方治國,郝翠梅,姚文沖,歐陽志云
1 浙江工商大學(xué)環(huán)境科學(xué)與工程學(xué)院,杭州 310018 2 中國科學(xué)院生態(tài)環(huán)境研究中心城市與區(qū)域生態(tài)國家重點(diǎn)實驗室,北京 100085
?
空氣微生物群落解析方法:從培養(yǎng)到非培養(yǎng)
方治國1,*,郝翠梅1,姚文沖1,歐陽志云2
1 浙江工商大學(xué)環(huán)境科學(xué)與工程學(xué)院,杭州3100182 中國科學(xué)院生態(tài)環(huán)境研究中心城市與區(qū)域生態(tài)國家重點(diǎn)實驗室,北京100085
隨著世界范圍內(nèi)流行性疾病以及我國空氣霧霾事件的不斷發(fā)生,空氣生物性污染的研究開始受到高度重視,其研究方法也隨著分子生物學(xué)技術(shù)的快速發(fā)展而不斷更新,由早期以生化技術(shù)為基礎(chǔ)的研究方法轉(zhuǎn)變?yōu)橐袁F(xiàn)代分子生物學(xué)技術(shù)為基礎(chǔ)的研究方法。綜述了空氣微生物群落多樣性解析方法從培養(yǎng)到非培養(yǎng)的發(fā)展過程,包括培養(yǎng)技術(shù)法、BIOLOG技術(shù)、生物標(biāo)記法、基因指紋圖譜技術(shù)、核酸雜交技術(shù)、實時熒光定量PCR、空氣微生物宏基因組學(xué)及基因芯片技術(shù),闡述了這些技術(shù)的基本原理,比較了各種技術(shù)的優(yōu)缺點(diǎn)并重點(diǎn)介紹了它們在空氣微生物群落多樣性研究中的應(yīng)用概況,最后展望了空氣微生物學(xué)研究的發(fā)展方向。
空氣微生物多樣性;生化技術(shù);分子生物學(xué)技術(shù);宏基因組學(xué)
隨著世界范圍內(nèi)流行性疾病以及我國空氣霧霾事件的頻繁發(fā)生,空氣生物性污染的研究開始受到高度重視??諝庵袕V泛分布的細(xì)菌、真菌孢子、放線菌和病毒等微生物粒子與空氣環(huán)境質(zhì)量以及人類健康等密切相關(guān)[1-2],小部分具有活性的生物粒子能夠?qū)е赂鞣N微生物疾病的發(fā)生[3]。由生物粒子組成的氣溶膠,可間接作為云凝結(jié)核和冰核,導(dǎo)致云滴和冰晶的形成,在雨雪的形成過程中發(fā)揮著非常重要的功能,并且可通過直接散射或吸收太陽能輻射在全球氣候變化中起著至關(guān)重要的作用[4-5]。到目前為止,空氣微生物的研究工作已有約180年的歷史,其研究方法也由傳統(tǒng)微生物培養(yǎng)法逐步轉(zhuǎn)化到現(xiàn)代分子生物學(xué)法。傳統(tǒng)的微生物培養(yǎng)法只能檢測空氣中可培養(yǎng)微生物,約占空氣中微生物總數(shù)的0.1%—10%,在營養(yǎng)貧瘠的空氣中比例可能更少,因此以可培養(yǎng)微生物的種類和濃度檢測空氣微生物的種群和數(shù)量會嚴(yán)重低估空氣中微生物的存在[6]。然而,以PCR為基礎(chǔ)的現(xiàn)代分子生物學(xué)法能夠檢測到空氣中微生物的全部信息,真實反映空氣中微生物的存在情況。文章綜述了空氣微生物多樣性解析方法的發(fā)展過程及應(yīng)用概況,并闡述了各種研究方法的優(yōu)缺點(diǎn)及發(fā)展方向。
以生化技術(shù)為基礎(chǔ)的方法是空氣微生物學(xué)研究早期發(fā)展起來的,主要包括傳統(tǒng)的微生物平板計數(shù)與形態(tài)學(xué)分析方法,以微生物碳源利用能力為基礎(chǔ)的解析方法,基于生物標(biāo)記的解析方法等,這些方法在空氣微生物的研究歷程中發(fā)揮著巨大的作用(表1)。
表1 以生化技術(shù)為基礎(chǔ)的空氣微生物研究方法
1.1基于傳統(tǒng)的平板計數(shù)與形態(tài)學(xué)分析技術(shù)
平板計數(shù)與形態(tài)學(xué)分析是傳統(tǒng)的空氣微生物研究方法,一般用自然沉降或采樣器把空氣中的微生物采集到液體、固體或半固體的采樣介質(zhì)上,再經(jīng)過培養(yǎng)繁殖生長成菌落后計數(shù)、然后進(jìn)行分離和純化,利用顯微鏡對其進(jìn)行形態(tài)學(xué)觀察,并結(jié)合其生理生化特征鑒定種屬分類特性[13]。早期空氣中微生物的發(fā)現(xiàn)也是基于以培養(yǎng)為基礎(chǔ)的傳統(tǒng)的平板計數(shù)與形態(tài)學(xué)研究方法,并且其在空氣微生物學(xué)發(fā)展過程中起了非常重要的作用。早期Lindemann、Lighthart和Shaffer等利用傳統(tǒng)的培養(yǎng)方法做了大量的空氣微生物學(xué)研究,取得了豐碩的成果[14-23]。Shelton等研究了美國境內(nèi)室內(nèi)外空氣真菌的群落結(jié)構(gòu)特征,為美國工業(yè)衛(wèi)生學(xué)者、變態(tài)反應(yīng)癥??漆t(yī)師和其他公共衛(wèi)生從業(yè)人員提供了可培養(yǎng)空氣真菌的比較信息[24]。進(jìn)入20世紀(jì)90年代,我國空氣微生物的研究逐漸興起,軍事醫(yī)學(xué)科學(xué)院微生物流行病研究所的胡慶軒先生是我國較早研究空氣微生物的學(xué)者,他所采用的研究方法都是以培養(yǎng)為基礎(chǔ)的,為我國學(xué)者空氣微生物的研究奠定了基礎(chǔ)[25-26]。之后,方治國、凌琪等分別研究了我國不同城市室內(nèi)外空氣微生物的污染特征,為空氣微生物污染的控制及城市管理部門制定環(huán)境政策法規(guī)提供了理論指導(dǎo)[27-33]。以上研究表明,傳統(tǒng)的平板計數(shù)與形態(tài)學(xué)分析方法對于空氣微生物來說是一種較好的研究方法,為世界范圍內(nèi)空氣微生物基礎(chǔ)數(shù)據(jù)的儲備提供了基礎(chǔ)。
1.2基于空氣微生物碳源利用差異的解析方法
