王寶石,陳堅,2,孫福新,龐海強,李由然,張梁,丁重陽,顧正華,石貴陽*
1(江南大學(xué),糧食發(fā)酵工藝與技術(shù)國家工程實驗室,江蘇 無錫, 214122)2(江南大學(xué),工業(yè)生物技術(shù)教育部重點實驗室,江蘇 無錫, 214122)3(江蘇國信協(xié)聯(lián)能源有限公司,江蘇 宜興,214200) 4(山東省費縣檢驗檢測中心,山東 費縣,273400)
?
發(fā)酵法生產(chǎn)檸檬酸的研究進展
王寶石1,陳堅1,2,孫福新3,龐海強4,李由然1,張梁1,丁重陽1,顧正華1,石貴陽1*
1(江南大學(xué),糧食發(fā)酵工藝與技術(shù)國家工程實驗室,江蘇 無錫, 214122)2(江南大學(xué),工業(yè)生物技術(shù)教育部重點實驗室,江蘇 無錫, 214122)3(江蘇國信協(xié)聯(lián)能源有限公司,江蘇 宜興,214200) 4(山東省費縣檢驗檢測中心,山東 費縣,273400)
檸檬酸是一種具有多功能的重要有機酸,是當(dāng)前世界上產(chǎn)量和消費量最大的食用有機酸,伴隨著在新興產(chǎn)業(yè)領(lǐng)域的廣泛應(yīng)用,其需求量以每年5%的速度增長。發(fā)酵法生產(chǎn)檸檬酸起步較早,但工藝鮮有創(chuàng)新;文中首先介紹了檸檬酸生產(chǎn)工藝國內(nèi)外研究現(xiàn)狀,并以產(chǎn)業(yè)化的視角,縱觀檸檬酸生產(chǎn)全過程分析限制檸檬酸快速增長的瓶頸,著重提出了實現(xiàn)檸檬酸高效生產(chǎn)與清潔生產(chǎn)相統(tǒng)一的主要策略,為實現(xiàn)檸檬酸高效綠色制造奠定基礎(chǔ)。
檸檬酸;同步糖化發(fā)酵;多糖分子量分布;連續(xù)發(fā)酵;廢水資源化利用
檸檬酸(citric acid)又名枸櫞酸,是一種三羧酸類化合物,易溶于水,無毒,無臭,具有很強的酸味,是一種重要的、多功能的有機酸[1-3],廣泛應(yīng)用于食品、醫(yī)藥,化工等領(lǐng)域。檸檬酸全球產(chǎn)量超過170萬t,隨著生物聚合、藥物運輸、細胞培養(yǎng)等新興產(chǎn)業(yè)領(lǐng)域的廣泛應(yīng)用,每年以5%的速度增長,是世界第二大發(fā)酵產(chǎn)品,產(chǎn)量僅次于酒精產(chǎn)量[4],檸檬酸發(fā)酵生產(chǎn)一直是學(xué)者關(guān)注的熱點。隨著需求量的逐年增加,提高檸檬酸發(fā)酵效率成為新的研究課題。本篇以工業(yè)化生產(chǎn)的視角,從發(fā)酵菌株,原料處理,發(fā)酵方式及廢水處理等方面分析限制檸檬酸增長的因素,并重點闡述實現(xiàn)檸檬酸高效生產(chǎn)的主要策略。
多種類型的微生物可以用于生產(chǎn)檸檬酸,如曲霉類——Aspergillusniger,A.awamori,Penicilliumjanthinelum; 酵母類-Yarrowialipolytica,Candidatropicalis,Candidaoleophila;及細菌類——Bacilluslicheniformis,Arthrobacterparaffinens,Corynebacteriumsp.[5-6]。CARLOS[7]報道細菌類如Arthro-bacterparaffinens,Bacilluslicheniformis和Corynebac-teriumssp.能夠生產(chǎn)檸檬酸。酵母類可以利用不同類型碳源生產(chǎn)檸檬酸,其中解脂亞羅酵母已經(jīng)被廣泛用于生產(chǎn)檸檬酸,RYMOWICZ利用解脂假絲酵母發(fā)酵烷烴類底物,獲得大量檸檬酸[8]。然而,檸檬酸是能量代謝產(chǎn)物,僅在代謝不平衡條件下才能大量積累,雖然文獻報道多種類型微生物可以生產(chǎn)檸檬酸,可用于工業(yè)化生產(chǎn)僅曲霉類與酵母類。酵母類發(fā)酵會產(chǎn)生大量的副產(chǎn)物異檸檬酸,降低檸檬酸產(chǎn)量。因此,篩選低順烏頭酸酶活性的突變株或許有助于提高檸檬酸產(chǎn)量。
