国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

房顫射頻消融術(shù)逆轉(zhuǎn)冠狀竇血miRNA異常表達(dá)的研究

2016-09-11 09:55徐桂玉趙楠楠楊水祥
中國心血管病研究 2016年8期
關(guān)鍵詞:離子通道冠狀熒光素酶

徐桂玉 趙楠楠 楊水祥

房顫射頻消融術(shù)逆轉(zhuǎn)冠狀竇血miRNA異常表達(dá)的研究

徐桂玉 趙楠楠 楊水祥

目的 探討房顫射頻消融手術(shù)(RFA)終止房顫后患者冠狀竇血miRNA的變化,試圖發(fā)現(xiàn)真正起調(diào)控作用的miRNA,以揭示房顫的機(jī)制及可能的干預(yù)靶點(diǎn)。方法 選擇30例行房顫射頻消融術(shù)患者(陣發(fā)性、持續(xù)性和永久性房顫各10例),健康體檢者10例作為正常對照組。射頻消融術(shù)前分別取冠狀竇血和外周血,術(shù)后3個月取外周血,使用miRNA芯片進(jìn)行全基因組miRNA表達(dá)譜微陣列分析,Real-time PCR對miRNA結(jié)果進(jìn)行驗證,并通過mirbase、miranda、targetscan數(shù)據(jù)庫行靶基因分析,對重要miRNA進(jìn)行雙熒光素酶結(jié)合實(shí)驗。結(jié)果 房顫射頻消融術(shù)前患者冠狀竇血與自身外周血比較,共有142種miRNA表達(dá)差異,其中6種顯著上調(diào)、8種下調(diào)(P<0.05)。射頻消融術(shù)后外周血較術(shù)前上調(diào)的6種miRNA中分別有3種表達(dá)上調(diào)和下調(diào),其中miR-1266下調(diào)-204.17倍;較術(shù)前下調(diào)的8種miRNA中,有7種再下調(diào),其中miR-3664-5p下調(diào)-44.66倍。熒光素酶結(jié)合實(shí)驗證實(shí)SCN5A是miR-1266的直接靶基因,CACNA1C是miR-4279的直接靶基因。結(jié)論 房顫射頻消融手術(shù)可逆轉(zhuǎn)患者冠狀竇血miRNA的調(diào)控異常,冠狀竇血miRNA的表達(dá)差異可直接反映房顫時心肌miRNA的表達(dá)狀況。MiR-1266有可能成為未來房顫干預(yù)的靶點(diǎn)。

心房顫動;射頻消融;微小RNA;離子通道蛋白;組學(xué)研究

目前,對于心房顫動(房顫,AF)miRNA調(diào)控機(jī)制的研究仍未形成方向性或趨勢性的研究成果,以及未確定可以作為早期預(yù)警診斷的標(biāo)記物或干預(yù)靶點(diǎn)的miRNA[1-8]。本研究從臨床實(shí)際出發(fā),提出了“冠狀竇血miRNA可能更能反映房顫發(fā)作時心肌miRNA的調(diào)控狀況與代謝水平”的設(shè)想,并在前期研究中已進(jìn)行了冠狀竇血miRNA表達(dá)的觀察,發(fā)現(xiàn)了一些可能有價值的miRNA[9]。為了進(jìn)一步探索房顫射頻消融手術(shù)對心?。ü跔罡]血)miRNA調(diào)控的影響,在擴(kuò)大樣本量的基礎(chǔ)上,本研究選擇了30例房顫患者(陣發(fā)性、持續(xù)性和永久性房顫各10例),正常對照組10例,射頻消融手術(shù)前和術(shù)后3個月(未復(fù)發(fā)患者)取外周血及術(shù)中取冠狀竇血,在全基因組miRNA芯片掃描的基礎(chǔ)上,觀察房顫射頻消融手術(shù)終止房顫后miRNA的變化,試圖發(fā)現(xiàn)真正起調(diào)控作用的miRNA,以揭示房顫的分子機(jī)制及可能的miRNAs干預(yù)靶點(diǎn),為未來房顫的研究奠定基礎(chǔ)。

1 對象與方法

1.1 研究對象 本研究選取我院心內(nèi)科2013年1月至2014年6月30例行房顫射頻消融術(shù)患者(分為陣發(fā)性、持續(xù)性和永久性房顫組各10例),平均年齡(72.17±4.76)歲,女性 14例,男性 16例;正常對照組10例,平均年齡(69.40±5.86)歲。每位患者均有5份以上不同時間心電圖(ECG)支持房顫診斷。排除標(biāo)準(zhǔn):年齡>80歲,甲狀腺功能亢進(jìn),糖尿病,血壓控制不良[收縮壓>140mm Hg和(或)舒張壓>90 mm Hg(1 mm Hg=0.133 kPa)],左室功能減低(EF<40%),嚴(yán)重冠狀動脈疾病,肝、腎功能障礙,急、慢性感染疾病,心肌結(jié)構(gòu)性病變?;颊呷虢M后均接受血管緊張素轉(zhuǎn)化酶抑制劑(ACEI)、血管緊張素受體抑制劑(ARB)、他汀類等藥物規(guī)范控制血壓、血脂等治療。停用β受體阻滯劑(β-blocker)和其他抗心律失常藥物。

