廖百安,駱元媛
(西華大學(xué)理學(xué)院,四川 成都 610039)
?
·基礎(chǔ)學(xué)科·
一類三階有理差分方程解的全局行為
廖百安,駱元媛*
(西華大學(xué)理學(xué)院,四川 成都610039)
主要研究一類有理差分方程在參數(shù)取不同值情況下的奇點集和全局行為。通過變換和替換將該方程轉(zhuǎn)化為Riccati方程進行求解,并證明了該方程的解最終將收斂到零或者非零不動點或者是無界的。
差分方程;Riccati方程;奇點集;全局行為
(1)
(2)
來求解。我們稱方程
(3)
為Riccati方程[10],這里a,b,c,d為給定實數(shù),初始值z0為任意實數(shù)。Grove等在文獻[11]中討論了Riccati方程的二周期解及奇點集等性質(zhì)。由此可知,方程(2)是Riccati方程,于是,我們根據(jù)Riccati方程的性質(zhì)來求解方程(1)的解。
定義1方程(1)的奇點集是所有(s1,s2,…sk+1)∈Rk+1的點所構(gòu)成的集合,其中點(s1,s2,…sk+1)滿足:當(dāng)(x-k,x-k+1,…x0)=(s1,s2,…sk+1)時,xm∈I,m=0,1,…,n-1,但xm+1?I,即方程(1)的奇點集是所有使得其右端不能被定義的初始值的集合。
引理1[11]下列結(jié)論成立。
1)方程(3)有最小二周期解當(dāng)且僅當(dāng)b+c=0。
3)當(dāng)b+c=0時,方程(3)的奇點集為F={-c/d},當(dāng)d(bc-ad)=0時,奇點集為空集。
定理1設(shè)α≠0,α≠-1,則差分方程(1)的奇點集為F=s1∪s2,
其中
下面我們討論當(dāng)α∈R(α≠0,α≠-1),方程(1)解的最終走向。
定理2設(shè)α≠0,α≠-1,則差分方程(1)對任意的初始值(x-2,x-1,x0)?F。
其中
綜上所述,
[1]Hartman P, A Wintner. On Linear Difference Equations of the Second Order[J].Amer Math,1950,72:124.
[2]張廣,高英.差分方程的振動理論[M].北京:高等教育出版社, 2001.
[3]Amleh A M,Camouzis E, Ladas G. On The Dynamics of a Rational Difference Equation Part1[J].International Journal Difference Equations,2008,3:1.
[4]Amleh A M,Camouzis E, Ladas G. On The Dynamics of a Rational Difference Equation Part2[J].International Journal Difference Equations,2008,3:195.
[5]Gamouzis E, Ladas G. Dynamics of Third Order Rational Difference Equations with Open Problems and Conjectures[M]. Boca Raton:Chapman and Hall/CRC Press, 2007.
[6]Gamouzis E, Papaschinopoulos G. Global Asymptotic Behavior of Positive Solutions On The System of Rational Difference Equations[J]. Appl Math Lett,2004,17:733.
[7]Elsayed E M. Qualitative Behavior of a Rational Recursive Sequence[J].Indag Mathem N S,2008,19(2):189.
[8]Dehghan M, Kent C M, Mazrooei-Sebdani R,et al. Sedaghat H Monoteone Oscillatory Solutions of a Rational Difference Equation Containing Quadractic Terms[J].Difference Equ Appl,2008,14:1045.
[9]Sedaghat H.Global Behaviors of Rational Difference Equations of Orders Two and Three with Quadractic Terms[J].Difference Equ Appl,2009,15:215.
[10]張景中,楊路,張偉年.迭代方程與嵌入流[M].上海:上海科技教育出版社,1998.
[11]Grove E A, Ladas G. Periodicities in Nonlinear Difference Equations[M]. Boca Raton:Chapman and Hall/CRC Press, 2005.
(編校:葉超)
Global Behavior of a Third Order Rational Difference Equation
LIAO Baian, LUO Yuanyuan*
(SchoolofScience,XihuaUniversity,Chengdu610039China)
In this paper, we mainly studied forbidden sets and global behavior of a third order rational difference equation in the case of different parameters. We converted the equation into a Riccati equation, and proved that the solutions of the equation eventually converge to zero or non-zero fixed point or unbounded.
difference equation;Riccati equation;forbidden set;global behavior
2016-04-14
四川省教育廳項目(SJG2014006);西華大學(xué)研究生創(chuàng)新基金(ycjj2015169);西華大學(xué)科研項目(Z1513322)。
駱元媛(1986—),女,講師,博士,主要研究方向為數(shù)論及微分方程。E-mail:289028774@qq.com.
O175
A
1673-159X(2016)04-0035-4
10.3969/j.issn.1673-159X.2016.04.007