基于空氣微生物碳源利用差異的分析方法主要是根據(jù)微生物代謝類型和對不同碳源的利用能力來評價微生物種類多樣性,其典型代表方法有BIOLOG技術(shù)。BIOLOG微生物鑒定系統(tǒng)是由美國的BIOLOG公司于1989年成功研發(fā)的,最初主要應(yīng)用于純種微生物鑒定[34]。1991年,Garland 和Mills首次將BIOLOG技術(shù)用來描述微生物群落功能多樣性特征,并在當(dāng)時引起了微生物生態(tài)學(xué)者的廣泛關(guān)注[34],之后較長時間BIOLOG技術(shù)在環(huán)境微生物功能多樣性評價研究中得到了廣泛的應(yīng)用,并在土壤、沉積物和水體等環(huán)境中微生物群落多樣性研究中發(fā)揮了至關(guān)重要的作用[35-37]。將BIOLOG技術(shù)用來研究微生物群落功能多樣性的理論依據(jù)是BIOLOG代謝多樣性類型的變化與微生物群落組成變化密切相關(guān)[38],其原理是利用以微生物群落水平碳源利用類型為基礎(chǔ)的BIOLOG氧化還原技術(shù)來表述環(huán)境樣品微生物群落特征,運(yùn)用主成分分析或相似類型的多變量統(tǒng)計分析方法展示不同微生物群落產(chǎn)生的不同代謝多樣性類型[39]。近年來,BIOLOG技術(shù)逐漸應(yīng)用到空氣中微生物碳代謝能力的評價中,并且取得了較好的研究效果。凌琪、龔嬋娟和段魏魏等利用BIOLOG技術(shù)分別研究了黃山風(fēng)景區(qū)、杭州不同樣點(diǎn)及塔克拉瑪干沙漠空氣中微生物的碳代謝特征[40-42]。BIOLOG技術(shù)為空氣微生物的研究提供了一種全新的思路,能在空氣微生物功能多樣性研究方面發(fā)揮重要的作用。
1.3基于生物標(biāo)記的空氣微生物解析方法
基于生物標(biāo)記的空氣微生物分析方法主要根據(jù)部分生物組分可以作為某些種類微生物的指示標(biāo)記,以該組分濃度和種類等的變化來指示相關(guān)微生物的變化,其主要分為醌指紋法和脂肪酸譜圖法。目前,應(yīng)用在生物氣溶膠領(lǐng)域以脂肪酸譜圖法為主。該方法主要步驟是通過提取生物氣溶膠中某種生化成分作為生物量標(biāo)記物,利用氣相、液相、氣質(zhì)聯(lián)用等技術(shù)手段對該生化成分進(jìn)行分類鑒定,其組成模式可作為種群組成的標(biāo)記。在空氣微生物研究中,3-羥基脂肪酸(10—18碳)可以指示標(biāo)記內(nèi)毒素(脂多糖)和革蘭氏陰性菌生物量負(fù)荷,支鏈脂肪酸(15—17碳)可以指示標(biāo)記革蘭氏陽性菌生物量負(fù)荷,麥角甾醇可以指示標(biāo)記真菌生物量負(fù)荷,胞壁酸可以指示標(biāo)記肽聚糖[43]。在基于生物標(biāo)記的空氣微生物解析方法方面,香港理工大學(xué)Lau課題組等做了大量的研究工作,開創(chuàng)了利用生物標(biāo)志法來確定生物氣溶膠中特定微生物群落的先河[44-48],他們的研究確定了生物標(biāo)記法能夠為氣溶膠中微生物群落提供定量信息。此外,Bauer等通過測定阿拉伯糖醇和甘露醇的含量對空氣中真菌孢子進(jìn)行定量示蹤[49];Poole等利用生物標(biāo)記法的研究結(jié)果解釋了人體單核細(xì)胞和上皮細(xì)胞對農(nóng)業(yè)灰塵的炎癥反應(yīng)[50];Filippo等利用麥角甾醇,阿拉伯糖醇和甘露醇等作為示蹤劑分析了城市氣溶膠的真菌孢子濃度[51]。綜上所述,生物標(biāo)記法是空氣中微生物定量研究的又一選擇,正逐步用于生物氣溶膠群落結(jié)構(gòu)的分型和動態(tài)監(jiān)測,并且研究方法日趨成熟,比傳統(tǒng)培養(yǎng)法在取樣和物種鑒定方面更簡單更快。
由于空氣環(huán)境要素的復(fù)雜多變,微生物純種分離富集培養(yǎng)的方法不但費(fèi)時費(fèi)力,而且存在方法學(xué)上的缺陷。一是空氣中大量微生物的不可培養(yǎng)性,使人類無法培養(yǎng)空氣中所有的微生物[6],二是分離富集培養(yǎng)方法具有較強(qiáng)的選擇性,使培養(yǎng)得到的空氣微生物在種類、數(shù)量和功能上都無法反映其微生物群落的真實情況[52]。因此,非常有必要研究不依賴微生物培養(yǎng)來進(jìn)行空氣微生物群落分析的方法,它們主要包括:聚合酶鏈?zhǔn)椒磻?yīng)(PCR)、變性梯度凝膠電泳(Denaturing gradient gel electrophoresis, DGGE)和溫度梯度凝膠電泳(Temperature gradient gel electrophoresis, TGGE)、末端限制性酶切片段長度多態(tài)性分析(Terminal restriction fragment length polymorphism, T-RFLP)、基因克隆文庫分析(Gene cloning library)、實時熒光定量PCR(RT-PCR)、宏基因組學(xué)(Metagenomics)、基因芯片(DNA microarray)等[53](表2)。
2.1基于PCR為基礎(chǔ)的基因指紋圖譜技術(shù)
2.1.1DNA 成分多態(tài)性圖譜分析(DGGE/TGGE)
DGGE是由Fischer 等于1979 年首先提出的用于檢測DNA 突變的一種電泳技術(shù),其分辨力高于瓊脂糖電泳和聚丙烯酰胺凝膠電泳[64],Muzyer 等首次將DGGE技術(shù)應(yīng)用于分子微生物學(xué)研究領(lǐng)域,其在揭示自然界微生物群落遺傳多樣性和種群差異方面具有明顯優(yōu)越性[65],而TGGE是在DGGE 基礎(chǔ)上衍生出的微生物多樣性研究的重要手段[66]。DGGE技術(shù)是對PCR 擴(kuò)增微生物 rDNA 產(chǎn)生的DNA 片段混合物的分析,自從DGGE技術(shù)首次應(yīng)用于微生物分子生物學(xué)研究以來,該技術(shù)迅速被廣泛用于土壤[67]、活性污泥[68]、海洋[69]、底泥[54]等樣品中微生物多樣性分析、微生物鑒定及變異等方面的研究。近年來,DGGE/TGGE已越來越多用于空氣中微生物多樣性分析的研究。Nehmé 等利用DGGE方法研究了高分娩期豬圈內(nèi)空氣中生物氣溶膠粒子的季節(jié)分布特征[70],然后利用DGGE和克隆的方法證明了豬圈里存在著高濃度來源于豬糞的產(chǎn)甲烷古生菌,這是首次對生物氣溶膠中古生菌的研究[71];Li 等利用DGGE方法比較研究了4種空氣微生物取樣器的取樣效率[72];Hervàs 等利用DGGE方法研究了空氣細(xì)菌從非洲遷移到歐洲高山湖泊的活力和潛力[73];Lecours 等利用DGGE方法研究了乳牛舍生物氣溶膠的特征,結(jié)果顯示乳牛舍生物氣溶膠組分復(fù)雜,并且在職業(yè)性呼吸系統(tǒng)疾病方面起著非常重要的作用[74]。DGGE/TGGE對于空氣中微生物多樣性及其群落結(jié)構(gòu)的研究技術(shù)已逐步成熟,與其他方法相結(jié)合能對空氣微生物的結(jié)構(gòu)特征及其物化成分有著更好的闡述。