黑曲霉易操作,底物廣泛,產(chǎn)量高,副產(chǎn)物少,是檸檬酸工業(yè)化生產(chǎn)的最佳選擇[9]。CURRIE[10]最初研究發(fā)現(xiàn)黑曲霉在初始pH為2.5~3.5,含有高濃度糖與礦物鹽的培養(yǎng)基上能夠大量繁殖并積累檸檬酸,此發(fā)現(xiàn)為黑曲霉工業(yè)化生產(chǎn)檸檬酸奠定了基礎(chǔ)。研究專家對黑曲霉發(fā)酵底物優(yōu)化拓展以及傳統(tǒng)誘變技術(shù)應(yīng)用于菌株篩選,進一步提升了檸檬酸產(chǎn)量。KUTYA-OLESIUK[11]采用黑曲霉發(fā)酵蔗糖生產(chǎn)檸檬酸;孟佼[12]采用黑曲霉以玉米秸稈為原料發(fā)酵生產(chǎn)檸檬酸,發(fā)酵216 h,檸檬酸產(chǎn)量為98.27 g/L;ADEOYE[13]采用黑曲霉發(fā)酵木薯皮生產(chǎn)檸檬酸。WEI HU[14]組合碳離子束(12C6+)與X射線對黑曲霉誘變處理,顯著提高了檸檬酸產(chǎn)量,產(chǎn)量達到187.5 g/L,產(chǎn)率為3.13 g/(L·h);王德培[15]采用氮離子注射與微波輻射復(fù)合誘變,檸檬酸產(chǎn)量提高60%;IKRAM -UL-HAQ[16]通過UV與NTG誘變處理,發(fā)酵赤糖糊168 h,檸檬酸產(chǎn)量達到86.1 g/L?,F(xiàn)代誘變技術(shù)的應(yīng)用,也取得了良好的效果。JONGH[17]將來源于根霉的延胡索酸酶基因(FumRs)與酵母菌的富馬酸還原酶(Frds1)在黑曲霉中過量表達,可以有效改善黑曲霉在錳離子培養(yǎng)基中耐受力,提高檸檬酸產(chǎn)量,產(chǎn)率為0.025 g/g菌體;HJORT[18]構(gòu)建了不產(chǎn)草酸的黑曲霉菌株,減少發(fā)酵過程中副產(chǎn)物產(chǎn)生,提高檸檬酸產(chǎn)量。傳統(tǒng)誘變與現(xiàn)代誘變技術(shù)的應(yīng)用一定程度上提高了檸檬酸產(chǎn)量,降低了副產(chǎn)物形成;未來黑曲霉高產(chǎn)菌種的篩選可以組合傳統(tǒng)誘變技術(shù)與代謝工程技術(shù)進一步提高檸檬酸生產(chǎn)效率。
與單細胞發(fā)酵(細菌類與酵母類)相比,黑曲霉因其獨特的形態(tài)學(xué)特征,在攪拌條件下更易受到復(fù)雜環(huán)境影響產(chǎn)生非均相體系,影響發(fā)酵過程傳質(zhì)、溶氧。其中最有趣的是其復(fù)雜的菌絲體形態(tài),從致密的菌絲球到各種形態(tài)的菌絲,黑曲霉菌絲體形態(tài)會直接影響其發(fā)酵產(chǎn)酸[19]。PAPAGIANNI[20-21]采用數(shù)字圖像技術(shù)分析黑曲霉菌絲體形態(tài)學(xué)特征,通過人工神經(jīng)網(wǎng)絡(luò)模型將菌絲體形態(tài)分為球形、橢圓形、團塊狀和游離菌絲;研究發(fā)現(xiàn)改變孢子接種量可以有效調(diào)節(jié)菌絲聚集形態(tài)。隨后,PAPAGIANNI[19,22]在發(fā)酵初期劇烈攪拌會導(dǎo)致菌絲高度分支化,產(chǎn)生大量菌絲碎片,菌絲平均長度降低,菌絲球直徑減??;而發(fā)酵后期菌絲逐漸衰老,菌絲高度空泡化,菌絲增生較少。究竟菌絲球還是游離菌絲更適宜生產(chǎn)檸檬酸,PAUL等[23]研究發(fā)現(xiàn)分散菌絲比生長速率、比產(chǎn)酸速率與比耗糖速率等指標明顯高于大菌絲球,同時UJCOVA[24], SEICHERT[25]研究表明菌絲體形態(tài)為游離絲狀產(chǎn)酸更高;而GOMEZ與KISSER等[26-27]研究表明,菌絲體形態(tài)為菌絲球的產(chǎn)酸更高。雖然何種菌絲體形態(tài)更適合檸檬酸發(fā)酵一直存在爭議,但存在一定共識—產(chǎn)酸較高的黑曲霉菌絲一般具有短、膨大,分支菌絲尖端多的特征。因此,控制發(fā)酵過程菌絲體特定形態(tài)有助于提高檸檬酸產(chǎn)量。