本研究方案經(jīng)由院倫理委員會審批通過。參與患者均簽署知情同意書。

1.2 實(shí)驗儀器材料 第七代miRCURYTMLNA microRNA 芯片(v18.0 Exqion)、miRCURY Array Power Labeling kit標(biāo)記試劑盒(Cat#208032-A Exiqon)Wash buffer試劑盒(Exiqon)、TRIzol Reagent(Invitrogen life technologies)、miRNeasy mini試劑盒(Qiagen)、分光光度計(Sigma NanodropR ND-1000)、Axon Gene Pix 4000B微陣列芯片掃描儀。

1.3 試驗方法

1.3.1 標(biāo)本收集及儲存 射頻消融術(shù)前、術(shù)后3個月分別抽取外周血4 ml,術(shù)中射頻消融前置入冠狀竇電極時取冠狀竇血4 ml,分別置于EDTA抗凝管中,2 h 之內(nèi)分離血漿,1500 r/min,離心 15 min,吸上清液至凍存管中,-80℃保存。

1.3.2 RNA的提取及標(biāo)記 按照說明書用TRIzol Reagent和miRNeasy mini試劑盒提取總RNA,分光光度計測定RNA濃度和純度。分離RNA,采用miRCURYTM Array Power Labeling kit標(biāo)記試劑盒進(jìn)行miRNA標(biāo)記。CIP和CIP buffer的混合物(1∶1),經(jīng)孵育、離心后,依次加入標(biāo)記緩沖液、熒光探針(Hy3TM)、DMSO和標(biāo)記酶等,16℃下孵育1 h后終止,置于4℃保存。

1.3.3 芯片雜交 標(biāo)記后,采用miRCURYTMLNA microRNA芯片對Hy3TM標(biāo)記的樣品進(jìn)行雜交,操作按芯片說明書進(jìn)行。樣品混合物與雜交緩沖液混合,經(jīng)變性、冰上孵育、雜交過夜后離心5 min,干燥;微陣列芯片掃描儀掃描玻片,GenePix pro V6.0數(shù)據(jù)分析。

1.3.4 實(shí)時定量PCR(real-time PCR) Real-time PCR檢測標(biāo)本中miRNA的表達(dá)情況。按照說明書Trizol LS Reagent提取樣品中RNA。紫外吸收測定法進(jìn)行RNA質(zhì)量檢測,使用Nano Drop ND-1000測定RNA濃度、純度。使用樣品的RNA進(jìn)行cDNA合成。RT primers合成如下表(上海百力格生物)。

利用ViiA7 Real-time PCR System進(jìn)行Realtime PCR反應(yīng)。內(nèi)參(has-miR-93)及所有指標(biāo)均按以下程序進(jìn)行:95℃,10 min;40個PCR循環(huán)(95℃,10 sec;60℃,60 sec收集熒光),建立PCR產(chǎn)物溶解曲線。各樣品目的miRNA和內(nèi)參分別進(jìn)行Realtime PCR反應(yīng)。數(shù)據(jù)采用2-△△CT法進(jìn)行分析。

1.3.5 靶基因預(yù)測 預(yù)測miRNA靶基因主要通過mirbase、miranda、targetscan三個數(shù)據(jù)庫進(jìn)行。利用Kyoto Encyclopedia of Genes and Genomes(KEGG)數(shù)據(jù)庫對預(yù)測結(jié)果進(jìn)行信號通路歸類,而后根據(jù)Gene Ontology project數(shù)據(jù)庫對靶基因參與的生化過程、細(xì)胞組分及分子功能進(jìn)行分析。篩選所得靶基因至少存在于2個數(shù)據(jù)庫中。

1.3.6 熒光素酶結(jié)合實(shí)驗 分別將miR-1266質(zhì)粒(pcDNA6.2-GW/miRNA-1266)和 miR-4279質(zhì)粒與重組熒光素酶質(zhì)粒共轉(zhuǎn)染于HEK293細(xì)胞,以miR-1266 NC質(zhì)粒(pcDNA6.2-GW/miRNA NC)和miR-4279 NC質(zhì)粒和空白組為對照,分析各組轉(zhuǎn)染后相對熒光素酶活性。

1.4 統(tǒng)計學(xué)方法 采用Volcano Plot法獲得差異表達(dá),以房顫組患者與正常對照組外周血比值>1.5倍認(rèn)為是顯著上調(diào),比值<1.5倍認(rèn)為顯著下調(diào),均采用t檢驗。P<0.05為差異具有統(tǒng)計學(xué)意義。

