高 雙,曾 飛,宋 成,潘 峰
(1.先進材料教育部重點實驗室(清華大學(xué)),北京100084;2.清華大學(xué)材料學(xué)院,北京100084)
陽離子遷移型阻變存儲材料與器件研究進展
高 雙1,2,曾 飛1,2,宋 成1,2,潘 峰1,2
(1.先進材料教育部重點實驗室(清華大學(xué)),北京100084;2.清華大學(xué)材料學(xué)院,北京100084)
硅基閃存是當前半導(dǎo)體市場的主流非易失性存儲器,但其小型化日益接近物理極限.陽離子遷移型阻變存儲器是下一代高速、高密度和低功耗非易失性存儲器的有力競爭者之一,近些年受到科學(xué)界和工業(yè)界的廣泛關(guān)注.本文從材料、阻變機理和器件性能3個方面綜述了陽離子遷移型阻變存儲器的研究進展,其中材料部分包括電極材料和存儲介質(zhì),阻變機理部分包括金屬導(dǎo)電細絲的存在、生長模式和生長動力學(xué),而器件性能部分包括開關(guān)比、擦寫速度、擦寫功耗、循環(huán)耐受性、數(shù)據(jù)保持特性以及器件小型化潛力.最后,對本領(lǐng)域的未來研究重點進行了展望.
阻變存儲器;陽離子遷移;氧化還原反應(yīng);金屬導(dǎo)電細絲;非易失性存儲器
當前,基于硅材料的閃存(Flash memory)由于具有非易失性、高密度和低功耗等優(yōu)點而占據(jù)了二級存儲器的主流市場.但是,由于漏電流效應(yīng)會隨著器件尺寸的減小而急劇增大,基于電荷捕獲機理工作的Flash存儲器即將達到其小型化極限.為了突破Flash存儲器所面臨的小型化極限,同時也為了追求更快的擦寫速度和更低的操作功耗,近年4種新型非易失性存儲概念受到科學(xué)界和工業(yè)界的廣泛關(guān)注,包括基于鐵電極化可逆翻轉(zhuǎn)效應(yīng)的鐵電隨機存儲器(Ferroelectric Random Access Memory,F(xiàn)RAM)[1]、基于磁阻效應(yīng)的磁阻隨機存儲器(Magnetoresistive RAM,MRAM)[2]、基于晶態(tài)/非晶態(tài)可逆轉(zhuǎn)變效應(yīng)的相變隨機存儲器(Phase-change RAM,PRAM)[3]和基于電致電阻轉(zhuǎn)變效應(yīng)的阻變隨機存儲器(Resistive RAM,RRAM)[4-7].整體上,RRAM除了兼具高速、高密度和低功耗的3大核心性能外,還具有結(jié)構(gòu)簡單、易于集成、材料來源廣泛等優(yōu)點,被認為是最有希望的下一代非易失性存儲器之一.
根據(jù)阻變機理,RRAM可以被粗略地分為離子遷移型、熱化學(xué)反應(yīng)型和電子捕獲/釋放型3類,其中離子遷移型又可分為陽離子遷移型和陰離子遷移型兩類[7].在這幾類之中,陽離子遷移型RRAM可兼具高開關(guān)比、低功耗以及優(yōu)異的循環(huán)耐受性和數(shù)據(jù)保持特性等優(yōu)點,因而具有較明朗的商業(yè)化前景,也因此受到科學(xué)界和工業(yè)界的較多關(guān)注.實際應(yīng)用中,陽離子遷移型RRAM采用十字交叉陣列結(jié)構(gòu)進行集成,每一個交叉點都是一個存儲單元,由活性電極(Active Electrode,AE)/存儲介質(zhì)/惰性電極(Inert Electrode,IE)的3層膜構(gòu)成,如圖1的左上內(nèi)插圖所示.當IE接地,外電壓施加在AE上時,陽離子遷移型RRAM表現(xiàn)出典型的雙極性阻變(Bipolar Resistive Switching,BRS)行為,其電流-電壓(Current-Voltage,I-V)特性如圖1所示,微觀機理如圖1的右下內(nèi)插圖所示.正電壓使得器件從高電阻態(tài)(High Resistance State,HRS)轉(zhuǎn)變到低電阻態(tài)(Low Resistance State,LRS),記為“set過程”,對應(yīng)于金屬導(dǎo)電細絲(metal filament)的形成,而負電壓使得器件從LRS轉(zhuǎn)變回HRS,記為“reset過程”,對應(yīng)于金屬導(dǎo)電細絲的局部斷開.此外,需要指出兩點:1)圖1中的ICC代表限制電流(compliance current),是為了防止器件在set過程中被永久擊穿,同時也可通過設(shè)置不同的ICC來調(diào)控金屬導(dǎo)電細絲的尺寸[8-9];2)金屬導(dǎo)電細絲在外加電壓下的形成過程中必然伴隨有存儲介質(zhì)中陰離子(比如,氧離子)的遷移[10-11],但這一遷移過程在絕大多數(shù)陽離子遷移型RRAM中都可以被合理地忽略,正如本文中所討論的情形.
本文從材料、阻變機理和器件性能3個方面綜述了陽離子遷移型阻變存儲器的研究進展,其中材料部分包括電極材料和存儲介質(zhì),阻變機理部分包括金屬導(dǎo)電細絲的存在、生長模式和生長動力學(xué),而器件性能部分包括開關(guān)比、擦寫速度、擦寫功耗、循環(huán)耐受性、數(shù)據(jù)保持特性以及器件小型化潛力.最后,對本領(lǐng)域的未來研究重點進行了展望.
