董建偉, 程春蕊, 王艷萍
(鄭州航空工業(yè)管理學(xué)院 理學(xué)院, 河南 鄭州 450015)
?
一維雙極量子能量輸運(yùn)穩(wěn)態(tài)模型弱解的存在性
董建偉, 程春蕊, 王艷萍
(鄭州航空工業(yè)管理學(xué)院 理學(xué)院, 河南 鄭州 450015)
在一維有界區(qū)域上研究一個(gè)半導(dǎo)體雙極量子能量輸運(yùn)穩(wěn)態(tài)模型.將此模型變形為由2個(gè)四階橢圓方程和1個(gè)二階退化橢圓方程組成的耦合方程組.利用截?cái)喾椒ê蚅eray-Schauder不動(dòng)點(diǎn)定理證明了其變形后方程組弱解的存在性.
量子能量輸運(yùn)模型;穩(wěn)態(tài)解;存在性
Journal of Zhejiang University(Science Edition), 2016,43(5):521-524
量子漂移擴(kuò)散模型、量子能量輸運(yùn)模型和量子流體動(dòng)力學(xué)模型為半導(dǎo)體器件中常見(jiàn)的三大宏觀量子模型.通過(guò)宏觀量,例如電子密度、空穴密度、電流密度、粒子溫度和電位勢(shì)描述半導(dǎo)體器件中的載流子運(yùn)動(dòng)規(guī)律.最近,JUNGEL等[1]從完整的量子流體動(dòng)力學(xué)模型中推導(dǎo)出簡(jiǎn)化的量子能量輸運(yùn)模型:
(1)
-div(n▽T)=n(TL(x)-T),
(2)
ΔV=n-C(x),
(3)
其中,電子密度n、電子溫度T和電位勢(shì)V為未知函數(shù),晶格溫度TL(x)和雜質(zhì)密度C(x)為已知函數(shù),普朗克常數(shù)ε>0為物理參數(shù).在周期邊界條件下,文獻(xiàn)[1]首先證明了式(1)~(3)弱解的整體存在性,后來(lái)文獻(xiàn)[2]研究了其解的半古典極限狀態(tài)(ε→0).最近,文獻(xiàn)[3]證明了式(1)~(3)的一維穩(wěn)態(tài)模型古典解的存在性.關(guān)于式(1)~(3)不帶量子項(xiàng)(即ε=0)的經(jīng)典能量輸運(yùn)模型方面的研究結(jié)果見(jiàn)文獻(xiàn)[4-5].當(dāng)T=TL(x)=常數(shù)時(shí),式(1)~(3)即變?yōu)榱孔悠?擴(kuò)散模型,近幾年對(duì)此類模型已有大量研究成果[6-15].
在一維有界區(qū)域(0,1)上研究式(1)~(3)的雙極穩(wěn)態(tài)模型:
(4)
(5)
-((n+p)Tx)x=(n+p)(TL(x)-T),
(6)
Vxx=n-p-C(x),x∈(0,1),
(7)
n(0)=n(1)=1,p(0)=p(1)=1,
(8)
nx(0)=nx(1)=px(0)=px(1)=
Tx(0)=Tx(1)=0,
(9)
其中電子密度n、空穴密度p、粒子溫度T和電位勢(shì)V為未知函數(shù),晶格溫度TL(x)和雜質(zhì)密度C(x)為已知函數(shù),常數(shù)J1,J2分別表示電子電流密度和空穴電流密度.
式(4)、(5)分別除以n,p,再關(guān)于x求導(dǎo),并利用式(7)得
(10)
(11)
令n=eu,p=ev,則式(10),(11),(6),(8),(9)相應(yīng)變?yōu)?/p>
(eu-ev-C(x))=J1(e-u)x,
(12)
(eu-ev-C(x))=J2(e-v)x,
(13)
-((eu+ev)Tx)x=(eu+ev)(TL(x)-T),
(14)
u(0)=u(1)=0,v(0)=v(1)=0,
(15)
ux(0)=ux(1)=vx(0)=vx(1)=
Tx(0)=Tx(1)=0.
(16)
(17)
(18)
(19)
本文的主要結(jié)果為:
先考慮式(17)、(18)和如下截?cái)鄦?wèn)題:
(20)
其中,uM=min{M,max{-M,u}},常數(shù)M的定義見(jiàn)后文的式(25),vM的定義與uM類似.
(21)
另外,有
(22)
(23)
(24)
其中,
(25)
證明用φ=(T-ML)+=max{0,T-ML}∈H1(0,1)作為式(20)的試驗(yàn)函數(shù),得
用φ=T∈H1(0,1)作為式(20)的試驗(yàn)函數(shù),得
2eM(ML-mL)ML,
所以式(23)成立.
(26)
由Young不等式及式(23),可以估計(jì)式(26)的右端第1項(xiàng):
又因?yàn)?/p>
所以由式(26)可得
(27)
(28)
式(27)與(28)兩邊分別相加,得
(29)
由Young及Poincare不等式知,
又因?yàn)?/p>
所以由式(29)可推得式(21).