2 結(jié)果

2.1 房顫組冠狀竇血與自身外周血miRNA術(shù)前表達(dá)差異 房顫組(包括所有陣發(fā)性、持續(xù)性和永久性房顫患者)冠狀竇血與自身外周血比較,共有142種miRNAs表達(dá)差異(聚類圖省略),其中6種miRNAs顯著上調(diào)、8種顯著下調(diào)(圖 1,表 1、2)。

表1 房顫患者術(shù)前C/W上調(diào)>1.5倍的miRNA

表2 房顫患者術(shù)前C/W下調(diào)>1.5倍的miRNA

2.2 房顫組術(shù)后外周血與自身術(shù)前外周血及冠狀竇血比較miRNA表達(dá)差異 房顫術(shù)后3個月,房顫組患者外周血與自身術(shù)前外周血miRNAs比較,上調(diào)>1.5倍,有明顯統(tǒng)計學(xué)差異的503種,下調(diào)>1.5倍統(tǒng)計學(xué)差異顯著的81種。其中,房顫術(shù)前冠狀竇血顯著上調(diào)的6種miRNA,術(shù)后外周血分別有3種表達(dá)上調(diào)和下調(diào),其中miR-1266下調(diào)-204.1703。見表3。

術(shù)前冠狀竇血顯著下調(diào)的8種miRNA,術(shù)后外周血有7種明顯下調(diào),但miR-574-3p增加8.7242倍,見表4。

表3 術(shù)前上調(diào)的miRNA術(shù)后外周血表達(dá)差異

表4 術(shù)前下調(diào)的miRNA術(shù)后外周血表達(dá)差異

2.3 RT-PCR驗證結(jié)果 Real-time PCR對冠狀竇血表達(dá)差異的miRNAs結(jié)果進(jìn)行驗證。術(shù)前冠狀竇血與自身外周血及正常對照組的芯片表達(dá)差異結(jié)果,經(jīng)PCR的驗證基本一致;術(shù)后3個月與術(shù)前結(jié)果與芯片結(jié)果大體一致,未見統(tǒng)計學(xué)差異;術(shù)前與正常對照組結(jié)果驗證,PCR與芯片結(jié)果也相同。

2.4 冠狀竇血差異表達(dá)miRNA的離子通道靶基因 通過mirbase、miranda、targetscan三個數(shù)據(jù)庫預(yù)測的冠狀竇血表達(dá)差異miRNA離子通道蛋白靶基因見表5。

2.5 雙熒光素酶結(jié)合實(shí)驗結(jié)果

2.5.1 MiR-1266與SCN5A基因結(jié)合 MiR-1266質(zhì)粒(pcDNA6.2-GW/miRNA-1266)和miR-1266陰性對照質(zhì)粒(pcDNA6.2-GW/miRNA NC)分別與SCN5A重組熒光素酶質(zhì)粒(pmirGLO-SCN5A 3′UTR)共轉(zhuǎn)染后發(fā)現(xiàn),miR-1266組和陰性對照組相比,熒光素酶相對活性顯著降低(P2=0.002);兩組與空白對照組比較,差異均有統(tǒng)計學(xué)意義(P<0.01)。見圖 2。

2.5.2 MiR-4279 與 CACNA1C、KCNH2、KCNE1、KCNJ5基因結(jié)合 與陰性對照組比較,miR-4279轉(zhuǎn)染組CACNA1C的雙熒光素酶活性明顯下調(diào)(P<0.01);miR-4279與KCNH2轉(zhuǎn)染組輕微下調(diào)(P>0.05);而KCNE1、KCNJ5轉(zhuǎn)染組未見統(tǒng)計學(xué)差異(P>0.05)。各組與空白對照組比較差異有統(tǒng)計學(xué)意義(P<0.01)。見圖 3。

表5 冠狀竇血差異表達(dá)miRNA的離子通道蛋白靶基因

3 討論

本研究在“冠狀循環(huán)miRNA更能反映房顫發(fā)作時心肌miRNA的調(diào)控與代謝水平”設(shè)想的基礎(chǔ)上,觀察了手術(shù)前后冠狀竇血miRNA的表達(dá)差異,并對差異表達(dá)較大的miR-1266等進(jìn)行了熒光素酶結(jié)合實(shí)驗,以證實(shí)其可能的調(diào)控作用。下面對可能起主要調(diào)控的miRNA分別予以討論。