現(xiàn)代工業(yè)化生產(chǎn)的黑曲霉種子仍然沿用傳統(tǒng)二級培養(yǎng)方式,即首先一級培養(yǎng)得到黑曲霉孢子,經(jīng)二級培養(yǎng)獲得成熟的菌絲球,然后用于接種發(fā)酵。工業(yè)化生產(chǎn)中,一批成熟的孢子需要經(jīng)過平板篩選,斜面培養(yǎng),茄子瓶培養(yǎng),最后麩曲桶培養(yǎng)等逐級擴大培養(yǎng),流程長,制備繁瑣,制備周期需要30 d以上,如圖1所示;二級種子培養(yǎng)周期較長,僅孢子萌發(fā)需要12 h以上。因此,菌絲替代孢子接種方式,縮短孢子萌發(fā)時間,是改善傳統(tǒng)種子培養(yǎng)方式的重要方向。
圖1 傳統(tǒng)培養(yǎng)模式規(guī)模孢子制備工藝Fig.1 Large-scale spores preparation in conventional process
高質(zhì)量的生物產(chǎn)品及發(fā)酵穩(wěn)定性與其細胞活力密切相關(guān),目前黑曲霉細胞缺乏有效的活力評價方法。SIGLER[28],GABRIEL[29]建立了基于酸化力法快速評價酵母活力,PRASHANT[30]基于亞甲基藍褪色速度反應(yīng)酵母細胞活力,對于評價黑曲霉細胞活力具有良好的借鑒意義。種子培養(yǎng)過程中種子活力波動會造成發(fā)酵過程不穩(wěn)定,因而建立一種快速有效的黑曲霉細胞活力評價方法對于指導(dǎo)種子培養(yǎng)與移種均具有重要意義。
黑曲霉是發(fā)酵生產(chǎn)檸檬酸的主要菌種,是因為它能夠利用廉價原料,產(chǎn)量仍能達到理論值70%以上[31]。產(chǎn)檸檬酸培養(yǎng)基主要成分為淀粉質(zhì)或含葡萄糖、蔗糖的原料,隨著全球檸檬酸需求量增加,低成本原料逐漸成為檸檬酸生產(chǎn)競逐的對象,一些工農(nóng)業(yè)加工廢料及副產(chǎn)物應(yīng)用于檸檬酸生產(chǎn),同時緩解了環(huán)境壓力。YASSER[32]利用過期的糖漿生產(chǎn)檸檬酸,經(jīng)1.5%磷酸鈣除去金屬離子,產(chǎn)量比未處理對照組提高38.87%。 DHILLON[33]以蘋果渣超濾后的污泥為底物發(fā)酵144 h,檸檬酸產(chǎn)量達到44.9 g/L。BARRINGTON[34]發(fā)酵泥煤苔生產(chǎn)檸檬酸,發(fā)酵120 h,產(chǎn)量為354.8 g/( kg底物)。KHOSRAVI-DARANI[35]采用尿素處理甘蔗渣生產(chǎn)檸檬酸,檸檬酸產(chǎn)量、產(chǎn)率分別為82.38 g/kg(干基),26.45 g/(kg·d)。各種低廉、廢棄原料的應(yīng)用拓寬了檸檬酸原料范圍,同時對緩解環(huán)境壓力,降低原料成本等方面做出了巨大貢獻。但由于各種廢棄原料的成分復(fù)雜,增加了生產(chǎn)后期檸檬酸提取難度,縱觀檸檬酸整個生產(chǎn)過程,生產(chǎn)成本不減反增,生產(chǎn)效率降低。因此,淀粉質(zhì)原料仍然是檸檬酸工業(yè)化生產(chǎn)的主要原料。
黑曲霉對碳源的代謝是影響檸檬酸發(fā)酵水平最重要的因素,MADDOX, VANDENBERGHE, HOSSAIN[36]研究表明,淀粉質(zhì)原料需首先被水解為單糖才能用于檸檬酸的高效合成。檸檬酸工業(yè)化生產(chǎn)中采用淀粉質(zhì)粗原料,經(jīng)液化后利用黑曲霉自身的糖化能力進行同步糖化發(fā)酵?;谕桨l(fā)酵的工藝特點,在發(fā)酵過程中任何時間葡萄糖生成速度與消耗速度的不匹配均會降低發(fā)酵效率。葡萄糖的消耗速度可通過控制溶氧和發(fā)酵溫度等參數(shù)精確調(diào)控;而葡萄糖的生成速度則以液化效果為主因,常常成為發(fā)酵產(chǎn)酸的瓶頸所在。以上都體現(xiàn)出液化糖化階段對整個檸檬酸發(fā)酵過程的重要性。黑曲霉自身液化型淀粉酶系作用效率有限,降解淀粉的速率無法滿足檸檬酸合成過程中的代謝需求。因此,淀粉質(zhì)原料在發(fā)酵前需經(jīng)α-淀粉酶水解液化,將大分子切割成短鏈,形成糊精和少量寡糖,降低淀粉黏度,為糖化酶的作用創(chuàng)造條件。