楊曉英
?
2個矩陣和的Drazin逆表達(dá)式
楊曉英
(四川信息職業(yè)技術(shù)學(xué)院 基礎(chǔ)教育部,四川 廣元 628017)
根據(jù)矩陣拆分的思想,利用Drazin逆的相關(guān)性質(zhì),給出了2個矩陣和在一定條件下Drazin逆的表示.
矩陣和;Drazin逆;矩陣指數(shù)
定義[1]343設(shè)表示階復(fù)矩陣的集合,,若滿足下列方程:,,,則稱為的Drazin逆,記作.其中:為的指數(shù).
矩陣的Drazin逆在奇異微分方程、迭代法和控制論中都有廣泛的應(yīng)用.近年來,關(guān)于矩陣和的Drazin逆的表示,許多學(xué)者在不同條件下做了討論[1-12].文獻(xiàn)[1]給出了,和,條件下的Drazin逆表達(dá)式;文獻(xiàn)[2]給出了,,和,,條件下的Drazin逆表達(dá)式;文獻(xiàn)[3]給出了,和,條件下的Drazin逆表達(dá)式;文獻(xiàn)[4]給出了,,條件下的Drazin逆表達(dá)式.在以上研究基礎(chǔ)上,本文給出,,和,,條件下的Drazin逆表達(dá)式,推廣了文獻(xiàn)[4]中的一些結(jié)果.
引理1[5]759設(shè),如果,,則.
引理2[1]352設(shè),如果,則.
由引理1可知
將式(3)代入式(2),結(jié)合式(1),結(jié)論顯然成立. 證畢.
由引理1可知
將式(6)代入式(5),結(jié)合式(4),結(jié)論顯然成立. 證畢.
推論[4]790設(shè),若,,,則.
推論是文獻(xiàn)[4]中的結(jié)果,是本文定理1的特例.
[1] Abdul S,Yang H,Ilyas A.The Drazin inverses of the sum two matrices and block matrix[J].Appl Math Informatics,2013(31): 343-352
[2] 白淑艷.體上兩個矩陣和的Drazin逆表達(dá)式及其應(yīng)用[D].哈爾濱:哈爾濱工程大學(xué),2012
[3] Martnez-Serrano M F,Castro-Gonzlez N.On the Drazin inverse of block matrices and generalized Schur complement[J].Appl Math Comput,2009(215):2733-2740
[4] 卜長江,王光輝,宋曉翠.廣義Schur補(bǔ)可逆的一些分塊矩陣的Drazin逆表示[J].哈爾濱工程大學(xué)學(xué)報,2012,33(6): 787-790
[5] Hartwig R E,Li X,Wei Y Y.Representations for the Drazin inverse of aBlock Matrix[J].SIAM J MATRIX ANAL APPL,2006(27):757-771
[6] Hartwig R E,Wang G,Wei Y Y.Some additive results on Drazin inverse[J].Linear Algebra Appl,2001(322):207-217
[7] Castro-Gonzalez N,Martínez-Serrano M F.Expressions for the g-Drazin Inverse of Additive Perturbed Elements in a Banach Algebra[J].Linear Algebra and Its Appl,2010,432(8):1885-1895
[8] Ben-Israel A,Greville T N E.Generalized Inverses:Theory and Applications[M].2nd ed.New York:Springer,2003
[9] Liu X,Xu L,Yu Y.The representations of the Drazin inverse of differences of two matrices[J].Appl Math Comput,2010 (216): 3652-3661
[10] Wei Y Y.Expressions for the Drazin inverse of ablock matrix[J].Linear Multilinear Algebra,1998(45):131-146
[11] Deng C Y.Generalized Drazin inverse of anti-triangular block matrices[J].Math Anal Appl,2010(368):1-8
[12] Meyer C D,Rose N J.The index and the Drazin inverse of block triangular matrices[J].SIAM J Appl Math,1977(33):1-7
The representations for the Drazin inverse of the sum of two matrices
YAYANG Xiao-ying
(Department of Basic Education,Sichuan Information Technology College,Guangyuan 628017,China)
According to thinking of matrix splitting,gave the representations for Drazin inverse of the sum of two matrices under certain condition by using the property of Drazin inverse.
sum of matrices;Drazin inverse;matrix index
1007-9831(2016)11-0006-03
O151.21
A
10.3969/j.issn.1007-9831.2016.11.002
2016-06-10
四川省教育廳自然科學(xué)基金項目(14ZB0442)
楊曉英(1984-),女,山西忻州人,講師,碩士,從事矩陣?yán)碚撆c應(yīng)用研究.E-mail:yangxiaoying266@163.com