表2 以現(xiàn)代分子生物學(xué)技術(shù)為基礎(chǔ)的空氣微生物研究方法
2.1.2DNA長度多態(tài)性圖譜分析(T-RFLP)
T-RFLP技術(shù)是以分子系統(tǒng)學(xué)的原理為基礎(chǔ), 綜合運(yùn)用了PCR技術(shù)、DNA限制性酶切技術(shù)、熒光標(biāo)記技術(shù)和DNA 序列自動分析技術(shù),在DNA水平上通過對特定核酸片段長度多態(tài)性的測定來分析比較微生物群落結(jié)構(gòu)和功能[75]。該方法依據(jù)微生物的比較基因組學(xué)信息,選取一段具有系統(tǒng)進(jìn)化標(biāo)記特征的DNA序列為目的分析序列,并據(jù)此設(shè)計出理想引物,用熒光物質(zhì)標(biāo)記出1個或2個引物的5′端(2個引物同時標(biāo)記時,要用不同的熒光物質(zhì)標(biāo)記)。擴(kuò)增后的PCR 產(chǎn)物用四堿基限制性內(nèi)切酶進(jìn)行消化, 熒光標(biāo)記末端片段可被測序儀識別, 得到不同的末端片段峰, 每一個峰就可至少代表一種類型的微生物, 通常用系統(tǒng)分類操作單元(OTU)來表示。故根據(jù)片段峰的大小和數(shù)量可以檢測和分析空氣樣品中微生物的末端限制性片段圖譜,進(jìn)而可分析出微生物群體的組成和動態(tài)變化等生態(tài)信息[76-77]。Lee等利用T-RFLP技術(shù)研究了韓國首爾市細(xì)菌和真菌的群落結(jié)構(gòu),并發(fā)現(xiàn)其細(xì)菌和真菌包括致病菌和過敏原多樣性豐富,且不同季節(jié)空氣細(xì)菌和真菌群落結(jié)構(gòu)的多樣性和豐富度變化顯著[78];Woo等利用T-RFLP技術(shù)研究了香港空氣微生物群落及與微生物相關(guān)過敏原的時間變化特征[79]。Maron等通過基因片段之間的PCR擴(kuò)增獲得長度多態(tài)性,其在空氣微生物群落研究中起著非常重要的作用[80]。
2.2核酸雜交技術(shù)
目前應(yīng)用最廣泛的是近年來發(fā)展起來的熒光原位雜交技術(shù)(Fluorescence in situ hybridization, FISH),其結(jié)合了分子生物學(xué)的精確性和顯微鏡的可視性信息,可以在自然或人工的微生境中監(jiān)測和鑒定不同的微生物個體,同時對微生物群落進(jìn)行評價[81-82]。FISH的應(yīng)用原理是,微生物細(xì)胞脫水后,根據(jù)DNA堿基配對原則,在不改變其結(jié)構(gòu)和分布格局的情況下與滲透到細(xì)胞結(jié)構(gòu)內(nèi)具有熒光標(biāo)記的寡核苷酸探針在一定溫度下進(jìn)行定位雜交,只有與探針堿基對完全互補(bǔ)的RNA序列才能與探針發(fā)生雜交,經(jīng)熒光素(FITC)標(biāo)記的特異性抗體在熒光顯微鏡下,可清晰地描繪出與DNA靶結(jié)合部位,從而使該菌體在熒光顯微鏡下發(fā)出熒光。Lange等運(yùn)用了FISH技術(shù)對暴露在空氣中的細(xì)菌進(jìn)行評估,定量識別出生物氣溶膠中的綠膿桿菌和大腸桿菌,為生物氣溶膠的評估提供了有效的手段[83];Hung等運(yùn)用核酸雜交技術(shù)分析了從空氣樣品中分離的72個目標(biāo)菌株和66個非目標(biāo)參照菌株,其靈敏度和特異度都達(dá)到100%[84];Kristiansen等應(yīng)用熒光標(biāo)記一般細(xì)菌探針和處于分娩期豬圈內(nèi)氣溶膠細(xì)胞進(jìn)行原位雜交,發(fā)現(xiàn)厚壁菌門和鏈球菌為主要的細(xì)菌屬種,還發(fā)現(xiàn)了多樣性豐富的真菌群落[85]。FISH技術(shù)已被用來研究空氣細(xì)菌的多樣性信息,為空氣微生物種類及其分布特征的研究提供了全新的方法。
2.3實時熒光定量PCR(RT-PCR)
RT-PCR技術(shù)作為一種核酸定量的手段,能夠準(zhǔn)確量化環(huán)境中微生物群落的組成[86],確定群落的優(yōu)勢類群或具有某種生物學(xué)功能的微生物類群的豐度[87],能夠檢測低濃度空氣細(xì)菌濃度,其在空氣微生物學(xué)研究方面具有非常重要的作用。Lee等利用熒光標(biāo)記的特異性引物對空氣中細(xì)菌和真菌進(jìn)行PCR擴(kuò)增,確定了空氣中總懸浮顆粒物中的細(xì)菌和真菌的濃度[78];Makino等把炭疽直接加入到空氣微生物采樣液中,然后用RT-PCR進(jìn)行了定量分析,結(jié)果發(fā)現(xiàn)1個炭疽細(xì)胞在1 h內(nèi)就可檢出[88];Yamamoto等優(yōu)化RT-PCR反應(yīng)條件來定量收集在凝膠過濾器上的空氣真菌濃度[89];Rinsoz等對家禽廠和污水處理廠空氣中全部數(shù)量細(xì)菌進(jìn)行評估,通過將RT-PCR與熒光顯微技術(shù)及培養(yǎng)方法相比較,證明RT-PCR技術(shù)是一種可行有效,精確且簡單的方法,能夠在復(fù)雜多變的環(huán)境中評估空氣細(xì)菌負(fù)荷[90-91]。隨著RT-PCR技術(shù)不斷發(fā)展和其使用成本的逐漸下降,其在空氣微生物學(xué)研究中應(yīng)能得到更廣泛的應(yīng)用。
2.4空氣微生物宏基因組學(xué)