圖1 陽離子遷移型RRAM的I-V特性示意圖Fig.1 Schematic I-V characteristic of a cation-migrationbased RRAM cell
1.1電極材料
陽離子遷移型RRAM的電極包括AE和CE兩類,二者的共同之處在于均起導(dǎo)電作用,而不同之處在于AE還通過氧化還原反應(yīng)在存儲介質(zhì)中形成金屬導(dǎo)電細絲.相應(yīng)地,本文將電極材料分為AE材料和CE材料兩類進行進展總結(jié)和討論.對于AE材料,最常見的是Cu[12-16]和Ag[17-21],其次是Ni[22-24],剩下的則是偶爾被報道的Al[25]、Ti[26]、Co[27]、Nb[28]、Au[29]等.從原理上講,要想使AE通過氧化還原反應(yīng)在存儲介質(zhì)中形成金屬導(dǎo)電細絲,AE材料應(yīng)首先容易被電離為陽離子,同時生成的陽離子要難以與存儲介質(zhì)中的陰離子結(jié)合.因此,AE材料應(yīng)首先具有較小的標準電極電勢以保證容易被電離,同時其氧化物的標準生成吉布斯自由能較大以保證生成的陽離子難以與存儲介質(zhì)中的陰離子結(jié)合.比較認為,在這些被報道AE材料中,Cu和Ag的分別為同時滿足上述兩方面要求,也因此成為最常見的兩種AE材料.相比于Ag,Cu更具商業(yè)化前景,這是因為Cu已被廣泛地用作集成電路的互連材料,因而使得相關(guān)器件與現(xiàn)有制備工藝更兼容.對于IE材料,常見的是惰性金屬,包括Pt[12-13]、Au[17]、Pd[14]、W[9]等,其他的有ITO[8,20]、TiN[22]、p/n-Si[30-31]等.此前,IE材料被認為僅僅起導(dǎo)電作用,而對AE材料的氧化還原反應(yīng),也就是對金屬導(dǎo)電細絲的形成過程,沒太多影響.然而,最新研究表明,IE材料對水分子氧化還原反應(yīng)的催化活性對AE材料的氧化還原反應(yīng)過程有至關(guān)重要的影響[32].這個結(jié)論對今后陽離子遷移型RRAM電極選擇具有一定的參考價值.此外,n-Si被報道可以與Cu導(dǎo)電細絲形成肖特基接觸,進而獲得自整流阻變特性,可以在一定程度上克服十字交叉存儲陣列的漏電流效應(yīng)[31].
1.2存儲介質(zhì)
由于陽離子遷移型RRAM的阻變行為起源于金屬導(dǎo)電細絲在存儲介質(zhì)中的形成與斷開,而金屬導(dǎo)電細絲的組分又來源于AE,因而陽離子遷移型RRAM的存儲介質(zhì)主要起提供陽離子遷移通道以形成金屬導(dǎo)電細絲的作用.顯然,陽離子遷移型RRAM對存儲介質(zhì)的要求比較寬松,這使得其存儲介質(zhì)的來源非常廣泛,常見的半導(dǎo)體和絕緣體薄膜幾乎都能被用作此類存儲介質(zhì).已報道的無機存儲介質(zhì)主要包括:氧化物,如AlOx[16]、SiOx[20]、TiOx[33]、ZnOx[18]、ZrOx[34]、MoOx[35]、HfOx[24]、TaOx[12]、WOx[36]等;硫?qū)倩衔?,如Cu2S[37]、GeSx[9]、Ag2S[38]、GeSex[39-40]等;其他的有AlN[13]、a-C[41]、a-Si[42]等.無機存儲介質(zhì)主要具有CMOS工藝兼容性好、開關(guān)比高、循環(huán)耐受性強和數(shù)據(jù)保持特性可靠等優(yōu)點[12,39-40],且其制備工藝多樣,包括磁控濺射(magnetron sputtering)[18]、原子層沉積(Atomic Layer Deposition,ALD)[16]、脈沖激光沉積(Pulsed Laser Deposition,PLD)[43]、電子束蒸發(fā)(electron beam evaporation)[34]、等離子體氧化(plasma oxidation)[31]等.在眾多制備工藝中,磁控濺射和ALD由于能低成本地制得大面積均勻薄膜而最適用于大規(guī)模商業(yè)化生產(chǎn).已報道的有機存儲介質(zhì)主要有Alq3[44]、 graphene oxide[45]、P3HT∶PCBM[8,15]、PEDOT∶PSS[19,46]、PEO[47]、PMMA[48]、WPF-BT-FEO[49]等.相比于無機存儲介質(zhì),有機存儲介質(zhì)最突出的優(yōu)勢在于低成本制備和柔性兩個方面[47].有機存儲介質(zhì)的制備工藝主要有熱蒸發(fā)(thermal evaporation)和旋涂(spin coating)兩種,其中前者適用于有機小分子,如Alq3[44],而后者則適用于各種聚合物,如P3HT∶PCBM[8,15]和PEDOT∶PSS[19,46].
2.1金屬導(dǎo)電細絲的存在
盡管金屬導(dǎo)電細絲的形成與斷開已經(jīng)被公認是陽離子遷移型RRAM的工作機理,但如何能既簡單又確鑿地證實這樣一個機理,即證實金屬導(dǎo)電細絲的存在,始終是科學(xué)界關(guān)注的熱點之一.證實金屬導(dǎo)電細絲存在的方法可分為直接法和間接法兩類,下面對其分別進行進展總結(jié)和討論.
