract). [石孝紅. 三峽庫(kù)區(qū)消落區(qū)土壤磷素釋放與富營(yíng)養(yǎng)化. 土壤肥料, 2004, (1): 40-43.]
[7]He Yang. Investigation of soil nitrogen and phosphorusin water fluctuation zone in central distract of Three Gorges Reservoir area and analysis of its release potential[Dissertation]. Chongqing:Chongqing University, 2009(in Chinese with English abstract). [賀陽(yáng). 三峽庫(kù)區(qū)腹心地帶消落區(qū)土壤氮磷含量調(diào)查及其釋放潛力分析[學(xué)位論文]. 重慶:重慶大學(xué),2009.]
[8]Surridge BWJ, Heathwaite AL, Baird AJ. The release of phosphorus to porewater and surface water from river riparian sediments.JournalofEnvironmentalQuality, 2007, 36(5): 1534-1544.
[9]Yang Y, Yin X, Chen Hetal. Determining water level management strategies for lake protection at the ecosystem level.Hydrobiologia, 2014, 738(1): 111-127.
[10]Skinner D, Oliver R, Aldridge Ketal. Extreme water level decline effects sediment distribution and composition in Lake Alexandrina, South Australia.Limnology, 2014, 15(2): 117-126.
[11]Zohary T, Ostrovsky I. Ecological impacts of excessive water level fluctuations in stratified freshwater lakes.InlandWaters, 2011, 1(1): 47-59.
[12]Bostic EM, White JR. Soil phosphorus and vegetation influence on wetland phosphorus release after simulated drought.SoilScienceSocietyofAmericaJournal, 2007, 71(1): 238-244.
[13]Gilbert JD, Guerrero F, de Vicente I. Sediment desiccation as a driver of phosphate availability in the water column of Mediterranean wetlands.ScienceoftheTotalEnvironment, 2014, 466: 965-975.
[14]Zhan Yanhui, Wang Li’ao, Jiao Yanjing. Adsorption & release of nitrogen of soils in Three Gorges Reservoir.JournalofChongqingUniversity:NaturalScienceEdition, 2006, 29(8): 10-13(in Chinese with English abstract). [詹艷慧,王里奧,焦艷靜. 三峽庫(kù)區(qū)消落帶土壤氮素吸附釋放規(guī)律. 重慶大學(xué)學(xué)報(bào):自然科學(xué)版,2006, 29(8): 10-13.]
[15]Ma Limin, Zhang Ming, Teng Yanxingetal. Characteristics of phosphorous release from soil in periodic alternately waterlogged and drained environments at WFZ of the Three Gorges Reservoir.EnvironmentalScience, 2008, 29(4): 1035-1039(in Chinese with English abstract). [馬利民, 張明, 滕衍行等. 三峽庫(kù)區(qū)消落區(qū)周期性干濕交替環(huán)境對(duì)土壤磷釋放的影響. 環(huán)境科學(xué), 2008, 29(4): 1035-1039.]
[16]Sun Wenbin, Du Bin, Zhao Xiulanetal. Fractions and adsorption characteristics of phosphorus on sediments and soils in water level fluctuating zone of Pengxi River, a tributary of Three Gorges Reservoir.EnvironmentalScience, 2013, 34(3): 1107-1113(in Chinese with English abstract). [孫文彬, 杜斌, 趙秀蘭等. 三峽庫(kù)區(qū)澎溪河底泥及消落區(qū)土壤磷的形態(tài)及吸附特性研究. 環(huán)境科學(xué), 2013, 34(3): 1107-1113.]
[17]Zhou Xie, Yang Min, Lei Boetal. Comprehensive assessment of eco-environmental quality of the water-level-fluctuating zone in the Three Gorges area based on PSR model.JournalofHydroecology, 2012,33(5): 13-19(in Chinese with English abstract). [周諧, 楊敏, 雷波等. 基于PSR模型的三峽水庫(kù)消落帶生態(tài)環(huán)境綜合評(píng)價(jià). 水生態(tài)學(xué)雜志, 2012, 33(5): 13-19.]
[18]Yang M, Geng X, Grace Jetal. Spatial and seasonal CH4flux in the littoral zone of Miyun Reservoir near Beijing: the effects of water level and its fluctuation.PloSONE, 2014, 9(4): 1-9.
[19]Ruban V, Brigault S, Demare Detal. An investigation of the origin and mobility of phosphorus in freshwater sediments from Bort-Les-Orgues Reservoir, France.JournalofEnvironmentalMonitoring, 1999, 1(4): 403-407.
[20]Ruban V, López-Sánchez JF, Pardo Petal. Harmonized protocol and certified reference material for the determination of extractable contents of phosphorus in freshwater sediments—A synthesis of recent works.Fresenius'JournalofAnalyticalChemistry, 2001, 370(2): 224-228.