環(huán)境基因組學(xué)通過直接從環(huán)境樣品中提取全部微生物的DNA,構(gòu)建宏基因組文庫,利用基因組學(xué)信息研究環(huán)境樣品所包含的全部微生物的遺傳組成及其群落結(jié)構(gòu),避免了傳統(tǒng)微生物學(xué)基于純培養(yǎng)研究的限制,為充分認(rèn)識和開發(fā)利用不可培養(yǎng)微生物,并從完整的群落水平上認(rèn)識微生物的活性提供了可能[92-93]。Tringe等對城市室內(nèi)環(huán)境的空氣樣本進(jìn)行宏基因組研究,發(fā)現(xiàn)空氣中隱藏著一個獨(dú)特的社區(qū),可能源于多種生態(tài)位,并通過空氣環(huán)境中的選擇性壓力發(fā)展形成[94];Cao等在霧霾天氣利用宏基因組學(xué)研究了北京建筑物頂樓頂?shù)目諝鈽悠?,發(fā)現(xiàn)大部分的可吸入性空氣微生物宏基因組和土壤宏基因組密切相關(guān),且?guī)追N與呼吸道疾病相關(guān)的致病菌豐富度隨著懸浮性顆粒污染物的濃度增加而增加[95];Oh等運(yùn)用宏基因組學(xué)研究發(fā)現(xiàn)漢城的春季空氣真菌具有較高多樣性,且含有高濃度的真菌過敏原[96];Whon等運(yùn)用宏基因組學(xué)第一次報道了空氣中病毒的季節(jié)性和其遺傳多樣性,從而提高在溫帶地區(qū)對病毒生態(tài)學(xué)的理解[97]。由于空氣中微生物的極低的濃度,對16S或18S核糖體基因組的直接分析無法實現(xiàn),可通過改進(jìn)采樣和擴(kuò)增的方法來獲得足夠的DNA,能夠運(yùn)用宏基因組學(xué)來分析,從這些樣品中產(chǎn)生的宏基因組數(shù)據(jù)的分析揭示空氣微生物群落中的多樣性和不同豐度的種屬,還可以對細(xì)菌的可能來源進(jìn)行識別[98]。
2.5基因芯片技術(shù)
基因芯片又稱DNA微陣列,芯片上固定的探針有DNA片段、寡核苷酸、cDNA或來自基因組的基因片段,它們固化于芯片上形成基因探針陣列。經(jīng)過標(biāo)記的核苷酸序列與基因芯片特定位點(diǎn)上的探針進(jìn)行雜交, 然后通過檢測雜交信號定性和定量地判斷樣品中的靶序列分子[99]。目前基因芯片技術(shù)已應(yīng)用于糞便、臨床、環(huán)境和食品樣本等的微生物群落結(jié)構(gòu)研究,主要包括功能基因、特定細(xì)菌和病毒的檢測及其菌群分析等[100]。近年來,基因芯片技術(shù)在空氣微生物的研究中得到充分發(fā)展,它不僅可以分析和鑒別空氣中微生物群落的微生物分布、種類及功能,還能分析空氣中環(huán)境因素改變對其微生物生態(tài)的影響。Hung等使用微陣列技術(shù)同時對空氣中幾種過敏原進(jìn)行檢測和定量測定,鑒定出21個空氣真菌物種,且這些真菌都能夠?qū)е氯藗冞^敏[84];Brodie等使用高密度DNA微陣列監(jiān)測了美國兩個城市的細(xì)菌種群,發(fā)現(xiàn)這些城市氣溶膠中包含至少有1800不同的細(xì)菌種類,可能比某些土壤細(xì)菌群落更豐富[101]。隨著我國空氣污染的不斷加劇,空氣中的過敏原的種類和數(shù)量也在發(fā)生較大的變化,隨著基因芯片技術(shù)不斷發(fā)展,可以同步定量多個過敏原,可為空氣質(zhì)量的控制做出較大貢獻(xiàn)[102]。
(1)不斷擴(kuò)大研究范圍以獲取更加全面系統(tǒng)的空氣微生物研究第一手資料。我國空氣中微生物的研究主要集中在城市空氣微生物多樣性特征的研究,然而從生態(tài)學(xué)角度對自然風(fēng)景區(qū)和風(fēng)景旅游區(qū)等生態(tài)系統(tǒng)以及從公共衛(wèi)生學(xué)角度對地鐵和超市等室內(nèi)公共場所空氣微生物的研究報道較少。因此,有必要研究與人類活動密切相關(guān)的各類環(huán)境空氣微生物群落及多樣性特征。
(2)不斷完善空氣微生物多樣性的解析技術(shù)和方法以獲取更多的微生物信息。我國空氣微生物學(xué)的研究起步較晚,分子生物學(xué)技術(shù)在空氣微生物研究中應(yīng)用較少。因此,應(yīng)該利用傳統(tǒng)的微生物學(xué)與現(xiàn)代分子生物學(xué)相結(jié)合的方法對不同環(huán)境空氣微生物多樣性信息進(jìn)行深入的研究。
(3)不斷優(yōu)化空氣微生物取樣技術(shù)和研發(fā)新型高流量取樣器以保證有足夠DNA樣本進(jìn)行分子生物學(xué)研究。空氣中微生物的種類較少濃度較低,空氣微生物基因組DNA的提取比其它樣品更加困難。因此,有必要研發(fā)高流量取樣技術(shù)為空氣微生物的分子生物學(xué)研究提供樣品保障。
(4)不斷擴(kuò)大研究尺度以從生物地理學(xué)的角度獲取空氣微生物圖譜。目前空氣微生物學(xué)的研究尺度較小,取樣覆蓋面較窄。因此,隨著高通量和大數(shù)據(jù)時代的到來,空氣微生物的研究有必要擴(kuò)大至區(qū)域尺度甚至全國范圍,從生物地理學(xué)角度制作全國范圍的空氣微生物圖譜。
(5)不斷研究空氣微生物與環(huán)境因素及污染因子之間的關(guān)系以獲取空氣微生物污染的形成機(jī)制。目前城市空氣微生物污染的形成機(jī)制研究較少。因此,有必要系統(tǒng)研究空氣微生物污染與環(huán)境因素及污染因子之間的關(guān)系,掌握城市空氣微生物污染的形成機(jī)制,為城市空氣中生物性污染的治理提供理論依據(jù)。
(6)不斷統(tǒng)一空氣微生物研究體系完善其綜合評價系統(tǒng)以能夠?qū)Σ煌h(huán)境條件下空氣微生物研究指標(biāo)進(jìn)行綜合評價。采樣條件和采樣基質(zhì)對空氣微生物檢測有重要的影響,需對空氣微生物研究的培養(yǎng)基和取樣方法制定統(tǒng)一標(biāo)準(zhǔn),同時加強(qiáng)空氣微生物污染與人體健康之間的關(guān)系研究,且對空氣微生物作為人體健康狀況的指標(biāo)進(jìn)行綜合評價。
[1]Alan M Jones, Roy M Harrison. The effects of meteorological factors on atmospheric bioaerosol concentrations-a review. Science of the Total Environment, 2004, 326(1/3): 151-180.