同時黑曲霉自身分泌的糖化酶是一種外切型淀粉酶,它針對不同結(jié)構(gòu)的底物作用效率不同,黑曲霉糖化酶作用于長鏈的活性更大;HIROMI[37]研究發(fā)現(xiàn)黑曲霉糖化酶對低聚糖的Km值(米氏常數(shù))隨著聚合度( degree of polymerization,DP≤7)的增加而降低,對麥芽糖Km值為0.18~1.4 mmol/L,而對麥芽低聚糖的Km值為 0.02~0.14 mmol/L;DOUGLAS[38]研究發(fā)現(xiàn),不同聚合度的底物與黑曲霉糖化酶活性中心競爭性結(jié)合能力不同; MEAGHER[39]也發(fā)現(xiàn)黑曲霉糖化酶的水解速率k2以及與底物的親和力不同。傳統(tǒng)淀粉質(zhì)粗料發(fā)酵模式的液化工藝缺乏精細化調(diào)控,液化組分中多糖分子量分布不均,導(dǎo)致后期發(fā)酵過程不穩(wěn)定,是長期制約檸檬酸發(fā)酵行業(yè)提升的關(guān)鍵技術(shù)難題。因此,精細化調(diào)控淀粉液化過程,改善液化組分中多糖分子量分布規(guī)律,有利于提高黑曲霉糖化速率,進而改善發(fā)酵效率。
檸檬酸發(fā)酵方式包括淺盤發(fā)酵法(surface fermentation)、固態(tài)發(fā)酵法(solid fermentation)、液態(tài)深層發(fā)酵法(submerged fermentation)3種形式。淺盤發(fā)酵又稱表面發(fā)酵,是檸檬酸發(fā)酵最初的發(fā)酵形式;固態(tài)發(fā)酵方式能夠利用工農(nóng)業(yè)加工廢料,降低生產(chǎn)成本,同時減少環(huán)境污染[2, 35, 40-41],是一種非常具有潛力的發(fā)酵模式,但因廢料成分復(fù)雜,對發(fā)酵后期產(chǎn)物提取影響較大,有待于進一步研究;液態(tài)深層發(fā)酵方式具有產(chǎn)率高,自動化程度高,不易污染,發(fā)酵周期短等優(yōu)勢,是檸檬酸工業(yè)化生產(chǎn)的主要方式,約有80%的檸檬酸產(chǎn)量是通過液態(tài)深層分批發(fā)酵方式得到的[7, 42]。
傳統(tǒng)分批發(fā)酵模式嚴重制約了檸檬酸的快速增長,對于工業(yè)化生產(chǎn),連續(xù)發(fā)酵方式更具有優(yōu)勢,消耗少的勞動力獲得較高的發(fā)酵效率,學(xué)者始終未停止對檸檬酸連續(xù)發(fā)酵工藝的探索。然而檸檬酸合成是部分生長偶聯(lián)型[43],且黑曲霉菌絲體結(jié)構(gòu)復(fù)雜,實現(xiàn)黑曲霉連續(xù)發(fā)酵生產(chǎn)檸檬酸比較困難[44]。
酵母菌作為單細胞生物,操作簡便,易于實現(xiàn)連續(xù)發(fā)酵,解脂假絲酵母連續(xù)發(fā)酵生產(chǎn)檸檬酸取得了一定進展。MOELLER等人[45]使用解脂假絲酵母反復(fù)分批發(fā)酵,連續(xù)發(fā)酵3 d,檸檬酸產(chǎn)量為100 g/L,檸檬酸產(chǎn)量提高了32%;隨后MOELLER等人[46]采用解脂假絲酵母H222重復(fù)補料發(fā)酵10批次,發(fā)酵時間553h,產(chǎn)率由1.4 g/(L·h)降至1.1g/(L·h)。RYWISKA等人[8]采用解脂假絲酵母反復(fù)分批發(fā)酵甘油16批次,仍保持較高活性,檸檬酸產(chǎn)量為0.78 g/g,產(chǎn)率1.05 g/(L·h)。ARZUMANOV等人[44]采用解脂假絲酵母反復(fù)分批發(fā)酵乙醇生產(chǎn)檸檬酸,發(fā)酵700 h,檸檬酸產(chǎn)量為105 g/L。解脂假絲酵母雖然在連續(xù)生產(chǎn)檸檬酸取得一定進展,但酵母類發(fā)酵方式存在缺陷,使其工業(yè)化生產(chǎn)受阻。其最大的缺點是副產(chǎn)物異檸檬酸產(chǎn)量較高(5%~10%),提取過程困難;酶系單一,原料轉(zhuǎn)化率低;同時解脂假絲酵母作為產(chǎn)油脂酵母菌的菌種來源,細胞中還易累積較多油脂,這些副產(chǎn)物的產(chǎn)生降低了檸檬酸產(chǎn)量[47]。