[21]Guo Quanshui, Kang Yi, Zhao Yujuanetal. Changes in the contents of N,P,K,pH and organic matter of the soil which experienced the hydro-fluctuation in the Three Gorges Reservoir.ScientiaSilvaeSinicae, 2012, 48(3): 7-10(in Chinese with English abstract). [郭泉水, 康義, 趙玉娟等. 三峽庫(kù)區(qū)消落帶土壤氮磷鉀, pH值和有機(jī)質(zhì)變化. 林業(yè)科學(xué), 2012,48(3): 7-10.]
[22]Bao Shidan ed. Soil analysis method. Beijing: China Agriculture Press, 2005: 48-53(in Chinese). [鮑仕旦. 土壤農(nóng)化分析. 北京:中國(guó)農(nóng)業(yè)出版社, 2005: 48-53.]
[23]Yi Yanli ed. Soil study of physical method. Beijing: Peking University Press, 2009:7-9(in Chinese). [依艷麗. 土壤物理研究法. 北京: 北京大學(xué)出版社, 2009: 7-9.]
[24]Venterink HO, Davidsson TE, Kiehl Ketal. Impact of drying and re-wetting on N, P and K dynamics in a wetland soil.PlantandSoil, 2002, 243(1): 119-130.
[25]Ding Qingzhang, Liu Xueqin, Zhang Xiaoke. Impacts of water level fluctuations on substrate environmentals of lakeshore zone of the lakes in the middle and lower reaches of Yangtze River.JLakeSci, 2014, 26(3): 340-348(in Chinese with English abstract). DOI 10.18307/2014.0302. [丁慶章, 劉學(xué)勤, 張曉可. 水位波動(dòng)對(duì)長(zhǎng)江中下游湖泊湖濱帶底質(zhì)環(huán)境的影響. 湖泊科學(xué), 2014, 26(3): 340-348.]
[26]Wang Yechun, Lei Bo, Zhang Sheng. Differences in vegetation and soil characteristics at different water-level altitudes in the drawdown areas of Three Gorges Reservoir area.JLakeSci, 2012,24(2): 206-212(in Chinese with English abstract). DOI 10.18307/2012.0206. [王業(yè)春, 雷波, 張晟. 三峽庫(kù)區(qū)消落帶不同水位高程植被和土壤特征差異. 湖泊科學(xué), 2012, 24(2): 206-212.]
[27]Meng Linghan, Zeng Hui, Xiong Yanmeietal. Soil carbon, nitrogen and phosphorus contents and fine root biomass under different vegetation types and building densities in Shenzhen City.ActaScientiarumNaturaliumUniversitatisPekinensis, 2013, 49(5): 899-907(in Chinese with English abstract). [孟令涵, 曾輝, 熊燕梅等. 深圳市不同建成區(qū)密度和植被類型下綠地土壤碳、氮、磷含量和細(xì)根生物量. 北京大學(xué)學(xué)報(bào):自然科學(xué)版, 2013, 49(5): 899-907.]
[28]Sharma P, Rai SC, Sharma Retal. Effects of land-use change on soil microbial C, N and P in a Himalayan watershed.Pedobiologia, 2004, 48(1): 83-92.
[29]Chen L, Qi X, Zhang Xetal. Effect of agricultural land use changes on soil nutrient use efficiency in an agricultural area, Beijing, China.ChineseGeographicalScience, 2011, 21(4): 392-402.
[30]Zhu Xiaolong, Zhang Linan, Geng Yanghui. The characteristics of soil nitrogen inPinusmassonianaforests of the Ruxi River Basin in the Three Gorges Reservoir region.JournalofSouthwestUniversity:NaturalScienceEdition, 2012, 34(11): 88-94(in Chinese with English abstract). [朱小龍, 張麗楠, 耿養(yǎng)會(huì)等. 三峽庫(kù)區(qū)汝溪河流域馬尾松林地土壤氮素特性研究. 西南大學(xué)學(xué)報(bào):自然科學(xué)版, 2012, 34(11): 88-94.]
[31]Gou Lihui, Sun Zhaodi, Nie Lishuietal. Vertical distribution patterns of nitrogen, phosphorus, and potassium in Chinese pine forest soils developed from different parent materials in Songshan Mountain Nature Reserve, Beijing of China.ChineseJournalofAppliedEcology, 2013, 24(4): 961-966(in Chinese with English abstract). [茍麗暉, 孫兆地, 聶立水等. 北京松山自然保護(hù)區(qū)不同母質(zhì)油松林土壤氮、磷、鉀含量垂直分布. 應(yīng)用生態(tài)學(xué)報(bào), 2013, 24(4): 961-966.]