[2]Li C S, Hsu L Y. Airborne fungus allergen in association with residential characteristics in atopic and control children in a subtropical region. Archives of Environmental Health: An International Journal, 1997, 52(1): 72-79.
[3]Kalogerakis N, Paschali D, Lekaditis V, Pantidou A, Eleftheriadis K, Lazaridis M. Indoor air quality: bioaerosol measurements in domestic and office premises. Journal of Aerosol Science, 2005, 36(5/6): 751-761.
[4]Brent C Christner, Cindy E Morris, Christine M Foreman, Cai R M, David C Sands. Ubiquity of biological ice nucleators in snowfall. Science, 2008, 319(5867): 1214-1214.
[5]Brent C Christner, Cai R M, Cindy E Morris, Kevin S McCarter, Christine M Foreman, Mark L Skidmore, Scott N Montross, David C Sandsg. Geographic, seasonal, and precipitation chemistry influence on the abundance and activity of biological ice nucleators in rain and snow. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(48): 18854-18859.
[6]Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews, 1995, 59(1): 143-169.
[7]Fang Z G, Ouyang Z Y, Hu L F, Wang X K, Zheng H, Lin X Q. Culturable airborne fungi in outdoor environments in Beijing, China. Science of the Total Environment, 2005, 350: 47-58.
[8]Fang Z G, Ouyang Z Y, Zheng H, Wang X K, Hu L F. Culturable airborne bacteria in outdoor environments in Beijing, China. Microbial Ecology, 2007, 54(3): 487-496.
[9]鄭華, 歐陽志云, 方治國, 趙同謙. BIOLOG在土壤微生物群落功能多樣性研究中的應(yīng)用. 土壤學(xué)報, 2004, 41(3): 456-461.
[10]Juliet Preston-Mafham, Lynne Boddy, Peter F Randerson. Analysis of microbial community functional diversity using sole-carbon-source utilisation profiles-a critique. FEMS Microbiology Ecology, 2002, 42(1): 1-14.
[11]車玉伶, 王慧, 胡洪營, 梁威, 郭玉鳳. 微生物群落結(jié)構(gòu)和多樣性解析技術(shù)研究進(jìn)展. 生態(tài)環(huán)境, 2005, 14(1): 127-133.
[12]Hill G T, Mitkowski N A, Aldrich-Wolfe L, Emele L R, Jurkonie D D, Ficke A, Maldonado-Ramirez S, Lynch S T, Nelson E B. Methods for assessing the composition and diversity of soil microbial communities. Applied Soil Ecology, 2000, 15(1): 25-36.
[13]Fabian M P, Reponen T, Miller S L, Hernandez M T. Total and culturable airborne bacteria and fungi in Arid region flood-damaged residences. Journal of Aerosol Science, 2000, 31: 35-36.
[14]Julianne Lindemann, Helen A Constantinidou, William R Barchet, Christen D Upper. Plants as sources of airborne bacteria, including ice nucleation-active bacteria. Applied and Environmental Microbiology, 1982, 44(5): 1059-1063.
[15]Lindermann J, Upper C D. Aerial dispersal of epiphytic bacteria over bean plants. Applied and Environmental Microbiology, 1985, 50(5): 1229-1232.
[16]Bruce Lighthart. Survival of airborne bacteria in a high urban concentration of carbon monoxide. Applied and Environmental Microbiology, 1973, 25(1): 86-91.
[17]Bruce Lighthart. Microbial aerosols: estimated contribution of combine harvesting to an airshed. Applied and Environmental Microbiology, 1984, 47(2): 430-432.
[18]Lightart B, Kin J. Simulation of airborne microbial droplet transport. Applied and Environmental Microbiology, 1989, 55(9): 2349-2355.
[19]Bruce Lighthart, Brenda T Shaffer, Balkumar Marthi, Lisa M Ganio. Artificial wind-gust liberation of microbial bioaerosol previously deposited on plants. Aerobiologia, 1993, 9(2/3): 189-196.
[20]Lighthart B, Shaffer B T. Bacterial flux from chaparral into the atmosphere in mid-summer at a high desert location. Atmospheric Environment, 1994, 28(7): 1267-1274.
[21]Lightart B, Shaffer B T. Airborne bacteria in the atmospheric surface layer: Temporal distribution above a grass seed field. Applied and Environmental Microbiology, 1995, 61(4): 1492-1496.
[22]Bruce Lighthart, Brenda T Shaffer. Viable bacterial aerosol particle size distributions in the midsummer atmosphere at an isolated location in the high desert chaparral. Aerobiologia, 1995, 11(1): 19-25.
[23]Shaffer B T, Lighthart B. Survey of culturable airborne bacteria at four diverse locations in Oregon: urban, rural, forest, and coastal. Microbial Ecology, 1997, 34(3): 167-177.
[24]Brian G Shelton, Kimberly H Kirkland, W Dana Flanders, George K Morris. Profiles of airborne fungi in buildings and outdoor environments in the United States. Applied and Environmental Microbiology, 2002, 68(4): 1743-1753.
[25]Hu Q X, Cai Z L, Lu Z X. Preliminary approach on the status of indoor and outdoor airborne fungi particles. Shanghai Environmental Sciences, 1999, 18(10): 454-456.
[26]胡慶軒, 車鳳翔, 徐秀芝, 姜黎, 鹿建春, 劉敏霞. 微孔濾膜空氣微生物采樣器的研制. 衛(wèi)生研究, 1999, 28 (4): 255-256.
[27]Fang Z G, Ouyang Z Y, Zheng H, Wang X K. Concentration and size distribution of culturable airborne microorganisms in outdoor environments in Beijing, China. Aerosol Science and Technology, 2008, 42(5): 325-334.
[28]凌琪, 王晏平, 王莉, 舒瑩, 陶勇, 鮑立寧. 合肥城區(qū)空氣真菌濃度的時空分布特征. 生物多樣性, 2008, 16(2): 175-180.
[29]凌琪, 王晏平, 陶勇, 王莉, 舒瑩. 合肥市2004~2006 年空氣細(xì)菌污染狀況調(diào)查. 中國公共衛(wèi)生管理, 2007, 23(1): 67-69.
[30]Fang Z G, Gong C J, Ouyang Z Y, Liu P, Sun L, Wang X Y. Characteristic and concentration distribution of culturable airborne bacteria in residential environments in Beijing, China. Aerosol and Air Quality Research, 2014, 14(3): 943-953.
[31]方治國, 歐陽志云, 劉芃, 孫力, 王小勇. 城市居家環(huán)境空氣真菌群落結(jié)構(gòu)特征研究. 環(huán)境科學(xué), 2013, 34(5): 2031-2037.
