国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

一類具有2個(gè)加性變時(shí)滯的系統(tǒng)的指數(shù)穩(wěn)定性分析

2016-10-14 14:16韓彥武湯紅吉
高師理科學(xué)刊 2016年11期
關(guān)鍵詞:充分條件時(shí)滯穩(wěn)定性

韓彥武,湯紅吉

?

一類具有2個(gè)加性變時(shí)滯的系統(tǒng)的指數(shù)穩(wěn)定性分析

韓彥武,湯紅吉

(南通大學(xué)理學(xué)院,江蘇南通 226019)

考慮了一類具有2個(gè)加性變時(shí)滯的系統(tǒng)的指數(shù)穩(wěn)定性問題.通過把時(shí)滯區(qū)間分別分成2個(gè)小區(qū)間,構(gòu)造一個(gè)適當(dāng)?shù)腖yapunov-Krasovskii泛函(LKF),該LKF整體正定,不要求每一部分正定.運(yùn)用積分不等式和倒凸組合的方法,得出了系統(tǒng)指數(shù)穩(wěn)定的充分條件,并以線性矩陣不等式的形式表示.?dāng)?shù)值實(shí)例表明了該方法的有效性.

加性變時(shí)滯;時(shí)滯分解;指數(shù)穩(wěn)定;倒凸組合

時(shí)滯廣泛存在于各類系統(tǒng)中,如生物系統(tǒng)、神經(jīng)網(wǎng)絡(luò)和網(wǎng)絡(luò)化控制系統(tǒng)等.時(shí)滯的存在可能會(huì)引發(fā)系統(tǒng)振蕩甚至使系統(tǒng)失穩(wěn),因此時(shí)滯系統(tǒng)的穩(wěn)定性分析成為系統(tǒng)理論領(lǐng)域的熱點(diǎn)問題之一[1-14].文獻(xiàn)[1-2]構(gòu)造了包含三重積分的增廣LKF,得出了較好的結(jié)果;文獻(xiàn)[3-4]在LKF求導(dǎo)時(shí),利用Newton-Leibniz公式,引入了自由權(quán)矩陣;文獻(xiàn)[5-7]利用積分不等式、凸組合或倒凸組合得出了時(shí)滯系統(tǒng)穩(wěn)定的充分條件;文獻(xiàn)[8-9]利用時(shí)滯分解的方法,分析了系統(tǒng)的穩(wěn)定性.

本文針對(duì)一類加性變時(shí)滯系統(tǒng),研究其指數(shù)穩(wěn)定性問題.運(yùn)用時(shí)滯分解的方法,把時(shí)滯區(qū)間進(jìn)行分解(可以是平均分解,也可以是不平均分解),構(gòu)造一個(gè)適當(dāng)?shù)腖KF,利用積分不等式和倒凸組合的方法,得出系統(tǒng)指數(shù)漸近穩(wěn)定的充分條件,并以線性矩陣不等式的形式表示.

1 問題描述

考慮具有2個(gè)加性變時(shí)滯的系統(tǒng)

2 主要結(jié)果及證明

證明構(gòu)造Lyapunov-Krasovskii泛函(LKF)

注1通常,LKF表示為若干正定二次型和的形式,這樣可以保證LKF的正定性.但在定理中,不需要是正定矩陣,由式(4)保證了LKF(6)的正定性.

注3由于本文考慮的是指數(shù)穩(wěn)定性問題,所以在定理中,為便于估計(jì),需要()是正定矩陣,若只考慮漸近穩(wěn)定問題,則只需要是對(duì)稱矩陣[14]756.

3 數(shù)值實(shí)例

表1 對(duì)于給定的,的最大值

表1 對(duì)于給定的,的最大值

方法來源 1   1.2  1.5方法來源 1  1.2   1.5 文獻(xiàn)[10]0.4150.3760.248文獻(xiàn)[13]0.8730.6730.373 文獻(xiàn)[11]0.5120.4060.283文獻(xiàn)[14]0.9880.8360.563 文獻(xiàn)[12]0.5830.5190.421定理1.1260.9440.652

表2 對(duì)于給定的和,的最大值

表2 對(duì)于給定的和,的最大值

k 1   1.2   1.5 0.050.8730.6770.366 0.10.6770.4700.148

由表1可以看出,與文獻(xiàn)[10-14]相比較,利用本文時(shí)滯分解方法可以得出較好的結(jié)果.