黑曲霉由于酶系豐富,發(fā)酵效率高、副產(chǎn)物少等優(yōu)勢,仍然是實現(xiàn)檸檬酸連續(xù)發(fā)酵的主要選擇。通過引入菌絲球分割技術(shù),組合發(fā)酵過程控制策略改善黑曲霉菌絲體形態(tài),實現(xiàn)黑曲霉連續(xù)培養(yǎng),提高檸檬酸生產(chǎn)效率。
檸檬酸生產(chǎn)主要采用液體深層發(fā)酵,發(fā)酵液經(jīng)固液分離鈣鹽法或色譜提取、蒸發(fā)、結(jié)晶等工藝獲得檸檬酸成品。提取過程中會產(chǎn)生大量廢水,其中含有一些有機酸、糖、蛋白質(zhì)膠體、礦物質(zhì)等物質(zhì)[48],COD高達350 kg/t檸檬酸,濃度高達10 00015 000 mg/L。檸檬酸廢水處理主要采用生物處理法、Fenton試劑法、光合細菌法、乳化液膜法等[49],其中生物處理法的應(yīng)用最為廣泛,單獨采用厭氧生物法或者好氧生物法處理高濃度檸檬酸廢水,往往不能達到國家排放標準,需結(jié)合其他處理技術(shù)進行深度處理。
方亞葉[50]將酒精發(fā)酵過程中廢水經(jīng)陶瓷膜過濾回流至生產(chǎn)系統(tǒng)中,發(fā)酵13次未產(chǎn)生明顯抑制作用, 對檸檬酸廢水回流具有良好的借鑒意義。國內(nèi)外學(xué)者對檸檬酸廢水進行深度處理進而資源化利用,取得了較好的效果。WIECZOREK等[51]將發(fā)酵液經(jīng)過液液萃取系統(tǒng),連續(xù)運行55 d,發(fā)酵結(jié)果正常,但部分萃取劑會溶解到水相中,需要活性炭進一步吸附處理。HUSEYIN[52]利用 Fenton 氧化法處理廢水,作為 SBR 生物處理的預(yù)處理,組合工藝的COD去除率達98%。此處理方法過程比較復(fù)雜,成本高,單一處理方法不能達到污水排放標準,不符合資源化利用技術(shù)的要求。XU[53-55]構(gòu)建了檸檬酸-沼氣雙發(fā)酵藕聯(lián)生態(tài)體系,產(chǎn)生的檸檬酸廢水經(jīng)厭氧發(fā)酵產(chǎn)生沼氣,厭氧出水經(jīng)過進一步預(yù)處理用于檸檬酸發(fā)酵體系,檸檬酸廢水循環(huán)利用10批次,檸檬酸發(fā)酵過程比較穩(wěn)定。
現(xiàn)有的檸檬酸廢水回用方法一般需要前期預(yù)處理,流程較長,可操作性與穩(wěn)定性較差,有些可能造成二次污染。基于菌種適應(yīng)性進化技術(shù),提高菌種廢水耐受性,減少廢水復(fù)雜前處理過程,降低生產(chǎn)成本,是實現(xiàn)檸檬酸廢水資源化利用的重要手段。
高產(chǎn)量、高產(chǎn)率、高生產(chǎn)強度統(tǒng)一為目標的發(fā)酵過程技術(shù),一直是發(fā)酵工程領(lǐng)域關(guān)注的焦點問題。針對檸檬酸傳統(tǒng)生產(chǎn)工藝存在問題,建立上游發(fā)酵技術(shù)、下游提取技術(shù)和后期污水處理各環(huán)節(jié)有效的溝通機制,提高生產(chǎn)效率,實現(xiàn)清潔生產(chǎn),可從以下幾個方面開展。集成傳統(tǒng)誘變技術(shù)與現(xiàn)代代謝工程技術(shù)篩選黑曲霉高產(chǎn)菌株,基于細胞活力快速評價方法,指導(dǎo)建立黑曲霉種子連續(xù)培養(yǎng)方式;精細化調(diào)控淀粉質(zhì)原料液化過程,改善液化組分多糖分子量分布,同步糖化發(fā)酵,提高發(fā)酵效率;通過引入菌絲球分割技術(shù),組合發(fā)酵過程控制策略改善黑曲霉連續(xù)發(fā)酵過程中的菌絲體形態(tài),實現(xiàn)黑曲霉連續(xù)發(fā)酵;基于菌種適應(yīng)性進化技術(shù),提高菌種廢水耐受性,實現(xiàn)檸檬酸廢水資源化利用。
[1]BETIKU E,ADESINA O A. Statistical approach to the optimization of citric acid production using filamentous fungusAspergillusnigergrown on sweet potato starch hydrolyzate[J]. Biomass and Bioenergy,2013,55:350-354.