[32]方治國, 孫平, 歐陽志云, 劉芃, 孫力, 王小勇. 北京市居家空氣微生物粒徑及分布特征研究. 環(huán)境科學(xué), 2013, 34(7): 2526-2532.
[33]方治國, 歐陽志云, 劉芃, 孫力, 王小勇. 北京市居家空氣微生物污染特征. 環(huán)境科學(xué)學(xué)報, 2013, 33(4): 1166-1172.
[34]Jay L Garland, Aaron L Mills. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Applied and Environmental Microbiology, 1991, 57(8): 2351-2359.
[35]Krista L De Fede, Daniel G Panaccione, Alan J Sexstone. Characterization of dilution enrichment cultures obtained from size-fractionated soil bacteria by BIOLOG?community-level physiological profiles and restriction analysis of 16s rRNA genes Soil Biology and Biochemistry, 2001, 33(11): 1555-1562.
[36]Krista L De Fede, Alan J Sexstone. Differential response of size-fractionated soil-fractionated soil bacteria in BIOLOG?microtitre plates. Soil Biology and Biochemistry, 2001, 33(11): 1547-1554.
[37]Kaiser S K, Guckert J B, Gledhill D W. Comparison of activated sludge microbial communities using biologTMmicroplates. Water Science and Technology, 1998, 37(4/5): 57-63.
[38]Haack S K, Garchow H, Klug M J, Forney L J. Analysis of factors affecting the accuracy, reproducibility, and interpretation of microbial community carbon source utilization patterns. Applied and Environmental Microbiology, 1995, 61(4): 1458-1468.
[39]Christine A Hackett, Bryan S Griffiths. Statistical analysis of the time-course of biolog substrate utilization. Journal of Microbiological Methods, 1997, 30(1): 63-69.
[40]凌琪, 包金梅, 李瑞, 陶勇, 鮑立寧, 毛欽焱. Biolog-Eco解析黃山風(fēng)景區(qū)空氣微生物碳代謝多樣性特征. 應(yīng)用基礎(chǔ)與工程科學(xué)學(xué)報, 2012, 20(1): 56-63.
[41]龔嬋娟, 許晶, 方治國, 樓秀芹, 歐陽志云. 杭州市空氣微生物群落碳代謝特征研究. 環(huán)境科學(xué), 2014, 35(2): 753-758.
[42]段魏魏, 婁愷, 曾軍, 胡蓉, 史應(yīng)武, 何清, 劉新春, 孫建, 晁群芳. 塔克拉瑪干沙塵暴源區(qū)空氣微生物群落的代謝特征. 環(huán)境科學(xué), 2012, 33(1): 26-31.
[43]Aleksandra Sebastian, Lennart Larsson. Characterization of the microbial community in indoor environments: a chemical-analytical approach. Applied and Environmental Microbiology, 2003, 69(6): 3103-3109.
[44]Alex K Y Lee, Chak K Chan, Fang M, Arthur P S Lau. The 3-hydroxy fatty acids as biomarkers for quantification and characterization of endotoxins and Gram-negative bacteria in atmospheric aerosols in Hong Kong. Atmospheric Environment, 2004, 38(37): 6307-6317.
[45]Arthur P S Laua, Alex K Y Lee, Chak K Chan, Fang M. Ergosterol as a biomarker for the quantification of the fungal biomass in atmospheric aerosols. Atmospheric Environment, 2006, 40(2): 249-259.
[46]Alex K Y Lee, Arthur P S Lau, Jessica Y W Cheng, Fang M, Chak K Chan. Source identification analysis for the airborne bacteria and fungi using a biomarker approach. Atmospheric Environment, 2007, 41(13): 2831-2843.
[47]Jessica Y W Cheng, Arhur P S Lau, Fang M. Assessment of the atmospheric fungal prevalence through field ergosterol measurement I—Determination of the specific ergosterol content in common ambient fungal spores and yeast cells. Atmospheric Environment, 2008, 42(22): 5526-5533.
[48]Jessica Y W Cheng, Arthur P S Lau, Fang M. Assessment of the atmospheric fungal prevalence through field ergosterol measurement II: Establishing the conversion factor. Atmospheric Environment, 2008, 42(22): 5534-5541.
[49]Heidi Bauer, Magda Claeys, Reinhilde Vermeylen, Elisabeth Schueller, Gert Weinke, Anna Berger, Hans Puxbaum. Arabitol and mannitol as tracers for the quantification of airborne fungal spores. Atmospheric Environment, 2008, 42(3): 588-593.
[50]Jill A Poole, Gregory P Dooley, Rena Saito, Angela M Burrell, Kristina L Bailey, Debra J Romberger, John Mehaffy, Stephen J Reynolds. Muramicacid, endotoxin, 3-hydroxy fatty acids, and ergosterol content explain monocyte and epithelial cell inflammatory responses to agricultural dusts. Journal of Toxicology and Environment Health, 2010, 73(10): 684-700.
[51]Patrizia Di Filippo, Donatella Pomata, Carmela Riccardi, Francesca Buiarelli, Cinzia Perrino. Fungal contribution to size-segregated aerosol measured through biomarkers. Atmospheric Environment, 2013, 64: 132-140.
[52]Ramon Rosselló-Mora, Rudolf Amann. The species concept for prokaryotes. FEMS Microbiology Reviews, 2001, 25(1): 39-67.
[53]Jordan Peccia, Mark Hernandez. Incorporating polymerase chain reaction-based identification, population characterization, and quantification of microorganisms into aerosol science: a review. Atmospheric Environment, 2006, 40(21): 3941-3961.
[54]Ferris M J, Muyzer G, Ward D M. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Applied and Environmental Microbiology, 1996, 62(2): 340-346.
[55]Fromin N, Hamelin J, Tarnawski S, Roesti D, Jourdain-Miserez K, Forestier N, Teyssier-Cuvelle S, Gillet F, Aragno M, Rossi P. Statistical analysis of denaturing gel electrophoresis (DGE) fingerprinting patterns. Environmental Microbiology, 2002, 4(11): 634-643.
[56]王洪媛, 管華詩, 江曉路. 微生物生態(tài)學(xué)中分子生物學(xué)方法及T-RFLP技術(shù)研究. 中國生物工程雜志, 2004, 24(8): 42-47.
[57]胡穩(wěn)奇, 張志光. 核酸雜交技術(shù)在環(huán)境微生物檢測中的應(yīng)用. 微生物學(xué)通報, 1995, 22(6): 371-374.
[58]Hey Reoun An, Gediminas Mainelis, Lori White. Development and calibration of real-time PCR for quantification of airborne microorganisms in air samples. Atmospheric Environment, 2006, 40(40): 7924-7939.
[59]王曙光, 林先貴, 刁曉君. 環(huán)境微生物研究方法與應(yīng)用. 北京: 化學(xué)工業(yè)出版社, 2008: 77-80.