直接法,顧名思義,是指采用各種分析表征手段直接看到金屬導(dǎo)電細絲的方法,主要包括光學(xué)顯微鏡(Optical Microscope,OM)[17]、掃描電子顯微鏡(Scanning Electron Microscope,SEM)[19,33,42]、透射電子顯微鏡(Transmission Electron Microscope,TEM)[18,34,46,49]和飛行時間二次離子質(zhì)譜儀(Timeof-flight Secondary Ion Mass Spectrometry,ToFSIMS)[44].比較來看,OM和SEM屬于無損探測,但僅適用于用作機理研究的、大尺寸(AE和IE的間距通常不小于200 nm)的平面型器件,如HSIUNG等[33]利用SEM在Ag/TiO2/Pt平面型器件處于LRS時清晰地看到了Ag導(dǎo)電細絲;TEM和ToFSIMS則屬于有損探測,但更適用于接近實際應(yīng)用的、納米尺度(主要指AE和IE的間距,即存儲介質(zhì)的厚度)的垂直型器件,如YANG等[18]利用TEM成像并結(jié)合能量色散X射線譜(Energy Dispersive X-Ray spectroscopy,EDX)分析證實了Ag/ZnO∶Mn/Pt垂直型器件的Ag導(dǎo)電細絲機理,如圖2所示.需要指出的是,TEM樣品的制備成本通常較高,且由于金屬導(dǎo)電細絲的納米尺寸和位置隨機性,在不事先定位金屬導(dǎo)電細絲的情況下,利用截面TEM樣品觀察金屬導(dǎo)電細絲的成功率非常低的.此外,雖然BUSBY等[44]已成功利用ToFSIMS三維成像證實了金屬導(dǎo)電細絲的存在,但由于其自身的橫向分辨率較低(~1 μm),該方法很難給出納米金屬導(dǎo)電細絲的形狀等更多信息.
間接法是指通過測量金屬導(dǎo)電細絲特有的電學(xué)或磁學(xué)特性來間接反應(yīng)其存在的方法.相比于直接法,間接法的最大優(yōu)勢在于,它能簡單高效且無損地探測垂直型器件中的金屬導(dǎo)電細絲.同時,由于其巧妙地利用了金屬導(dǎo)電細絲特有的電學(xué)或磁學(xué)特性,間接法的可靠性通常不亞于直接法.基于電學(xué)特性的間接法包括電阻溫度系數(shù)(Temperature Coefficient of Resistance,TCR)測試和超導(dǎo)轉(zhuǎn)變溫度(superconducting transition temperature,Tc)測試.如,GAO等[15]和SUN等[23]分別利用TCR測試證實了Cu/P3HT:PCBM/ITO垂直型器件的Cu導(dǎo)電細絲機理和Ni/ZrO2/Pt垂直型器件的Ni導(dǎo)電細絲機理,而ZHU等[28]通過測試發(fā)現(xiàn),Nb/ZnO/Pt垂直型器件處于LRS時顯示出Tc=~9.3 K,證實了該器件的Nb導(dǎo)電細絲機理.基于磁學(xué)特性的間接法可分為測量需要金屬導(dǎo)電細絲參與的磁阻效應(yīng)和測量金屬導(dǎo)電細自身的磁阻效應(yīng).對于前者,YANG等[27]通過測量隧道磁阻(Tunnel Magnetoresistance,TMR)效應(yīng)證實了Co/ ZnO/Fe垂直型器件的Co導(dǎo)電細絲機理,而JANG等[50]通過測量巨磁阻(Giant MR,GMR)效應(yīng)證實了Co/TaOx/Cu/Py垂直型器件的Cu導(dǎo)電細絲機理.對于后者,OTSUKA等[24,51]通過測量各向異性磁阻(Anisotropic MR,AMR)效應(yīng)證實了Ni/ HfO2/Pt和Ni/TiO2/Pt垂直型器件的Ni導(dǎo)電細絲機理.需要指出的是,TCR測試的適用范圍最廣,但其干擾因素較多,使用時需要特別謹慎,而Tc測試和各種磁阻測試的適用范圍非常有限,但其具有極高的可靠性.
圖2 金屬導(dǎo)電細絲的直接觀察[18]Fig.2 The direct observation of metal filament[18]:(a)Representative I-V characteristic of a vertical Ag/ZnO∶Mn/Pt RRAM cell;(b)TEM image;(c)corresponding EDX line profile of the Ag filament in a vertical Ag/ZnO∶Mn/Pt RRAM cell
2.2金屬導(dǎo)電細絲的生長模式
證實金屬導(dǎo)電細絲的存在只是關(guān)于陽離子遷移型RRAM機理研究的第一步,而更深一層的工作則是弄清金屬導(dǎo)電細絲的動態(tài)形成與斷開過程,這不僅具有重大的科學(xué)意義,也將對相關(guān)器件的結(jié)構(gòu)設(shè)計和性能優(yōu)化提供理論指導(dǎo).相比于形成過程,金屬導(dǎo)電細絲的斷開過程則甚為簡單,已被科學(xué)界公認是由焦耳熱輔助的陽極氧化引起的,且斷開位置在金屬導(dǎo)電細絲的最薄弱之處.因此,此處的關(guān)注重點是金屬導(dǎo)電細絲的形成過程.至今,已經(jīng)被直接證明的金屬導(dǎo)電細絲生長模式有如下3種.
1)金屬導(dǎo)電細絲首先在IE附件形核.如圖3(a)所示,而后隨著時間的推移從IE向AE生長,記為“AE←IE”生長模式.這種生長模式與經(jīng)典電化學(xué)理論完全吻合,也最先被直接證明.
圖3 3種金屬導(dǎo)電細絲生長模式的代表性器件及其初始形核區(qū)域的直接觀察[19,42]Fig.3 Representative deviceswithnucleationlocationfor three growth modes of metal filaments:(a)nucleation location near the IE[42];(b)nucleation location in almost the whole region between AE and IE[19];(c)nucleation location near the AE[42]
早在1976年,HIROSE等[17]就利用OM直接證實,Ag導(dǎo)電細絲在Ag/Ag-As2S3/Au平面型器件中從Au電極向Ag電極生長.在這之后的工作中,這種生長模式也經(jīng)常被直接觀察到,如在Cu/Cu-GeTe/Pt-Ir垂直型器件[52]、Cu/MoOx/TiN垂直型器件[35]以及Ag/SiO2/Pt平面型器件[42].
2)金屬導(dǎo)電細絲首先在AE和IE之間大范圍形核.如圖3(b)所示,而后隨著時間的推移,核心增多、長大并逐漸聯(lián)通,最終發(fā)展成為導(dǎo)電細絲,記為“AE?IE”生長模式.相對來說,這種生長模式的報道較少,其代表性器件為如圖3(b)所示的Ag/PEDOT∶PSS/Pt平面型器件[19].