MiR-1266的靶基因SCN5A是調(diào)控鈉離子流的主要通道蛋白[10],電壓依賴性鈉通道主要決定動作電位的有效不應(yīng)期(AERP)[11]。新近發(fā)現(xiàn),房顫時INa,peak電流密度降低伴Nav1.5表達(dá)降低[12]。多項研究揭示了Na通道參與心房顫動電重構(gòu)[13-18]。本研究發(fā)現(xiàn),miR-1266術(shù)前增加1.96倍,術(shù)后下降249.86倍。MiR-1266與SCN5A的結(jié)合位點(diǎn)保守,調(diào)控作用強(qiáng),使術(shù)前SCN5A表達(dá)下降,鈉電流密度降低,術(shù)后則明顯逆轉(zhuǎn),這與動物實(shí)驗的結(jié)果一致[13-15]。MiR-1266靶基因NALCN稱為“Na漏”電流通道基因,可調(diào)節(jié)細(xì)胞起搏活性[19];靶基因KCNH2與長QT間期有關(guān)[20],其基因多態(tài)性與中國人房顫易感性相關(guān)[21],基因突變能引起短QT間期綜合征和房顫[22]。在高血壓房顫患者中,該基因與腎上腺素能受體1、2、3和CX40具有關(guān)聯(lián)性[23]。本研究還通過雙熒光素酶報告系統(tǒng)分析發(fā)現(xiàn),miR-1266與SCN5A 3′UTR存在靶向結(jié)合,抑制熒光素酶的活性,因而SCN5A是miR-1266的直接靶基因。

本研究提示,miR-4279與L型鈣通道α亞基CACNA1C的3′UTR有結(jié)合,從而抑制熒光素酶的表達(dá),說明CACNA1C可能是miR-4279的直接靶基因,是miR-4279發(fā)揮作用的靶點(diǎn)。MiR-4279可能同時調(diào)控Ca2+通道基因CACNA1C,以及Ca2+激活K+通道蛋白基因3(SK3電流,通道基因KCNN3)。楊寶峰等[24]轉(zhuǎn)動物實(shí)驗已證實(shí),靶基因CACNA1C參與房顫調(diào)控,鈣離子通道功能障礙引起多系統(tǒng)障礙包括心律失常的出現(xiàn)[25-28]。分子生物學(xué)及循證醫(yī)學(xué)研究發(fā)現(xiàn),KCNN3可明顯改變心房細(xì)胞動作電位時程,增加房顫的風(fēng)險[29],KCNN3變異與孤立性房顫有關(guān)[30]。薈萃分析證實(shí)其為房顫易感位點(diǎn)[31]。

MiR-4666a-3p主要調(diào)控 CACNA1C、HCN4基因及鉀離子通道KCNG3基因,后者與神經(jīng)遞質(zhì)釋放、神經(jīng)興奮性、心率、平滑肌收縮等調(diào)節(jié)有關(guān)[32-34]。HCN4是起搏電流(If)的主要離子通道蛋白[35]。起搏電流對心臟節(jié)律的形成和維持起著至關(guān)重要的作用,病理狀態(tài)下,If通道的異?;顒邮切募〖?xì)胞異位節(jié)律增高的離子基礎(chǔ)[36]。研究發(fā)現(xiàn),快速起搏房顫犬,其肺靜脈肌袖細(xì)胞上的If電流異常增大,并且在交感神經(jīng)興奮時,該電流增加更加明顯,從而導(dǎo)致靜脈肌袖細(xì)胞自律性增高,形成異位節(jié)律[37]。MiR-4666a-3p的增加可能是HCN4電流增大的調(diào)節(jié)適應(yīng)性反應(yīng),其對CACNA1C的調(diào)控結(jié)果可能是導(dǎo)致L型Ca2+電流降低的原因之一。

MiR-1266、miR-4279均可調(diào)控 K+通道基因KCNH2、KCNE1、KCNJ5。KCNH2 是復(fù)極期快速延遲整流鉀電流(Ikr)電流的α亞單位[38],KCNE1是復(fù)極期緩慢延遲整流鉀電流(Iks)的亞單位[39],KCNJ5是乙酰膽堿介導(dǎo)的K+電流Kir3.4通道亞基[40]。大規(guī)模基因篩查發(fā)現(xiàn),這些K+通道基因多態(tài)性與房顫的發(fā)生密切相關(guān)[41-43]。另外,miR-1266、miR-4279、miR-4666a-3p在房顫患者冠狀竇血及自身外周血中均明顯增高,說明其可能是來自心肌組織的特異性miRNA。上述代謝特征說明它們不僅可能參與調(diào)控房顫的發(fā)生發(fā)展,更有可能成為未來房顫治療的潛在靶點(diǎn)。

MiR-3171在房顫組患者冠狀竇血及外周血均顯著持續(xù)下降,冠狀竇血降低更明顯,提示其可能主要由心臟外組織分泌,經(jīng)過冠狀循環(huán)與心肌結(jié)合參與房顫調(diào)控,使冠狀竇水平進(jìn)一步降低。其下降可能與靶基因SCN5A的下降,以及與靶基因KCNC4增加有關(guān)。KCNC4是乙酰膽堿介導(dǎo)的內(nèi)向整流 K+電流(KAch)的通道蛋白[44],KAch 電流增加,APD縮短,房顫易感性增高,而術(shù)后逆轉(zhuǎn)。MiR-3171在外周血明顯下降,未來有可能成為房顫早期預(yù)警診斷的標(biāo)志物。