(30)
(31)
其中,σ∈[0,1],定義雙線性形式
(32)
線性泛函
[1]JUNGEL A, MILISIC J P. A simplified quantum energy-transport model for semiconductors[J]. Nonlinear Analysis: Real World Applications, 2011,12(2):1033-1046.
[2]CHEN L, CHEN X Q, JUNGEL A. Semiclassical limit in a simplified quantum energy-transport model for semiconductors [J]. Kinetic and Related Models,2011,4(4):1049-1062.
[3]DONG J W, ZHANG Y L, CHENG S H. Existence of classical solutions to a stationary simplified quantum energy-transport model in 1-dimensional space[J]. Chinese Annals of Mathematics: Ser B, 2013,34(5):691-696.
[4]JUNGEL A, PINNAU R, ROHRIG E. Existence analysis for a simplified energy-transport model for semiconductors [J]. Math Meth Appl Sci,2013,36(13):1701-1712.
[5]董建偉,琚強(qiáng)昌.一個(gè)一維半導(dǎo)體簡(jiǎn)化能量輸運(yùn)模型的穩(wěn)態(tài)解[J].數(shù)學(xué)年刊:A輯,2014,35(5):613-622.
DONG Jianwei, JU Qiangchang. A stationary solution to a 1-dimensional simplified energy-transport model
for semiconductors[J]. Chinese Annals of Mathematics: SerA,2014,35(5):613-622.
[6]JUNGEL A, VIOLET I. The quasi neutral limit in the quantum drift-diffusion equations [J]. Asymptotic Analysis,2007,53(3):139-157.
[7]CHEN L, JU Q C. Existence of weak solution and semiclassical limit for quantum drift-diffusion model[J]. Z Angew Math Phys,2007,58(1):1-15.
[8]CHEN X Q. The global existence and semiclassical limit of weak solutions to multidi-mensional quantum drift-diffusion model[J]. Advanced Nonlinear Studies,2007,7(1):651-670.
[9]CHEN X Q, CHEN L, JIAN H Y. The dirichlet problem of the quantum drift-diffusion model[J]. Nonlinear Analysis,2008,69(9):3084-3092.
[10]CHEN X Q, CHEN L. Initial time layer problem for quantum drift-diffusion model[J]. J Math Anal Appl,2008,343(1):64-80.
[11]CHEN X Q, CHEN L, JIAN H Y. Existence, semiclassical limit and long-time behavior of weak solution to quantum drift-diffusion model[J]. Nonlinear Analysis: Real World Applications, 2009,10(3):1321-1342.
[12]CHEN X Q. The isentropic quantum drift-diffusion model in two or three space dimensions[J]. Z Angew Math Phys,2009,60(3):416-437.
[13]NISHIBATA S, SHIGETA N, SUZUKI M. Asymptotic behaviors and classical limits of solutions to a quantum drift-diffusion model for semiconductors [J]. Mathematical Models and Methods in Applied Sciences,2010,20(6):909-936.
[14]DONG J W. Classical solutions to the one-dimensional stationary quantum drift-diffusion model[J]. Journal of Mathematical Analysis and Applications,2013,399(2):594-598.
[15]董建偉,張偉.關(guān)于一維穩(wěn)態(tài)量子漂移-擴(kuò)散模型[J].數(shù)學(xué)進(jìn)展,2015,44(2):263-270.
DONG Jianwei, ZHANG Wei. On the stationary quantum drift-diffusion model in one space dimension [J]. Advances in Mathematics,2015,44(2):263-270.
Existence of weak solutions to a stationary 1-dimensional bipolar quantum energy-transport model.
DONG Jianwei, CHENG Chunrui, WANG Yanping
(SchoolofMathematicsandPhysics,ZhengzhouInstituteofAeronauticalIndustryManagement,Zhengzhou450015,China)
A stationary bipolar quantum energy-transport model for semiconductors is studied in a 1-dimensional bounded domain. The model is reformulated as a coupled system consisting of two fourth-order elliptic equations and a second-order degenerate elliptic equation. The existence of weak solutions to the reformulated system is proved using the truncation method and the Leray-Schauder fixed-point theorem.
quantum energy-transport model; stationary solutions; existence
2015-10-15.
河南省科技廳基礎(chǔ)與前沿技術(shù)研究計(jì)劃項(xiàng)目 (162300410077);航空科學(xué)基金項(xiàng)目(2013ZD55006);河南省高等學(xué)校青年骨干教師資助計(jì)劃項(xiàng)目(2013GGJS-142);鄭州航空工業(yè)管理學(xué)院青年科研基金項(xiàng)目(2013111001,2014113002,2015113001).
董建偉(1980-),ORCID:http//orcid.org/0000-0003-1131-8244,男,碩士,副教授,主要從事偏微分方程研究,E-mail:dongjianweiccm@163.com.
10.3785/j.issn.1008-9497.2016.05.004
O 175.2
A
1008-9497(2016)05-521-04