3)金屬導(dǎo)電細絲首先在AE附件形核.如圖3(c)所示,而后隨著時間的推移從AE向IE生長,記為“AE→IE”生長模式.這種生長模式最近被越來越頻繁地報道,如在Ag(或Cu)/ZrO2/ Pt垂直型器件[53]、Ag/Al2O3/Pt平面型器件[42]、Ag/a-Si/Pt平面型和垂直型器件[42]等.
需要指出的是,上述3種金屬導(dǎo)電細絲生長模式并非毫無聯(lián)系,如第2種生長模式可以看作是第1種和第3種之間的過渡模式.尤其是,YANG等[54]最近利用原位TEM研究了Ag導(dǎo)電細絲在電子束蒸發(fā)沉積的SiO2介質(zhì)中的生長過程,直接觀察到了由“AE→IE”生長模式到“AE←IE”生長模式的轉(zhuǎn)變,并將其歸因于焦耳熱引起的陽離子遷移率和氧化還原速率的同時提升.
2.3金屬導(dǎo)電細絲的生長動力學(xué)
對于在實驗上被直接證明的3種金屬導(dǎo)電細絲生長模式,“AE←IE”生長模式可以用經(jīng)典電化學(xué)理論來完美地解釋,而“AE?IE”和“AE→IE”生長模式貌似違背了經(jīng)典電化學(xué)理論,因而一經(jīng)報道便引起學(xué)術(shù)界的激烈爭論.為了解決這個爭論,GAO等[7]最近采用動態(tài)蒙特卡洛(Kinetic Monte Carlo,KMC)方法對金屬導(dǎo)電細絲的初始形核過程進行了模擬,結(jié)果如圖4所示.需要指出的是,能用對金屬導(dǎo)電細絲初始形核過程的模擬來代替對其整個生長過程的模擬,是因為這3種生長模式分別對應(yīng)于不同的初始形核位置,如圖3所示.圖4中深藍色代表遷移過程主導(dǎo)的“AE→IE”生長模式;黃色代表遷移和形核過程共同作用的“AE?IE”生長模式;紅色代表形核過程主導(dǎo)的“AE←IE”生長模式.此外,為了便于理解,各種生長模式的代表性器件也被定性地標注在圖4中.從圖4可以看出,在固定的形核激活能下,隨著遷移激活能的增大,金屬導(dǎo)電細絲的生長模式會由“AE←IE”逐漸轉(zhuǎn)變?yōu)椤癆E?IE”,并最終轉(zhuǎn)變?yōu)椤癆E→IE”;在固定的遷移激活能下,隨著形核激活能的增大,金屬導(dǎo)電細絲的生長模式會由“AE→IE”逐漸轉(zhuǎn)變?yōu)椤癆E?IE”,并最終轉(zhuǎn)變?yōu)椤癆E←IE”.對于Ag/a-Si/Pt平面型器件,Ag+離子在a-Si中的遷移率非常低.因此,由Ag電極的電化學(xué)溶解而生成的Ag+離子在遷移很小一段距離后就會被還原,形成Ag導(dǎo)電細絲核心.由于這些核心靠近Ag電極,因而它們可以被看作是Ag電極的延伸.隨著時間的推移,這些核心將被部分或全部溶解,再次變?yōu)锳g+離子.這些新生成的Ag+離子在遷移一小段距離后會再次被還原,形成新的核心.這種周而復(fù)始的氧化與還原最終導(dǎo)致Ag導(dǎo)電細絲逐漸從Ag電極向Pt電極生長,即“AE→IE”生長模式.與之相反,對于Ag/SiO2/Pt平面型器件,Ag+離子在SiO2中的遷移率很高.因此,由Ag電極的電化學(xué)溶解而生成的Ag+離子可以很迅速地遷移到Pt電極附近,然后被還原,轉(zhuǎn)化為Ag導(dǎo)電細絲核心.隨著時間的推移,越來越多的Ag+離子被還原,導(dǎo)致這些核心朝著Ag電極方向逐漸長大,即“AE←IE”生長模式.最后,對于Ag/PEDOT∶PSS/Pt平面型器件,離子遷移率和形核激活能的影響均不能忽略.由Ag電極的電化學(xué)溶解而生成的Ag+離子可以遷移一段距離后,在PEDOT∶PSS中的某個地方被還原,形成Ag導(dǎo)電細絲核心.隨著時間的推移,這些核心會被部分或全部溶解,也可能逐漸長大.最終,越來越多的核心形成并長大,它們聯(lián)通后形成導(dǎo)電細絲,即“AE?IE”生長模式.至此,3種金屬導(dǎo)電細絲生長模式均能被從動力學(xué)的角度完美解釋,極大地推進了我們對陽離子遷移型RRAM工作機理的認識.
圖4 金屬導(dǎo)電細絲生長模式與遷移激活能及形核激活能的關(guān)系示意圖[7]Fig.4 Schematic relationship between the growth mode of metal filaments and the activation energies formigration of cations and nucleation of metal filaments[7]
在商業(yè)化的道路上,陽離子遷移型RRAM的重要考核指標包括開關(guān)比(ON/OFF ratio)、擦寫速度(write/erase time)、擦寫功耗(write/eraseenergy)、循環(huán)耐受性(endurance)、數(shù)據(jù)保持特性(retention)、器件小型化潛力(miniaturization)等.本文將分別對各種重要考核指標進行進展總結(jié)和討論.需要指出的是,在給定的器件里,各種考核指標之間往往存在著某種制約關(guān)系,這將在下一章節(jié)進行深入分析和討論,而此處的進展總結(jié)和討論暫不考慮這些制約關(guān)系.