MiR-892a、miR-3149在房顫患者外周血的表達(dá)均高于冠狀竇血及正常對照組外周血。這說明其可能來源于心外組織,經(jīng)冠狀循環(huán)后結(jié)合于心肌。MiR-892a在冠狀竇血的下降可能與靶基因KCNH2(Ikr電流通道蛋白)增加、復(fù)極期外向K+電流增多后的調(diào)控有關(guān);miR-3149在冠狀竇血下降,可能與靶基因KCNC4表達(dá)增加、乙酰膽堿介導(dǎo)的內(nèi)向整流K+電流增多相關(guān)。另外,是否與靶基因HCN1(起搏電流亞基1)在正常心房肌細(xì)胞表達(dá)增加,導(dǎo)致起搏電流增加、異位節(jié)律電的興奮性增高有待進(jìn)一步證實(shí)。MiR-892a和miR-3149在外周血中明顯持續(xù)增高,有可能成為房顫早期預(yù)警診斷的標(biāo)志物。

MiR-3664-5p的靶基因N型Ca2+通道亞基C ACNA1B已證實(shí)與神經(jīng)突觸遞質(zhì)釋放有關(guān)[45];靶基因CAMTA2(鈣調(diào)素結(jié)合轉(zhuǎn)錄調(diào)控因子2)是心肌肥厚的關(guān)鍵信號分子[46]。最新的研究發(fā)現(xiàn),這種新的轉(zhuǎn)錄共激活因子家族CAMTAs通過激活心房利鈉肽(ANF)可促進(jìn)心肌肥厚[47]。心房利鈉肽是心肌肥厚的特異性信號分子。MiR-574-3p參與調(diào)控CACNA1C,其下降也可能與L型Ca2+電流(IcaL)降低有關(guān)。MiR-4473參與調(diào)控 HCN4、HCN1和KCNJ2,其在冠狀竇血下降,可能與HCN4增加、異位節(jié)律點(diǎn)的興奮性增加及KCNJ2(內(nèi)向整流鉀電流Ik1通道亞單位)增加、Ik1電流增多有關(guān)。Ik1在動作電位3相復(fù)極末期起重要作用[48]。房顫患者及動物實(shí)驗表明[49],Ik1電流幅值和密度均明顯升高,慢性房顫患者IK1的密度是竇性心律者的2倍,從而引起靜息電位下移,易引起折返,誘發(fā)房顫。MiR-4423-5p的靶基因KCNJ13,對房顫的作用目前尚不清楚。MiR-3591-3p下降可能與細(xì)胞內(nèi)Ca2+增加有關(guān)(靶基因CAMK2A和CAMK2D)。MiR-3150主要調(diào)控CACNG2,與中樞谷氨酸受體的興奮性有關(guān),與房顫的關(guān)系未知。MiR-4787-5p及miRK12-6-3p尚未發(fā)現(xiàn)調(diào)控離子通道蛋白的靶基因,其作用有待進(jìn)一步研究。

總之,房顫電重構(gòu)不僅與多個離子流失平衡有關(guān),更重要的是與多個離子通道蛋白的調(diào)控miRNAs異常相關(guān)[50]。冠狀竇血表達(dá)差異的miRNA更能直接反映房顫發(fā)作時心肌miRNA的調(diào)控狀況和代謝水平。射頻消融手術(shù)不僅終止了房顫,同時逆轉(zhuǎn)或改變了miRNA的調(diào)控異常[51],對竇律的維持和防止房顫的復(fù)發(fā)有重要意義。有些關(guān)鍵miRNAs同時調(diào)控幾個重要的離子通道蛋白,如miR-1266不僅調(diào)控SCN5A蛋白決定Na+離子流的平衡,還調(diào)控KCNH2和KCNE1 K+離子通道蛋白,影響Ikr和IKs離子流的平衡。這些同時調(diào)控多個離子通道蛋白的miRNA,有可能成為未來房顫干預(yù)的新靶點(diǎn)。

圖1 冠狀竇血miRNA表達(dá)差異聚類圖。

圖2 MiR-1266與SCN5A基因熒光素酶結(jié)合實(shí)驗結(jié)果

圖3 MiR-4279 與 CACNA1C、KCNH2、KCNE1、KCNJ5雙熒光素酶結(jié)合實(shí)驗結(jié)果

[1]Yamac AH,Kucukbuzcu S,Ozansoy M,et al.Altered expression of micro-RNA 199a and increased levels of cardiac SIRT1 protein are associated with the occurrence of atrial fibrillation after coronary artery bypass graft surgery.Cardiovascular Pathology,2016,25:232-236.

[2]Khalyfa A,Kheirandish-Gozal L,Bhattacharjee R,et al.Circulating miRNAs as Potential Biomarkers of Endothelial Dysfunction In Obese Children.Chest,2016,149:786-800.

[3]Weckbach LT,Grabmaier U,Clauss S,et al.MicroRNAs as adiagnostic tool for heart failure and atrial fibrillation.Curr Opin Pharmac,2016,27:24-30.