[2]DHILLON G S, BRAR S K, VERMA M, et al. Utilization of different agro-industrial wastes for sustainable bioproduction of citric acid byAspergillusniger[J].Biochemical Engineering Journal, 2011,54(2):83-92.
[3]DHILLON G S, BRAR S K, KAUR S, et al. Bioproduction and extraction optimization of citric acid fromAspergillusnigerby rotating drum type solid-state bioreactor[J]. Industrial Crops and Products,2013,41:78-84.
[4]VENDRUSCOLO F, ALBUQUERQUE P M, STREIT F, et al. Apple Pomace: A versatile substrate for biotechnological application[J]. Critical Reviews in Biotechnology,2008,28(1):1-12.
[5]GREWAL H S, KALRA K L. Fungal production of ciric aicd [J].Biotechnology Advances,1995,13(2):209-234.
[6]FRISVAD ESND-CJC,DIJCK PWMV. On the safety ofAspergillusniger-a review[J]. Applied Microbiology and Biotechnology,2002,59(5):426-435.
[7]CARLOS R. SOCCOL L P S V, CRISTINE RODRIGUES,PANDEY A A. New perspectives for citric acid production and application[J]. Food Technology Biotechnology, 2006,44(2):141-149.
[9]SINGH DHILLON G, KAUR BRAR S, VERMA M, et al. Recent advances in citric acid bio-production and recovery[J]. Food and Bioprocess Technology, 2010,4(4):505-529.
[10]JAMES N. CURRIE. The citric acid fermentation ofAspergillusniger[J].Journal of Biolichal Chemistry, 1917, 5:1-37.
[12]孟佼.玉米秸稈原料的黑曲霉發(fā)酵生產(chǎn)檸檬酸[D].上海:華東理工大學(xué),2014:14-59.
[13]ADEOYE A O A L, Gueguim-Kana E B. Optimization of citric acid production using a mutant strain ofAspergillusnigeron cassava peel substrate[J]. Biocatalysis and Agricultural Biotechnology, 2015,1:1-7.
[14]HU W, LIU J, CHEN J H,et al. A mutation ofAspergillusnigerfor hyper-production of citric acid from corn meal hydrolysate in a bioreactor[J]. Journal of Zhejiang University Science B, 2014,15(11):1 006-1 010.
[15]王德培, 周婷, 張靈燕,等. 氮離子注入和微波復(fù)合誘變選育高產(chǎn)檸檬酸的黑曲霉研究[J].中國釀造,2012,31(5):123-127.
[16]KHURSHID S, ALI S, ASHRAF H,et al. Mutation ofAspergillusnigerfor hyperproduction of citric acid from black strap molasses[J]. World Journal of Microbiology and Biotechnology,2001,17(1):35-37.
[17]W. A.DE JONGH JN. Enhanced citrate production through gene insertion inAspergillusniger[J]. Metabolic Engineering,2008,10(2):87-96.
[18]PEDERSEN H, CHRISTENSEN B, HJORT C, et al. Construction and characterization of an oxalic acid nonproducing strain ofAspergillusniger[J]. Metabolic Engineering,2000,2(1):34-41.
[19]PAPAGIANNI M, MATTEY M, KRISTIANSEN B. Hyphal vacuolation and fragmentation in batch and fed-batch culture ofAspergillusnigerand its relation to citric acid production[J]. Process Biochemistry,1999,35(3):359-366.