[32]Man Xiuling, Liu Bin, Li Yi. Distribution characteristics of organic carbon,nitrogen and phosphorus in the soils of herbaceous peat swamps in the Xiaoxing’an Mountains.JournalofBeijingForestryUniversity, 2010, 32(6): 48-53(in Chinese with English abstract). [滿秀玲, 劉斌, 李奕. 小興安嶺草本泥炭沼澤土壤有機(jī)碳、氮和磷分布特征. 北京林業(yè)大學(xué)學(xué)報(bào), 2010, 32(6): 48-53.]
[33]Jobbágy EG, Jackson RB. The distribution of soil nutrients with depth: global patterns and the imprint of plants.Biogeochemistry, 2001, 53(1): 51-77.
[34]Lü Guohong, Zhou Li, Zhao Xianlietal. Vertical distribution of soil organic carbon and total nitrogen in reed wetland.ChineseJournalofAppliedEcology, 2006, 17(3): 384-389(in Chinese with English abstract). [呂國(guó)紅, 周莉, 趙先麗等. 蘆葦濕地土壤有機(jī)碳和全氮含量的垂直分布特征. 應(yīng)用生態(tài)學(xué)報(bào), 2006, 17(3): 384-389.][35]Bai Junhong, Deng Wei, Zhang Yuxiaetal. Spacial distribution characteristics of soil organic matter and nitrogenin the natural floodplain wetland.EnvironmentalScience, 2002, 23(2): 77-81(in Chinese with English abstract). [白軍紅, 鄧偉, 張玉霞等. 洪泛區(qū)天然濕地土壤有機(jī)質(zhì)及氮素空間分布特征. 環(huán)境科學(xué), 2002, 23(2): 77-81.]
[36]Sun Bin. The study of water and sediment changes in carp pond of saline-alkali soil.HebeiFisheries, 2012, (8): 13-16, 58(in Chinese with English abstract). [孫斌. 鹽堿地主養(yǎng)鯉魚池塘水質(zhì)和底質(zhì)變化的初步研究. 河北漁業(yè), 2012, (8): 13-16, 58.]
Distribution of organic matter and nutrient content in water-level-fluctuating zone of Miyun Reservoir inner lake, Beijing
QIN Lihuan1,2, ZENG Qinghui1,2, LI Xuyong1**& QIN Yaomin1
(1:StateKeyLaboratoryofUrbanandRegionalEcology,ResearchCenterforEco-EnvironmentalScience,ChineseAcademyofSciences,Beijing100085,P.R.China)(2:UniversityofChineseAcademyofSciences,Beijing100049,P.R.China)
Water-level-fluctuating zone (WLFZ) is a special phenomenon for rivers, lakes and reservoirs. It is also the most active and important zone for water and soil matter and energy exchange. The shifts between wet and dry period affects the nutrient transformation of WLFZ and water-soil exchange. In normal water season of Miyun Reservoir, the organic matter(OM) and nutrient content (N and P) of the water-level-fluctuating zone of inner lake was investigated,while the correlation among the soil physical chemical characteristics,OM and nutrient content was also be analyzed.Results indicated that the content of organic matter, total phosphorus, total nitrogen, ammonia nitrogen, nitrate nitrogen, inorganic phosphorus of inner lake of Miyun Reservoir was 23.15±13.65 mg/g,0.17±0.09 mg/g,1.44±0.81 mg/g,10.86±3.54 μg/g,8.07±2.73 μg/g,0.41±0.71 μg/g,9.09±4.18 μg/g, respectively; Land use had impacts on content of total nitrogen, ammonia nitrogen, nitrate nitrogen, had no impact on the content of organic matter and total phosphorus. For the vertical distribution, organic matter, total phosphorus, total nitrogen all decreased with the soil depth increase. Correlation analysis showed that water content and organic matter were important factors for nitrogen and phosphorus transform. The reserve of organic matter, total nitrogen, total phosphorus in area between 133-146 m was 5324.07, 59.56 and 414.02 t, respectively. So the water-lever-fluctuating zone was a very important OM and nutrient storage area. To keep the water quality, further studies about it were very necessary.
Water-level-fluctuating zone; organic matter; nitrogen; phosphorus; Miyun Reservoir; altitude; land use; soil depth
*中國(guó)科學(xué)院“一三五”戰(zhàn)略發(fā)展規(guī)劃重點(diǎn)項(xiàng)目(YSW2013B02-4)、城市與區(qū)域生態(tài)國(guó)家重點(diǎn)實(shí)驗(yàn)室科研專項(xiàng)(SKLURE2013-1-05)和國(guó)家水體污染控制與治理科技重大專項(xiàng)(2014ZX07203010)聯(lián)合資助.2015-07-15收稿;2015-12-01收修改稿.秦麗歡(1987~),女,博士研究生;E-mail:proveqinlh@163.com.
**通信作者;E-mail: xyli@rcees.ac.cn.