[4]Takahashi K,Sasano T,Sugiyama K,et al.High-fat diet increases vulnerability to atrial arrhythmia by conduction disturbance via miR-27b.J Mol Cel Cardiol,2016,90:38-46.

[5]BernardoBC,BlaxallBC.From BenchtoBedside: New approaches to therapeutic discovery for heart failure.Heart,Lun and Circ,2016,25:425-434.

[6]Ali SS,Kala C,Abid M,et al.Pathological microRNAs in acute cardiovascular diseases and microRNA therapeutics.J Acu Dis,2016,5:9-15.

[7]Li M,Zhang J.Circulating MicroRNAs:Potential and Emerging Biomarkers for Diagnosis of Cardiovascular and Cerebrovascular Diseases.Biomed Res Int,2015,2015:730535.

[8]Orenes-Pinero E,Quintana-Giner M,Romero-Aniorte AI,et al.Novelbiomarkers in cardiology:MicroRNAs in atrial fibrillation.Arch Cardiol Mex,2015,15:31-32.

[9]楊水祥,徐桂玉,趙楠楠,等.心房顫動患者冠狀竇血小分子RNA表達(dá)差異與價值.中華老年心腦血管病雜志,2014,16:726-731.

[10]Zhao Y,Huang Y,Li W,et al.Post-transcriptional regulation of cardiac sodium channel gene SCN5A expression and function by miR-192-5p.Biochim Biophys Acta,2015,1852:2024-2034.

[11]Ziyadeh-Isleem A,Clatot J,Duchatelet S,et al.A truncating SCN5A mutation combined with genetic variability causes sick sinus syndrome and early atrial fibrillation.Heart Rhythm,2014,11:1015-1023.

[12]Kyle JW,Makielski JC.Diseases caused by mutations in Nav1.5 interacting proteins.Cardiac ElectrophysiolClinics,2014,6:797-809.

[13]Poulet C,Wettwer E,Grunnet M,et al.Late Sodium Current in Human Atrial Cardiomyocytes from Patients in Sinus Rhythm and Atrial Fibrillation.PLoS One,2015,10:e0131432.

[14]Aguilar M,Nattel S.The past,present and potential future of sodium channelblock asan atrialfibrillation suppressing strategy.J Cardiovasc Pharmacol,2015,66:432-40.

[15]Savio-Galimberti E,Weeke P,Muhammad R,et al.SCN10A/Nav1.8 modulation of peak and late sodium currents in patients with early onset atrial fibrillation.Cardiovasc Res,2014,104:355-363.

[16]Yue L,Melnyk P,Gaspo R,et al.Molecular mechanisms underlying ionic remodeling in a dog model of atrial fibrillation.Circ Res,1999,84:776-784.

[17]Gaspo R,Bosch RF,Talajic M,et al.Functional mechanisms underlying tachycardia-induced sustained atrial fibrillation in a chronic dog model.Circulation,1997,96:4027-4035.

[18]Sossalla S,Kallmeyer B,Wagner S,et al.Altered Na(+)currents in atrial fibrillation effects of ranolazine on arrhythmias and contractilityin human atrialmyocardium.JAm Coll Cardiol,2010,55:2330-2342.

[19]Liebeskind BJ,Hillis DM,Zakon HH.Phylogeny unites animal sodium leak channels with fungal calcium channels in an ancient,voltage-insensitive clade.Mol Biol Evol,2012,29:3613-3616.

[20]Chang YS,Yang YW,Lin YN,et al.Mutation Analysis of KCNQ1,KCNH2 and SCN5A Genes in Taiwanese Long QT Syndrome Patients.Int Heart J,2015,56:450-453.

[21]Wang QS,Wang XF,Chen XD,et al.Genetic polymorphism of KCNH2 confers predisposition of acquired atrial fibrillation in Chinese.J Cardiovasc Electrophysiol,2009,20:1158-1162.

[22]Hong K,Bjerregaard P,Gussak I,et al.Short QT syndrome and atrialfibrillation caused by mutation in KCNH2.J Cardiovasc Electrophysiol,2005,16:394-396.

[23]Gorshkova ES,Minushkina LO,Brovkin AN,et al.Genetic predisposition to development of atrial fibrillation in patients with hypertensive disease.Kardiologiia,2010,50:19-24.

[24]楊寶峰,杜智敏,澤田光平.氟卡尼電壓和頻率依賴性抑制豚鼠心房細(xì)胞遲發(fā)性外向鉀電流.中國藥理學(xué)報,1994,15:28-32.

[25]Splawski I,Timothy KW,Sharpe LM,et al.Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism.Cell,2004,119:19-31.

[26]Lu Y,Zhang Y,Wang N,et al.MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation.Circulation,2010,122:2378-2387.

[27]Soon JL,Ping L,Chua YL,et al.Absence of calcium channel alpha1C-subunit mutation in human atrial fibrillation.Asian Cardiovasc Thorac Ann,2010,18:349-353.