[20]PAPAGIANNI M, MATTEY M. Morphological development ofAspergillusnigerin submerged citric acid fermentation as a function of the spore inoculum level. Application of neural network and cluster analysis for characterization of mycelial morphology[J].Microbial Cell Factories, 2006,5(3): 1-12.
[21]PAPAGIANNI M. Quantification of the fractal nature of mycelial aggregation inAspergillusnigersubmerged cultures[J]. Microbial Cell Factories,2006,5(1):1-13.
[22]PAPAGIANNI M, MATTEY M, KRISTIANSEN B. The influence of glucose concentration on citric acid production and morphology ofAspergillusnigerin batch and culture[J]. Enzyme and Microbial Technology, 1999,25(8):710-717.
[23]PAUL G C, PRIEDE M A, THOMAS C R. Relationship between morphology and citric acid production in submergedAspergillusnigerfermentations[J]. Biochemical Engineering Journal,1999,3(2):121-129.
[25]SEICHERT L, UJCOVA E, MUSLKOVAM. Effect of aerationand agitation on the biosynthetic activity of diffusely growingAspergillusniger[J]. Folia Microbiology, 1982,27(5):333-334.
[27]MONIKA K, KUBICEK C P, ROHR M. Influence of manganese on morphology and cell wall composition ofAspergillusnigerduring citric acid fermentation[J]. Archives of microbiology,1980,128(1):26-33.
[28]SIGLER K, MIKYSKA A, KOSAR K,et al. Factors affecting the outcome of the acidification power test of yeast qualitycritical reappraisal[J].Folia Microbiologica,2006,51(6):525-534.
[29]GABRIEL P,DIENSTBIER M, SLANKY P,et al. A new method of optical detection of yeast acidification power[J]. Folia Microbiol,2008,53(6): 527-533.
[30]PRASHANT B, SUBIR K N, PRAMOD W, et al.Quantification of metabolically active biomass using Methylene Blue dye Reduction Test (MBRT) measurement of CFU in about 200 s[J].Journal of Microbiological Methods, 2006, 65(1): 107-116.
[31]PAPAGIANNI M. Advances in citric acid fermentation byAspergillusniger: Biochemical aspects, membrane transport and modeling[J]. Biotechnology Advances, 2007,25(3):244-263.
[32]MOSTAFA Y S, ALAMRI S A. Optimization of date syrup for enhancement of the production of citric acid using immobilized cells ofAspergillusniger[J].Saudi Journal of Biological Sciences, 2012,19(2):241-246.
[33]DHILLON G S, BRAR S K, VERMA M, et al. Apple pomace ultrafiltration sludge - A novel substrate for fungal bioproduction of citric acid: Optimisation studies[J].Food Chemistry, 2011,128(4):864-871.
[34]BARRINGTON S, KIM J-W. Response surface optimization of medium components for citric acid production byAspergillusnigerNRRL 567 grown in peat moss[J]. Bioresource Technology, 2008,99(2):368-377.
[35]KHOSRAVI-DARANI K, ZOGHI A. Comparison of pretreatment strategies of sugarcane baggase: Experimental design for citric acid production[J].Bioresource Technology, 2008,99(15):6 986-6 993.
[36]HOSSAIN M.BROOKS J D,MADDOX I S.The effect of the sugar source on citric acid production[J].Applied Microbiology Biotechnology,1984, 19(6):393-397.
[37]KEITARO H,MASATAKE O,AKIYOSHI T. Subsite structure and ligand binding mechanism of glucoamylase[J].Mol Cell Biochem,1983,51(1):71-95.
[38]DOUGLAS D L,GENE K L,PETER J R,et al. Effect of pore diffusion limitation of dextrin hydrolysis by immobilized glucoamylase[J]. Biotechnology Bioengineering, 1980,22:1-17.
[39]MICHAEL M M,ZIVKO L N,PETER J R. Subsite mapping ofAspergillusnigerglucoamylases I and II with malto- and isomaltooligosaccharides[J]. Biotechnology Bioengineering,1989,34(5):681-688.
[40]BARI M N, ALAM M Z, MUYIBI S A,et al. Improvement of production of citric acid from oil palm empty fruit bunches:Optimization of media by statistical experimental designs[J]. Bioresource Technology,2009,100(12):3 113-3 120.
[41]BIELECKI S, TRAMPER J,POLAK J. Induction of citric acid overproduction inAspergillusnigeron beet molasses[J]. Food Biotechnology, 2000, 1:247-250.
[42]THOMPSON J C, HE B B. Characterization of crude glycerol from biodiesel production from multiple feedstocks[J].Applied Engineeringin in Agriculture,2006,22(2):261-265.