[60]Qin J J, Li Y R, Cai Z M, Li S H, Zhu J F, Zhang F, Liang S S, Zhang W W, Guan Y L, Shen D Q, Peng Y Q, Zhang D Y, Jie Z Y, Wu W X, Qin Y W, Xue W B, Li J H, Han L C, Lu D H, Wu P X, Dai Y L, Sun X J, Li Z S, Tang A F, Zhong S L, Li X P, Chen W N, Xu R, Wang M B, Feng Q, Gong M H, Yu J, Zhang Y Y, Zhang M, Torben Hansen, Gaston Sanchez, Jeroen Raes, Gwen Falony, Shujiro Okuda, Mathieu Almeida, Emmanuelle LeChatelier, Pierre Renault, Nicolas Pons, Jean-Michel M Batto, Zhang Z X, Chen H, Yang R F, Zheng W M, Li S G, Yang H M, Wang J, S Dusko Ehrlich, Rasmus Nielsen, Oluf Pedersen, Karsten Kristiansen, Wang J. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 2012, 490(7418): 55-60.
[61]Willy Valdivia-Granda. The next meta-challenge for Bioinformatics. Bioinformation, 2008, 2(8): 358-362.
[62]Shalon D, Smith S J, Brown P O. A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Research, 1996, 6(4): 639-645.
[63]Zhou J Z, Dorothea K Thompson. Challenges in applying microarrays to environmental studies. Current Opinion in Biotechnology, 2002, 13(3): 204-207.
[64]Fischer S G, Lerman L S. DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proceedings of the National Academy of Sciences of the United States of America, 1983, 80(6): 1579-1583.
[65]Muyzer G, de Waal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 1993, 59(3): 695-700.
[66]Gerard Muyzer. DGGE/TGGE a method for identifying genes from natural ecosystems. Current Opinion in Microbiology, 1999, 2(3): 317-322.
[67]Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heuer H, Berg G. Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Applied and Environmental Microbiology, 2001, 67(10): 4742-4751.
[68]Wen-Tso Liua, On-Chim Chan, Herbert H P Fang. Microbial community dynamics during start-up of acidogenic anaerobic reactors. Water Research, 2002, 36(13): 3203-3210.
[69]Andreas Teske, Wawer C, Muyzer G, Ramsing N B. Distribution of sulfate-reducing bacteria in a stratified fjord (Mariager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragment. Applied and Environmental Microbiology, 1996, 62(4): 1405-1415.
[70]Benjamin Nehme, Valérie Létourneau, Robert J Forster, Marc Veillette, Caroline Duchaine. Culture-independent approach of the bacterial bioaerosol diversity in the standard swine confinement buildings, and assessment of the seasonal effect. Environmental Microbiology, 2008, 10(3): 665-675.
[71]Benjamin Nehmé, Yan Gilbert, Valérie Létourneau, Robert J Forster, Marc Veillette, Richard Villemur, Caroline Duchaine. Culture-independent characterization of archaeal biodiversity in swine confinement building bioaerosols. Applied and Environmental Microbiology, 2009, 75(17): 5445-5450.
[72]Li K J. Molecular comparison of the sampling efficiency of four types of airborne bacterial samplers. Science of the Total Environment, 2011, 409(24): 5439-5498.
[73]Anna Hervàs, Lluís Camarero, Isabel Reche, Emilio O Casamayor. Viability and potential for immigration of airborne bacteria from Africa that reach high mountain lakes in Europe. Environmental Microbiology, 2009, 11(6): 1612-1623.
[74]Pascale Blais Lecours, Marc Veillette, David Marsolais, Caroline Duchaine. Characterization of bioaerosols from dairy barns: reconstructing the puzzle of occupational respiratory diseases by using molecular approaches. Applied and Environmental Microbiology, 2012, 78(9): 3242-3248.
[75]Liu W T, Marsh T L, Cheng H, Forney L J. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Applied and Environment Microbiology, 1997, 63(11): 4516-4522.
[76]Terence L Marsh. Terminal restriction fragment length polymorphism (T-RFLP): An emerging method for characterizing diversity among homologous populations of amplification products. Current Opinion in Microbiology, 1999, 2(3): 323-327.
[77]Christopher L Kitts. Terminal restriction fragment patterns: a tool for comparing microbial communities and assessing community dynamics. Current Issues in Intestinal Microbiology, 2001, 2(1): 17-25.
[78]Seung-Hoon Lee, Hyo-Jeong Lee, Se-Jin Kim, Hyung Min Lee, Hojeong Kang, Yong Pyo Kim. Identification of airborne bacterial and fungal community structures in an urban area by T-RFLP analysis and quantitative real-time PCR. Science of the Total Environment, 2010, 408(6): 1349-1357.
[79]Anthony C Woo, Manreetpal S Brar, Yuki Chan, Maggie C Y Lau, Frederick C C Leung, James A Scott, Lilian L P Vrijmoed, Peyman Zawar-Reza, Stephen B Pointing. Temporal variation in airborne microbial populations and microbially-derived allergens in a tropical urban landscape. Atmospheric Environment, 2013, 74: 291-300.
[80]Pierre-Alain Maron, David P H Lejon, Esmeralda Carvalho, Karine Bizet, Philippe Lemanceau, Lionel Ranjard, Christophe Mougela. Assessing genetic structure and diversity of airborne bacterial communities by DNA fingerprinting and 16S rDNA clone library. Atmospheric Environment, 2005, 39(20): 3687-3695.
[81]Ewa Korzeniewska, Monika Harnisz. Culture-dependent and culture-independent methods in evaluation of emission ofEnterobacteriaceaefrom sewage to the air and surface water. Water, Air, & Soil Pollution, 2012, 223(7): 4039-4046.
[82]Weerasekara M L M A W, Noriko Ryuda, Hiroshi Miyamoto, Toru Okumura, Daisuke Ueno, Koichi Inoue, Takashi Someya. Double-color fluorescenceinsituhybridization (FISH) for the detection ofBacillusanthracisspores in environmental samples with a novel permeabilization protocol. Journal of Microbiological Methods, 2013, 93(3): 177-184.
[83]Lange J L, Thorne P S, Lynch N. Application of flow cytometry and fluorescent in situ hybridization for assessment of exposures to airborne bacteria. Applied and Environmental Microbiology, 1997, 63(4): 1557-1563.
[84]Hung W T. Su S L, Shiu L Y, Chang T C. Rapid identification of allergenic and pathogenic molds in environmental air by an oligonucleotide array. BMC Infectious Diseases, 2011, 11(1): 91-91.
[85]Anja Kristiansen, Aaron M Saunders, Aviaja A Hansen, Per H Nielsen, Jeppe L Nielsen. Community structure of bacteria and fungi in aerosols of a pig confinement building. FEMS Microbiology Ecology, 2012, 80(2): 390-401.
[86]Yongju Heo, Jiyeon Park, Sung-il Lim, Hor-gil Hur, Daesung Kim, Kihong Park. Size-resolved culturable airborne bacteria sampled in rice field, sanitary landfill, and waste incineration sites. Journal of Environmental Monitoring, 2010, 12(8): 1619-1624.