[28]Greiser M,Halaszovich CR,F(xiàn)rechen D,et al.Pharmacological evidence for altered src kinase regulation of I(Ca,L)in patients with chronic atrial fibrillation.Naunyn Schmiedebergs Arch Pharmacol,2007,375:383-392.

[29]Hsueh CH,Chang PC,Hsieh YC,et al.Proarrhythmic effect of blocking the small conductance calcium activated potassium channel in isolated canine left atrium.Heart Rhythm,2013,10:891-898.

[30]Ellinor PT,Lunetta KL,Glazer NL,et al.Common variants inKCNN3 are associated with lone atrial fibrillation.Nat Genet,2010,42:240-244.

[31]Ellinor PT,Lunetta KL,Albert CM,et al.Meta-analysis identifies six new susceptibility loci for atrial fibrillation.Nat Genet,2012,44:670-675.

[32]Jiménez-Garduno AM,Mitkovski M,Alexopoulos IK,et al.KV10.1 K(+)-channel plasma membrane discrete domain partitioning and its functional correlation in neurons.Biochim Biophys Acta,2014,1838:921-931.

[33]Sano Y,Mochizuki S,Miyake A,et al.Molecular cloning and characterization of Kv6.3,a novel modulatory subunit for voltage-gated K (+) channel Kv2.1.FEBS Lett,2002,512:230-234.

[34]Fantozzi I,Platoshyn O,Wong AH,et al.Bone morphogenetic protein-2 upregulates expression and function of voltage-gated K+channels in human pulmonary artery smooth muscle cells.Am J Physiol Lung Cell Mol Physiol,2006,291:L993-1004.

[35]Li JY,Wang HJ,Xu B,et al.Hyperpolarization activated cation current(I(f))in cardiac myocytes from pulmonary vein sleeves in the canine with atrial fibrillation.J Geriatr Cardiol,2012,9:366-374.

[36]Aguilar M,Qi XY,Huang H,et al.Fibroblast electrical remodeling in heart failure and potential effects on atrial fibrillation.Biophys J,2014,107:2444-2455.

[37]He XZ,Wang HY,Shen Y,et al.Cardiomyocyte progenitors in a canine pulmonary vein model of persistent atrial fibrillation.J Cardiol,2012,60:242-247.

[38]Biliczki P,Girmatsion Z,Brandes RP,et al.Trafficking-deficient long QT syndrome mutation KCNQ1-T587M confers severe clinical phenotype by impairment of KCNH2 membrane localization:evidence for clinically significant IKr-IKs alpha-subunit interaction.Heart Rhythm,2009,6:1792-1801.

[39]Liin SI,Silvera Ejneby M,Barro-Soria R,et al.Polyunsaturated fatty acid analogs act antiarrhythmically on the cardiac IKs channel.Proc Natl Acad Sci USA,2015,112:5714-5719.

[40]Cheng CJ,Sung CC,Wu ST,et al.Novel KCNJ5 mutations in sporadic aldosterone-producing adenoma reduce Kir3.4 membrane abundance.J Clin Endocrinol Metab,2015,100:E155-163.

[41]Han HG,Wang HS,Yin Z,et al.KCNE1 112G>;a polymorphism and atrial fibrillation risk:a meta-analysis.Genet Mol Res,2014,13:8367-8377.

[42]Li YY,Wang LS,Lu XZ.Mink S38G gene polymorphism and atrial fibrillation in the Chinese population:a meta-analysis of 1871 participants.Scientific World Journal,2014,2014:768681.

[43]Liang C,Li X,Xu Y,et al.KCNE1 rs1805127 polymorphism increases the risk of atrial fibrillation:a meta-analysis of 10 studies.PLoS One,2013,8:e68690.

[44]Fantozzi I,Platoshyn O,Wong AH,et al.Bone morphogenetic protein-2 upregulates expression and function of voltage-gated K+channels in human pulmonary artery smooth muscle cells.Am J Physiol Lung Cell Mol Physiol,2006,291:L993-1004.

[45]Weiss J,Pyrski M,Weissgerber P,et al.Altered synaptic transmission at olfactory and vomeronasal nerve terminals in mice lacking N-type calcium channel Cav2.2.Eur J Neurosci,2014,40:3422-3435.

[46]Schwartz RJ,Schneider MD.CAMTA in cardiac hypertrophy.Cell,2006,125:427-429.

[47]Song K,Backs J,McAnally J,et al.The transcriptional coactivator CAMTA2 stimulates cardiac growth by opposing classⅡhistone deacetylases.Cell,2006,125:453-466.

[48]Bosch RF,Zeng XR,Grammer JB,et al.Ionic mechanisms of electrical remodeling in human atrial fibrillation.Cardiovasc Res,1999,44:121-131.

[49]Allessie MA,Boyden PA,Camm AJ,et al.Pathophysiology and prevention of atrial fibrillation.Circulation,2001,103:769-777.