[43]ELMER L G J. Fermentation process kinetics[J]. Journal of Biochemical and Microbiological Technology and Engineering,1959, 1:413-429.
[44]ARZUMANOV T, SHISHKANOVA N, FINOGENOVA T. Biosynthesis of citric acid byYarrowialipolyticarepeat-batch culture on ethanol[J]. Applied Microbiology and Biotechnology,2000,53(5):525-529.
[45]MOELLER L, GRüNBERG M, ZEHNSDORF A, et al. Biosensor online control of citric acid production from glucose byYarrowialipolyticausing semicontinuous fermentation[J]. Engineering in Life Sciences,2010,10(4):311-320.
[46]MOELLER L, GRüNBERG M, ZEHNSDORF A,et al. Repeated fed-batch fermentation using biosensor online control for citric acid production byYarrowialipolytica[J]. Journal of Biotechnology,2011,153(34):133-137.
[47]ZHAO C H, CUI W, LIU X Y, et al. Expression of inulinase gene in the oleaginous yeastYarrowialipolyticaand single cell oil production from inulin-containing materials[J].Metabolic Engineering,2010,12(6):510-517.
[48]ZHI Xiaohua, YANG Haijun, SASCHA B,et al.Potential improvement to a citric wastewater treatment plant using biohydrogen and a hybrid energy system[J].Journal of Power Sources, 2010, 195(15):6 945-6 953.
[49]I P. Case study-wastewater reuse in Limassol as an alternative water source[J]. Desalination, 2001,136:55-59.
[50]方亞葉,石貴陽,章克昌. 濃醪酒糟膜分離濾液全回流工藝的研究[J].釀酒, 2004, 31(2):44-45.
[51]WIECZOREK S, BRAUER H. Continuous production of citric acid with recirculation of the fermentation broth after product recovery[J]. Bioprocess Engineering, 1997,18(1):1-5.
[52]HUSEYIN T, OKAN B, SELALE S, et al.Use of Fenton oxidation to improve the biodegrability of a pharmaceutical wastewater[J]. Jounrnal of Hazardous Materials,2006,136(2):258-265.
[53]XU Jian,SU Xian-feng,BAO Jia-wei, et al. Cleaner production of citric acid by recycling its extraction wastewater treated with anaerobic digestion and electrodialysis in an integrated citric acid-methane production process[J]. Bioresource Technology,2015,189:186-194.
[54]XU Jian,CHEN Yang-qiu,ZHANG HONG-jan, et al. Establishment and assessment of an integrated citric acid-methane production process[J]. Bioresource Technology, 2015,176:121-128.
[55]ZHANG HONG-jian,ZHANG Jian-hua,XU Jian, et al. A novel recycling process using the treated citric acid wastewater as ingredients water for citric acid production[J]. Biochemical Engineering Journal,2014,90:206-213.
Advances in production of citric acid through microbial fermentation
WANG Bao-shi1, CHEN Jian1,2, SUN Fu-xin3, PANG Hai-qiang4, LI You-ran1,ZHANG Liang1, DING Zhong-yang1, GU Zheng-hua1, SHI Gui-yang1*
1(National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China)2(Key Laboratory of Industrial Biotechnology, Ministry of Education,Jiangnan University,Wuxi 214122,China)3(Jiangsu Guoxin Union Energy Co., Ltd., Yixing 214203, China)4(Shandong Feixian Inspection and Detection Center, Feixian 273400, China)
Citric acid is one of the most important multifunctional organic acids produced by fermentation. At present, it is the world’s second largest fermentation products ranking behind ethanol. The volume of citric acid production is increasing at a high annual rate of 5% with numerous new applications coming to light. Though production of citric acid through microbial fermentation has a long history, there is little innovation in the production process. We firstly reviewed the advances in citric acid production and then analyzed the factors limiting the fast increase of citric acid in perspective of the entire production-process. Main strategies for efficient production of citric acid coupled with cleaner production were elaborated, which laid foundation for the realization of efficient green manufacturing of citric acid.
citric acid; simultaneous scarification and fermentation; polysaccharide molecular weight distribution; continuous fermentation; utilization of wastewater resource
10.13995/j.cnki.11-1802/ts.201609042
博士研究生(石貴陽教授為通訊作者,E-mail:gyshi@jiangnan.edu.cn)。
國家高技術(shù)研究發(fā)展計劃(863計劃,No: 2015AA020302);江蘇省產(chǎn)學(xué)研前瞻性聯(lián)合研究項目 (No. BY2015019-13)
2016-02-28,改回日期:2016-04-11