3.1開關(guān)比
陽離子遷移型RRAM通常具有較高的開關(guān)比,如Ag/ZnO∶Mn/Pt[18]、Cu/HfO2/Pt[55]和Cu/ Ta2O5/Pt[12]垂直型器件分別被報道具有>107、>108和>109的超高開關(guān)比.高開關(guān)比有助于相關(guān)器件在實際應(yīng)用中免于誤讀操作,同時也為基于單個器件進行多值存儲提供了可能性,如AMBROGIO等[9]通過設(shè)置不同的ICC來調(diào)控Ag導(dǎo)電細絲尺寸在Ag/GeS2/W垂直型器件中獲得了5個電阻態(tài),且任意2個相鄰態(tài)的阻值比都不小于10.
3.2擦寫速度
基于Ag/ZnO∶Mn/Pt垂直型器件,YANG等[18]直接證明,陽離子遷移型RRAM具有<5 ns的超快擦寫速度,如圖5(a)所示.
圖5 超快擦寫速度的測試和模擬結(jié)果[18,56]Fig.5 Experimental and simulated results of ultra-fast write/ erase speed:(a)switching characteristic of a vertical Ag/ZnO∶Mn/Pt RRAM cell under 5 ns operation pulses[18];(b)simulated formation and rupture processes of Cu filaments in SiO2storage medium[56]
最近,ONOFRIO等[56]利用原子級別的模擬計算證實,Cu導(dǎo)電細絲在SiO2介質(zhì)中的形成與斷開時間均約為1 ns,如圖5(b)所示.此外,利用外推法,GOUX等[57]認為Cu0.6Te0.4/Ti/Al2O3/W垂直型器件可以在<4 V的操作電壓下實現(xiàn)<1 ns的超快擦寫操作.這些結(jié)果表明,陽離子遷移型RRAM的擦寫速度遠高于Flash存儲器(≥1 μs),并可以與主存儲器,即動態(tài)隨機存儲器(dynamic RAM,DRAM)相媲美,因而能很好地滿足工業(yè)界對下一代非易失性存儲器在高速擦寫方面的要求.
3.3擦寫功耗
早在2008年,SCHINDLER等[58]通過測試發(fā)現(xiàn),Cu/SiO2/Ir垂直型器件在10 pA的超低操作電流下仍能具有約10倍的開關(guān)比,表明陽離子遷移型RRAM在低功耗方面有巨大潛力.隨后,在2013年,GILBERT等[59]報道,Ag/GeS/W垂直型器件可以在1 pJ寫入、8 pJ擦除的超低功耗下工作,并通過橫向比較得出,陽離子遷移型RRAM比其他一些新型非易失性存儲器,比如MRAM和PRAM,在低功耗方面更有優(yōu)勢.
3.4循環(huán)耐受性
已有工作表明,陽離子遷移型RRAM具有遠優(yōu)于Flash存儲器(~105次)的循環(huán)耐受性,如LV等[55]在Cu/HfO2/Pt垂直型器件實現(xiàn)了高達>109次的連續(xù)擦寫操作,而KOZICKI等[39]更是在Ag/Ag33Ge22Se47/Ni垂直型器件實現(xiàn)了高達>1011次的連續(xù)擦寫操作.此外,LV等[55]通過對比測試表明,在保證能成功擦寫器件的前提下,減小set脈沖寬度或增大reset脈沖寬度都能較少Cu原子在HfO2介質(zhì)中的累積,進而可以提高Cu/HfO2/Pt垂直型器件的循環(huán)耐受性.這一結(jié)論對其他陽離子遷移型RRAM體系的循環(huán)耐受性提升具有一定的參考價值.
3.5數(shù)據(jù)保持特性
利用外推法,陽離子遷移型RRAM已被證明具有在室溫甚至是85℃保存數(shù)據(jù)達10年以上時間的能力[40,60],因而在這一點上能很好地滿足工業(yè)界的要求.此外,JAMESON等[61]通過摻雜半導(dǎo)體元素把Ag電極非晶化,使得器件能夠在200℃的高溫下成功保存數(shù)據(jù)達~103h,因而能夠順利地承受回流焊工藝的高溫環(huán)境.
3.6器件小型化潛力
在2011年,PARK等[62]首先在Cu/HfO2/Pt垂直型器件中生成Cu導(dǎo)電細絲,然后再將Cu電極刻蝕掉,使得Cu導(dǎo)電細絲裸露在HfO2表面.通過導(dǎo)電原子力顯微鏡(conductive atomic force microscope,C-AFM)分析得出,Cu導(dǎo)電細絲裸露在HfO2表面的有效直徑為2~3 nm.隨后,在HfO2上依次沉積TiO2和Pt,形成Cu/TiO2/Pt垂直型器件.在該器件中,Cu電極的有效直徑即為2~3 nm.測試結(jié)果顯示,該器件具有>103的高開關(guān)比、<2 μA的低操作電流以及穩(wěn)定的阻變特性.這一工作表明,陽離子遷移型RRAM具有被小型化到<5 nm的潛力,因而可以輕松突破Flash存儲器面臨的小型化極限.
得益于器件制備和表征手段的長足進步,關(guān)于陽離子遷移型RRAM的研究工作,特別是在機理和性能方面,在過去10年里取得了巨大進展.但不可否認的是,陽離子遷移型RRAM當前距大規(guī)模商業(yè)化還有很長一段距離.在未來的研究工作中,應(yīng)著重關(guān)注以下幾點.