本文主要研究了具有2個(gè)加性變時(shí)滯系統(tǒng)的指數(shù)穩(wěn)定性問題.綜合利用時(shí)滯分解、積分不等式和倒凸組合技巧,得出系統(tǒng)指數(shù)穩(wěn)定的充分條件,并用LIMs表示.?dāng)?shù)值實(shí)例說明了本文時(shí)滯分解方法的有效性.

[1] Sun J,Liu G,Chen J,et al.Improved delay-range-dependent stability criteria for linear systems with time-varying delays[J].Automatica,2010,46(2):466-470

[2] Chen J,Sun J,Liu G,et al.New delay dependent stability criteria for neural networks with time-varying interval delay[J].Physics Letters A,2010,374(43):4397-4405

[3] He Y,Wu M,She J,et al.Delay-dependent robust stability criteria for uncertain neutral systems with mixed delays[J].Systems and Control Letters,2004,51(1):57-65

[4] He Y,Wang Q,Lin C,et al.Augmented Lyapunov functional and delay-dependent stability criteria for neutral systems[J]. International Journal of Robust and Nonlinear Control,2005(15):923-933

[5] Shao H.New delay-dependent stability criteria for systems with interval delay[J].Automatica,2009,45(3):744-749

[6] Park P,Ko J,Jeong C.Reciprocally convex approach to stability of systems with time-varying delays[J].Automatica,2011, 47(1):235-238

[7] Seuret A.Wirtinger-based integral inequality:application to time-delay systems[J].Automatica,2013,49(9):2860-2866

[8] Han Q.Improved stability criteria and controller design for linear neutral systems[J].Automatica,2009,45(8):1948-1952

[9] Zheng M,Xiao W,Chen Q.Improved stability criteria for uncertain linear systems with interval time-varying delay[J].Journal of System Science Complex,2013,26:175-186

[10] Lam J,Gao H,Wang C.Stability analysis for continuous systems with two additive time-varying delay component[J].System and Control Letter,2007,56(1):16-24

[11] Gao H,Chen T,Lam J.A new delay system approach to network-based control[J].Automatica,2008,44(1):39-52

[12] Li P.Further results on delay-range-dependent stability with additive time-varying delay systems[J].ISA Transactions,2014, 53(2):258-266

[13] Ge X.Comments and an improved result on stability analysis for continuous system with additive time-varying delays:a less conservative result[J].Applied Mathematics and Computation,2014(241):42-46

[14] Shao H,Zhang Z.Delay-dependent state feedback stabilization for a networked control model with two additive input delays[J].Applied Mathematics and Computation,2015(265):748-758

Exponential stability analysis for a class of system with two-additive time-varying delays

HAN Yan-wu,TANG Hong-ji

(School of Science,Nantong University,Nantong 226019,China)

Deals with the exponential stability analysis of dynamic systems with two additive time-varying delay.By decomposing one delay interval into two subintervals which may be unequal,an appropriate Lyapunov-Krasovskii functional(LKF)is constructed whose each term is not positive definite while the the sum of each term is positive definite.The integral inequality method and the reciprocally convex technique are utilized to deal with the derivative of the LKF.The delay-dependent exponential stability criterion obtained from this method is expressed in terms of the linear matrix inequalities(LMIs).Anumerical example is used to show the effectiveness of this method.

additive time-varying delay;delay decomposing;exponential stability;reciprocally convex technique

1007-9831(2016)11-0001-05

O231

A

10.3969/j.issn.1007-9831.2016.11.001

2016-09-05

國(guó)家自然科學(xué)基金資助項(xiàng)目(61273013,61374061)

韓彥武(1977-),男,黑龍江依蘭人,講師,碩士,從事微分方程理論與應(yīng)用研究.E-mail:ntuhyw@163.com

猜你喜歡
充分條件時(shí)滯穩(wěn)定性
集合、充分條件與必要條件、量詞
一類k-Hessian方程解的存在性和漸近穩(wěn)定性
SBR改性瀝青的穩(wěn)定性評(píng)價(jià)
帶有時(shí)滯項(xiàng)的復(fù)Ginzburg-Landau方程的拉回吸引子
有限μM,D-正交指數(shù)函數(shù)系的一個(gè)充分條件
針對(duì)輸入時(shí)滯的橋式起重機(jī)魯棒控制
不確定時(shí)滯奇異攝動(dòng)系統(tǒng)的最優(yōu)故障估計(jì)
淺談充分條件與必要條件
半動(dòng)力系統(tǒng)中閉集的穩(wěn)定性和極限集映射的連續(xù)性
一類時(shí)滯Duffing微分方程同宿解的存在性