[87]Yuan W, Chai T J, Miao Z M. ERIC-PCR identification of the spread of airborneEscherichiacoliin pig houses. Science of the Total Environment, 2010, 408(6): 1446-1450.
[88]Sou-ichi Makino, Hyeng-il Cheun. Application of the real-time PCR for the detection of airborne microbial pathogens in reference to the anthrax spores. Journal of Microbiological Methods, 2003, 53(2): 141-147.
[89]Naomichi Yamamoto, Minoru Kimura, Hideaki Matsuki, Yukio Yanagisawa. Optimization of a real-time PCR assay to quantitate airborne fungi collected on a gelatin filter. Journal of Bioscience and Bioengineering, 2010, 109(1): 83-88.
[90]Thomas Rinsoz, Philippe Duquenne, Guylaine Greff-Mirguet, Anne Oppligera. Application of real-time PCR for total airborne bacterial assessment: comparison with epifluorescence microscopy and culture-dependent methods. Atmospheric Environment, 2008, 42(28): 6767-6774.
[91]Alvarez A J, Buttner M P, Stetzenbach L D. PCR for bioaerosol monitoring: sensitivity and environmental interference. Applied and Environmental Microbiology, 1995, 61(10): 3639-3644.
[92]沈菊培, 張麗梅, 鄭袁明, 朱永官, 賀紀(jì)正. 土壤宏基因組學(xué)技術(shù)及其應(yīng)用. 應(yīng)用生態(tài)學(xué)報, 2007, 18(1): 212-218.
[93]賀紀(jì)正, 張麗梅, 沈菊培, 朱永官. 宏基因組學(xué)(Metagenomics)的研究現(xiàn)狀和發(fā)展趨勢. 環(huán)境科學(xué)學(xué)報, 2008, 28(2): 209-218.
[94]Susannah G Tringe, Zhang T, Liu X G, Yu Y T, Wah Heng Lee, Jennifer Yap, Yao F, Sim Tiow Suan, Seah Keng Ing, Matthew Haynes, Forest Rohwer, Chia Lin Wei, Patrick Tan, James Bristow, Edward M Rubin, Ruan Y J. The Airborne Metagenome in an Indoor Urban Environment. PLoS One, 2008, 3(4): e1862.
[95]Chen C, Jiang W J, Wang B Y, Fang J H, Lang J D, Tian G, Jiang J K, Zhu T F. Inhalable Microorganisms in Beijing′s PM2. 5and PM10Pollutants during a Severe Smog Event. Environmental Science and Technology, 2014, 48(3): 1499-1507.
[96]Seung-Yoon Oh, Jonathan J Fong, Myung Soo Park, Limseok Chang, Young Woon Lim. Identifying airborne fungi in Seoul, Korea using metagenomics. Journal of Microbiology, 2014, 52(6): 465-472.
[97]Tae Woong Whon, Min-Soo Kim, Seong Woon Roh, Na-Ri Shin, Hae-Won Lee, Jin-Woo Bae. Metagenomic characterization of airborne viral DNA diversity in the near-surface atmosphere. Journal of Virology, 2012, 86(15): 8221-8231.
[98]Shibu Yooseph, Cynthia Andrews-Pfannkoch, Aaron Tenney, Jeff McQuaid, Shannon Williamson, Mathangi Thiagarajan, Daniel Brami, Lisa Zeigler Allen, Jeff Hoffman, Johannes B Goll, Douglas Fadrosh, John Glass, Mark D Adams, Robert Friedman, J C Venter. A metagenomic framework for the study of airborne microbial communities. PLoS One, 2013, 8(12): e81862.
[99]Rick W Ye, Wang T, Laura Bedzyk, Kevin M Croker. Applications of DNA microarrays in microbial systems. Journal of Microbiological Methods, 2001, 47(3): 257-272.
[100]Wu Z H, Yoshihiko Tsumura, G?ran Blomquist, Wang X R. 18S rRNA gene variation among common airborne fungi, and development of specific oligonucleotide probes for the detection of fungal isolates. Applied and Environmental Microbiology, 2003, 69(9): 5389-5397.
[101]Eoin L Brodie, Todd Z DeSantis, Jordan P Moberg Parker, Ingrid X Zubietta, Yvette M Piceno, Gary L Andersen. Urban aerosols harbor diverse and dynamic bacterial populations. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(1): 299-304.
[102]Concepción De Linares, Idoia Postigo, Jordina Belmonte, Miguel Canela, Jorge Martínez. Optimization of the measurement of outdoor airborne allergens using a protein microarrays platform. Aerobiologia, 2014, 30(3): 217-227.
Culture-dependent and culture-independent approaches for studying airborne microbial diversity
FANG Zhiguo1,*, HAO Cuimei1, YAO Wenchong1, OUYANG Zhiyun2
1SchoolofEnvironmentalScienceandEngineering,ZhejiangGongshangUniversity,Hangzhou310018,China2StateKeyLaboratoryofUrbanandRegionalEcology,ResearchCenterforEco-EnvironmentalSciences,Chinese,Beijing100085,China
With the occurrence of epidemics worldwide and serious haze events in China, studies on airborne biological pollution have attracted considerable attention. The research approach for airborne microorganisms is constantly updated because of the rapid development of molecular biology techniques, and researchers are switching from biochemistry-based technologies to modern molecular biology-based technologies. In this paper, we reviewed the development processes of airborne microbial communities and analyzed their diversity on the basis of culture-dependent and culture-independent approaches, which mainly include culture-dependent technology, BIOLOG technology, biomarkers, gene fingerprinting techniques, nucleic acid hybridization, real-time quantitative polymerase chain reaction, metagenomics of airborne microorganisms, and gene chip technology. In addition, the basic principles of these technologies have been presented in detail in this paper, and the advantages and disadvantages of various technologies have been compared to highlight their applications in the study of airborne microbial communities and their diversity. Finally, the prospects of airborne microbiology have been emphasized.
airborne microbial diversity; biochemical technology; molecular biology techniques; metagenomics
城市與區(qū)域生態(tài)國家重點(diǎn)實驗室開放基金項目(SKLURE2015-2-1);國家自然科學(xué)青年基金資助項目(41005085)
2014-11-27; 網(wǎng)絡(luò)出版日期:2015-10-30
Corresponding author.E-mail: zhgfang77@zjgsu.edu.cn
10.5846/stxb201411272355
方治國,郝翠梅,姚文沖,歐陽志云.空氣微生物群落解析方法:從培養(yǎng)到非培養(yǎng).生態(tài)學(xué)報,2016,36(14):4244-4253.
Fang Z G, Hao C M, Yao W C, Ouyang Z Y.Culture-dependent and culture-independent approaches for studying airborne microbial diversity.Acta Ecologica Sinica,2016,36(14):4244-4253.