首先,闡明金屬導(dǎo)電細絲的生長動力學(xué)對存儲介質(zhì)的微觀結(jié)構(gòu)的依賴關(guān)系.已有工作表明,同種金屬導(dǎo)電細絲在不同制備工藝得到的同一存儲介質(zhì)中可以表現(xiàn)出不同的生長模式.如,Ag導(dǎo)電細絲在濺射制備的SiO2介質(zhì)中表現(xiàn)出“AE←IE”生長模式[42],而在等離子體增強化學(xué)氣相沉積和電子束蒸發(fā)制備的SiO2介質(zhì)中則表現(xiàn)出“AE→IE”生長模式[30,54].顯然,不同制備工藝得到的同一存儲介質(zhì)在微觀結(jié)構(gòu)上有巨大差異,但這些差異是如何影響離子的遷移和氧化還原過程的仍未可知.若能闡明金屬導(dǎo)電細絲的生長動力學(xué)對存儲介質(zhì)的微觀結(jié)構(gòu)的依賴關(guān)系,就能通過優(yōu)化制備工藝來精確地控制金屬導(dǎo)電細絲的生長動力學(xué),進而優(yōu)化相關(guān)器件的性能,推進其商業(yè)化進程.
其次,闡明各種存儲性能在單個陽離子遷移型RRAM中的相互制約關(guān)系.在單個器件中,各種存儲性能之間往往存在著制約關(guān)系,即一種性能的提升通常是以另一種性能的降低為代價的.如,在HRS阻值不變的前提下,開關(guān)比越高意味著LRS阻值越低,而LRS阻值的降低勢必會導(dǎo)致擦寫功耗的提升.因此,若能全面掌握各種性能之間的制約關(guān)系,就能根據(jù)實際需求來設(shè)定最優(yōu)的操作模式,以便將器件的性能發(fā)揮到極致.
最后,迅速推進陽離子遷移型RRAM在神經(jīng)形態(tài)計算[63-64]、邏輯運算[65-67]等新興RRAM應(yīng)用領(lǐng)域的研究工作.這些新興領(lǐng)域不僅能夠極大地拓寬陽離子遷移型RRAM的應(yīng)用范圍,而且蘊藏著更巨大的商業(yè)化前景.
[1]MAO D,MEJIA I,SALAS-VILLASENOR A L,et al. Ferroelectric random access memory based on onetransistor-one-capacitor structure for flexible electronics[J].Organic Electronics,2013,14(2):505-510.
[2]KHVALKOVSKIY A V,APALKOV D,WATTS S,et al.Basic principles of STT-MRAM cell operation in memory arrays[J].Journal of Physics D:Applied Physics,2013,46(7):074001.
[3]付永忠,程廣貴,王權(quán).濺射功率和退火溫度對GeSbTe相變薄膜內(nèi)應(yīng)力的影響[J].材料科學(xué)與工藝,2012,20(2):145-148. FU Yongzhong,CHENG Guanggui,WANG Quan. Influence of sputtering power and annealing temperature on internal stress of GeSbTe phase-change films[J]. Materials Science and Technology,2012,20(2):145-148.
[4]YANG J J,STRUKOV D B,STEWART D R.Memristive devices for computing[J].Nature Nanotechnology,2013,8(1):13-24.
[5]PAN F,CHEN C,WANG Z,et al.Nonvolatile resistive switchingmemories-characteristics,mechanisms and challenges[J].Progress in Natural Science:Materials International,2010,20:1-15.
[6]CHEN G,SONG C,CHEN C,et al.Resistive switching and magnetic modulation in cobalt-doped ZnO[J]. Advanced Materials,2012,24(26):3515-3520.
[7]PAN F,GAO S,CHEN C,et al.Recent progress in resistive random access memories:materials,switching mechanisms,and performance[J].Materials Science and Engineering:R:Reports,2014,83:1-59.
[8]GAO S,ZENG F,CHEN C,et al.Conductance quantization in a Ag filament-based polymer resistive memory [J].Nanotechnology,2013,24(33):335201.
[9]AMBROGIO S,BALATTI S,CHOI S,et al.Impact of the mechanical stress on switching characteristics of electrochemicalresistivememory[J].Advanced Materials,2014,26(23):3885-3892.
[10]YANG Y C,CHEN C,ZENG F,et al.Multilevel resistance switching in Cu/TaOx/Pt structures induced by a coupled mechanism[J].Journal of Applied Physics,2010,107(9):093701.
[11]SHAO X L,ZHAO J S,ZHANG K L,et al.Two-step reset in the resistance switching of the Al/TiOx/Cu structure[J].ACS Applied Materials&Interfaces,2013,5(21):11265-11270.
[12]SAKAMOTO T,LISTER K,BANNO N,et al.Electronic transport in Ta2O5resistive switch[J].Applied Physics Letters,2007,91(9):092110.
[13]CHEN C,YANG Y C,ZENG F,et al.Bipolar resistive switching in Cu/AlN/Pt nonvolatile memory device[J]. Applied Physics Letters,2010,97(8):083502.
[14]YANG Y,ZHANG X,GAO M,et al.Nonvolatile resistive switching in single crystalline ZnO nanowires [J].Nanoscale,2011,3(4):1917-1921.
[15]GAO S,SONG C,CHEN C,et al.Dynamic processes of resistive switching in metallic filament-based organicmemory devices[J].The Journal of Physical Chemistry C,2012,116(33):17955-17959.
[16]HUBBARD W,KERELSKY A,JASMIN G,et al. Nanofilament formation and regeneration during Cu/Al2O3resistive memory switching[J].Nano Letters,2015,15(6):3983-3987.
[17]HIROSE Y,HIROSE H.Polarity-dependent memory switchingandbehaviorofAgdendriteinAgphotodoped amorphous As2S3films[J].Journal of Applied Physics,1976,47(6):2767-2772.
[18]YANG Y C,PAN F,LIU Q,et al.Fully roomtemperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application[J].Nano Letters,2009,9(4):1636-1643.
[19]GAO S,SONG C,CHEN C,et al.Formation process of conducting filament in planar organic resistive memory [J].Applied Physics Letters,2013,102(14):141606.
[20]GAO S,CHEN C,ZHAI Z,et al.Resistive switching and conductance quantization in Ag/SiO2/indium tin oxide resistive memories[J].Applied Physics Letters,2014,105(6):063504.