[50]Nattel S,F(xiàn)relin Y,Gaborit N,et al.Ion-channel mRNA-expression profiling:Insights into cardiac remodeling and arrhythmic substrates.J Mol Cell Cardiol,2010,48:96-105.

[51]McManus DD,Tanriverdi K,Lin H.Plasma microRNAs are associated with atrial fibrillation and change after catheter ablation(the miRhythm study).Heart Rhythm,2015,12:3-10.

The radiofrequency ablation may reverse the abnormal miRNA expression in coronary sinus blood of patients with atrial fibrillation

XU Gui-yu,ZHAO Nan-nan,YANG Shui-xiang.Department of Cardiology,the Capital Medical University Affiliated Beijing Shijitan Hospital,Beijing 100038,China

YANG Shui-xiang,E-mail:sxyang68@163.com

Objective To study the effect of radiofrequency ablation(RFA)on miRNA differential expression in coronary sinus blood(SB)of atrial fibrillation(AF)patients,and try to identify the possible pathogenesis of AF and miRNA targets for intervention in future.Methods 30 AF patients(10 paroxymal,10 persistent and 10 permanent AF patients)were enrolled,alongside 10 healthy subjects as controls.Peripheral blood (PB)samples were obtained before and at 3 months after RFA respectively.The total RNA was extracted and hybridized with the microRNA chips(microRNA v 18.0),and the differential expression of miRNA and clustering analysis in whole genome were made with Volcano Plot and tMEV software respectively,and validated by Real-time PCR.The target gene analysis of miRNAs was predicted through the Mirbase,Miranda and Targetscan databases.The important miRNAs were made for dual luciferase binding experiment to analyze and validate target genes.Results There were 142 miRNAs differential expression in SB of pre-operation AF patients compared with PB of patient-self control,in which,6 miRNAs were increased and 8 miRNAs were decreased significantly(P<0.05).Then,in the compare of PB in AF patients after RFA with which of self-control before RFA,there were 3 miRNAs up-regulated and down-regulated respectively in above increased 6 miRNAs,while miR-1266 was down-regulated 204.17-fold.In above decreased 8 miRNAs,7 of them were down-regulated again after RFA,while miR-574-3p up-regulated 5.25-fold.SCN5A was the target gene of miR-1266,and CACNA1C was the target gene of miR-4279 confirmed with Luciferase binding experiments.Conclusion RFA can reverse the abnormal expressions of miRNAs in AF patients.The differential expression of miRNAs in SB can directly reflect the regulatory status of miRNAs incardiomyocytes in AF attack.MiR-1266 may become the future target for AF intervention.

Atrial fibrillation;Radiofrequency ablation;miRNA;Ion channel protein;Genomics research

100038 北京市,首都醫(yī)科大學(xué)附屬北京世紀(jì)壇醫(yī)院心內(nèi)科

楊水祥,E-mail:sxyang68@163.com

10.3969/j.issn.1672-5301.2016.08.013

R541.7

A

1672-5301(2016)08-0720-07

2016-02-14)

猜你喜歡
離子通道冠狀熒光素酶
電壓門控離子通道參與紫杉醇所致周圍神經(jīng)病變的研究進(jìn)展
新型冠狀病毒感染者咽拭子與糞便排毒規(guī)律及臨床表現(xiàn)
NNMT基因啟動子雙熒光素酶報告系統(tǒng)的構(gòu)建及其與SND1靶向關(guān)系的驗證
蝎毒肽作為Kv1.3離子通道阻滯劑研究進(jìn)展
不同雙熒光素酶方法對檢測胃癌相關(guān)miRNAs靶向基因TIAM1的影響
雙熒光素酶報告基因系統(tǒng)在家蠶基因啟動子研究中的應(yīng)用
Kv1.5鉀離子通道抑制劑抗心房纖顫研究進(jìn)展*
尺骨冠狀突骨折的入路和預(yù)后
肘后路結(jié)合多種固定治療肱骨遠(yuǎn)端冠狀面骨折
重組雙熒光素酶報告基因質(zhì)粒psiCHECK-2-Intron構(gòu)建轉(zhuǎn)染及轉(zhuǎn)染細(xì)胞螢火蟲熒光素酶和海腎熒光素酶表達(dá)
临桂县| 封丘县| 汉寿县| 区。| 拜城县| 大渡口区| 卢龙县| 花莲市| 嘉黎县| 东海县| 焉耆| 南丹县| 潜山县| 巴青县| 太湖县| 亳州市| 红安县| 永昌县| 克山县| 安乡县| 揭东县| 洛川县| 红原县| 嘉义市| 轮台县| 怀来县| 惠水县| 得荣县| 永吉县| 石屏县| 淮北市| 汤原县| 南江县| 周宁县| 苏州市| 乃东县| 太仆寺旗| 平罗县| 墨江| 固镇县| 泗洪县|