[21]TSURUOKA T,VALOV I,TAPPERTZHOFEN S,et al.Redox reactions at Cu,Ag/Ta2O5interfaces and the effects of Ta2O5film density on the forming process in atomic switch structures[J].Advanced Functional Materials,2015,25(40):6374-6381.
[22]CHEN Y Y,POURTOIS G,ADELMANN C,et al. InsightsintoNi-filamentformationinunipolarswitchingNi/HfO2/TiNresistiverandomaccess memory device[J].Applied Physics Letters,2012,100(11):113513.
[23]SUN J,LIU Q,XIE H,et al.In situ observation of nickel as an oxidizable electrode material for the solidelectrolyte-based resistive random access memory[J]. Applied Physics Letters,2013,102(5):053502.
[24]OTSUKA S,HAMADA Y,ITO D,et al.Magnetoresistance of conductive filament in Ni/HfO2/Pt resistive switching memory[J].Japanese Journal of Applied Physics,2015,54(5S):05ED02.
[25]PEARSON C,BOWEN L,LEE M W,et al.Focused ion beam and field-emission microscopy of metallic filaments in memory devices based on thin films of an ambipolar organic compound consisting of oxadiazole,carbazole,and fluorene units[J].Applied Physics Letters,2013,102(21):213301.
[26]PENG P,XIE D,YANG Y,et al.Resistive switching behavior in diamond-like carbon films grown by pulsed laser deposition for resistance switching random access memory application[J].Journal of Applied Physics,2012,111(8):084501.
[27]YANG Z,ZHAN Q,ZHU X,et al.Tunneling magnetoresistance induced by controllable formation of CofilamentsinresistiveswitchingCo/ZnO/Fe structures[J].EPL(Europhysics Letters),2014,108 (5):58004.
[28]ZHU X,SU W,LIUY,etal.Observationof conductancequantizationinoxide-basedresistive switching memory[J].Advanced Materials,2012,24 (29):3941-3946.
[29]BHANSALI U S,KHAN M A,CHA D,et al.Metalfree,single-polymer device exhibits resistive memory effect[J].ACS Nano,2013,7(12):10518-10524.
[30]TIAN X,YANG S,ZENG M,et al.Bipolar electrochemical mechanism for mass transfer in nanoionic resistive memories[J].Advanced Materials,2014,26 (22):3649-3654.
[31]TANG G S,ZENG F,CHEN C,et al.Resistive switching with self-rectifying behavior in Cu/SiOx/Si structure fabricated by plasma-oxidation[J].Journal of Applied Physics,2013,113(24):244502.
[32]TAPPERTZHOFEN S,WASER R,VALOV I.Impact of the counter-electrode material on redox processes in resistive switching memories[J].Chem Electro Chem,2014,1(8):1287-1292.
[33]HSIUNG C P,LIAO H W,GAN J Y,et al.Formation and instability of silver nanofilament in Ag-based programmable metallization cells[J].ACS Nano,2010,4(9):5414-5420.
[34]LIU Q,LONG S,LV H,et al.Controllable growth of nanoscale conductive filaments in solid-electrolyte-based ReRAM by using a metal nanocrystal covered bottom electrode[J].ACS Nano,2010,4(10):6162-6168.
[35]KUDO M,ARITA M,OHNO Y,et al.Filament formation and erasure in molybdenum oxide during resistive switching cycles[J].Applied Physics Letters,2014,105(17):173504.
[36]DONGALE T D,MOHITE S V,BAGADE A A,et al. Development of Ag/WO3/ITO thin film memristor using spray pyrolysis method[J].Electronic Materials Letters,2015,11(6):944-948.
[37]SAKAMOTO T,SUNAMURA H,KAWAURA H,et al. Nanometer-scale switches using copper sulfide[J]. Applied Physics Letters,2003,82(18):3032-3034.
[38]XU Z,BANDO Y,WANG W,et al.Real-time in situ HRTEM-resolved resistance switching of Ag2S nanoscale ionic conductor[J].ACS Nano,2010,4(5):2515-2522.
[39]KOZICKI M N,PARK M,MITKOVA M.Nanoscale memory elements based on solid-state electrolytes[J]. IEEE Transactions on Nanotechnology,2005,4(3):331-338.
[40]KUND M,BEITELG,PINNOWCU,etal. Conductive bridging RAM(CBRAM):An emerging non-volatile memory technology scalable to sub 20nm [C]//IEEE International Electron Devices Meeting,2005.[S.l.]:IEDM Technical Digest,2005.
[41]ZHUGE F,DAI W,HE C L,et al.Nonvolatileresistive switching memory based on amorphous carbon [J].Applied Physics Letters,2010,96(16):163505.
[42]YANG Y,GAO P,GABA S,et al.Observation of conducting filamentgrowthinnanoscaleresistive memories[J].Nature Communications,2012,3:732.
[43]HAEMORI M,NAGATA T,CHIKYOW T.Impact of Cu electrode on switching behavior in a Cu/HfO2/Pt structure and resultant Cu ion diffusion[J].Applied Physics Express,2009,2(6):061401.
[44]BUSBY Y,NAU S,SAX S,et al.Direct observation of conductive filament formation in Alq3based organic resistive memories[J].Journal of Applied Physics,2015,118(7):075501.
[45]HE C L,ZHUGE F,ZHOU X F,et al.Nonvolatile resistive switching in graphene oxide thin films[J]. Applied Physics Letters,2009,95(23):232101.
[46]WANG Z,ZENG F,YANG J,etal.Resistive switchinginducedbymetallicfilamentsformation through Poly(3,4-ethylene-dioxythiophene):Poly (styrenesulfonate)[J].ACS Applied Materials& Interfaces,2011,4(1):447-453.
[47]MOHAPATRA S R,TSURUOKA T,HASEGAWA T,et al.Flexible resistive switching memory using inkjet printing of a solid polymer electrolyte[J].AIP Advances,2012,2(2):022144.
[48]MANGALAM J,AGARWAL S,RESMI A N,et al. Resistive switching in polymethyl methacrylate thin films[J].Organic Electronics,2016,29:33-38.
[49]CHO B,YUN J M,SONG S,et al.Direct observation of Ag filamentary paths in organic resistive memory devices[J].Advanced Functional Materials,2011,21 (20):3976-3981.
[50]JANG H J,KIRILLOV O A,JURCHESCU O D,et al.Spin transport in memristive devices[J].Applied Physics Letters,2012,100(4):043510.
[51]OTSUKA S,HAMADA Y,SHIMIZU T,et al.Ferromagnetic nano-conductive filament formed in Ni/TiO2/ Pt resistive-switching memory[J].Applied Physics A,2015,118(2):613-619.
[52]CHOI S J,PARK G S,KIM K H,et al.In situ observationofvoltage-inducedmultilevelresistive switching in solid electrolyte memory[J].Advanced Materials,2011,23(29):3272-3277.
[53]LIU Q,SUN J,LV H,et al.Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-basedReRAM[J].Advanced Materials,2012,24(14):1844-1849.
[54]YANG Y,GAO P,LI L,et al.Electrochemical dynamics of nanoscale metallic inclusions in dielectrics [J].Nature Communications,2014,5:4232.
[55]LV H,XU X,LIU H,et al.Evolution of conductive filament and its impact on reliability issues in oxideelectrolyte based resistive random access memory[J]. Scientific Reports,2015,5:7764.
[56]ONOFRIO N,GUZMAN D,STRACHAN A.Atomic origin of ultrafast resistance switching in nanoscale electrometallization cells[J].Nature Materials,2015,14(4):440-446.
[57]GOUX L,SANKARAN K,KAR G,et al.Field-driven ultrafast sub-ns programming in WAl2O3TiCuTebased 1T1R CBRAM system[C]//VLSI Technology (VLSIT),2012 Symposium on.NewYork:IEEE,2012:69-70.
[58]SCHINDLER C,WEIDES M,KOZICKI M N,et al. Low current resistive switching in Cu-SiO2cells[J]. Applied Physics Letters,2008,92(12):122910.
[59]GILBERT N,ZHANG Y,DINH J,et al.A 0.6 V 8 pJ/write non-volatile CBRAM macro embedded in a body sensor node for ultra low energy applications [C]//VLSI Circuits(VLSIC),2013 Symposium on. NewYork:IEEE,2013.
[60]CHEN C,GAO S,TANG G,et al.Cu-embedded AlN-based nonpolarnonvolatileresistiveswitching memory[J].IEEE Electron Device Letters,2012,33 (12):1711-1713.
[61]JAMESON J R,BLANCHARD P,CHENG C,et al. Conductive-bridge memory(CBRAM)with excellent high-temperatureretention[C]//ElectronDevices Meeting(IEDM),2013IEEEInternational. NewYork:IEEE,2013:30.1.1-30.1.4.
[62]PARK J,LEEW,CHOEM,etal.Quantized conductive filament formed by limited Cu source in sub-5nmera[C]//ElectronDevicesMeeting (IEDM),2011 IEEE International.NewYork:IEEE,2011:3.7.1-3.7.4.
[63]YU S,GAO B,F(xiàn)ANG Z,et al.A low energy oxidebased electronic synaptic device for neuromorphic visual systems with tolerance to device variation[J]. Advanced Materials,2013,25(12):1774-1779.
[64]LI S,ZENG F,CHEN C,et al.Synaptic plasticity and learning behaviours mimicked through Ag interface movement in an Ag/conducting polymer/Ta memristive system[J].Journal of Materials Chemistry C,2013,1 (34):5292-5298.
[65]YOU T,SHUAI Y,LUO W,et al.Exploiting memristive BiFeO3bilayer structures for compact sequential logics[J].Advanced Functional Materials,2014,24 (22):3357-3365.
[66]SIEMON A,BREUER T,ASLAM N,et al.Realization of Boolean logic functionality using redox-based memristive devices[J].Advanced Functional Materials,2015,25(40):6414-6423.
[67]GAO S,ZENG F,WANG M,et al.Implementation of complete Boolean logic functions in single complementary resistive switch[J].Scientific Reports,2015,5:15467.
(編輯 呂雪梅)
Development of materials and devices for cation-migration-based resistive random access memory
GAO Shuang1,2,ZENG Fei1,2,SONG Cheng1,2,PAN Feng1,2
(1.Key Laboratory of Advanced Materials(MOE)(Tsinghua University),Beijing 100084,China;2.School of Materials Science and Engineering,Tsinghua University,Beijing 100084,China)
Silicon-based Flash memory is currently the mainstream nonvolatile memory in semiconductor market,but its miniaturization will reach physical limit in the near future.As one promising candidate for nextgeneration high-speed,high-density,and low-power nonvolatile memory,cation-migration-based resistive random access memory(RRAM)has aroused much attention from academic and industrial communities in recent years.This review article provides a comprehensive summary of the recent progress in cation-migrationbased RRAM in terms of materials,switching mechanism,and device performance.The materials involved are grouped into electrode materials and storage media.The switching mechanism section includes the existence,growth modes,and growth kinetics of metal filaments.For the device performance section,ON/OFF ratio,write/erase time,write/erase energy,endurance,retention,and the miniaturization of cation-migration-based RRAM is successively summarized in detail.At last,the focuses of further research concerning cationmigration-based RRAM are suggested.
resistive random access memory;cation migration;redox reaction;metal filament;nonvolatile memory
TP333.8
A
1005-0299(2016)04-0001-09
10.11951/j.issn.1005-0299.20160401
2016-02-02.
國家高技術(shù)研究發(fā)展計劃資助項目(2014AA032901);國家自然科學(xué)基金重點項目(51231004).
高 雙(1989—),男,博士研究生;潘 峰(1963—),男,教授,博士生導(dǎo)師,國家杰出青年基金獲得者.
潘 峰,panf@mail.tsinghua.edu.cn.