趙曉晉,賀拴海,白鷺濤,朱 釗
長(zhǎng)安大學(xué)公路學(xué)院,舊橋檢測(cè)與加固技術(shù)交通行業(yè)重點(diǎn)實(shí)驗(yàn)室,陜西西安 710064
?
雙塔斜拉-連續(xù)梁組合體系的力學(xué)行為分析
趙曉晉,賀拴海,白鷺濤,朱釗
長(zhǎng)安大學(xué)公路學(xué)院,舊橋檢測(cè)與加固技術(shù)交通行業(yè)重點(diǎn)實(shí)驗(yàn)室,陜西西安 710064
對(duì)比雙塔斜拉-連續(xù)梁組合體系、雙塔斜拉-簡(jiǎn)支梁組合體系以及常規(guī)雙塔斜拉橋體系在恒載和活載作用下的響應(yīng)以及自振特性,分析雙塔斜拉-連續(xù)梁組合體系的優(yōu)缺點(diǎn). 結(jié)果顯示,斜拉-連續(xù)梁組合體系整體剛度大,結(jié)構(gòu)變形小,邊錨索不易疲勞破壞,但輔助墩頂主梁斷面在恒、活載作用下負(fù)彎矩大,需進(jìn)行特殊設(shè)計(jì);斜拉-連續(xù)梁組合體系較斜拉-簡(jiǎn)支梁組合體系自振頻率高,具有整體剛度強(qiáng)、結(jié)構(gòu)受力有利的優(yōu)點(diǎn),但易受地震等動(dòng)力作用的影響.
結(jié)構(gòu)工程;斜拉橋;斜拉-連續(xù)梁組合體系;力學(xué)行為;自振頻率;剛度;疲勞破壞;活載;港珠澳大橋;青州航道橋
橋梁發(fā)展至今,梁橋、拱橋、斜拉橋以及懸索橋等4種基本橋型體系已趨成熟,各體系均有其相應(yīng)的跨徑、抗震性適用范圍,超出范圍就不滿足經(jīng)濟(jì)、安全或穩(wěn)定的要求. 橋梁體系的組合與協(xié)作,恰好是解決這類問題的創(chuàng)新之作.
斜拉體系可與多種體系組合,在橋梁建設(shè)過程中,出現(xiàn)了斜拉橋與梁橋、剛構(gòu)橋的組合協(xié)作、與懸索橋的組合協(xié)作以及與拱橋的組合協(xié)作[1-2].斜拉橋與梁橋、剛構(gòu)橋的組合體系集中出現(xiàn)于20世紀(jì)八九十年代. 上海泖港大橋(1982年建成)[3]、四川三臺(tái)涪江橋(1980年建成)和委內(nèi)瑞拉馬拉開波橋(1962年建成)為雙塔中孔設(shè)簡(jiǎn)支掛孔的斜拉-簡(jiǎn)支梁橋組合體系;安徽銅陵長(zhǎng)江大橋(1995年建成)、山東濟(jì)南黃河大橋(1982年建成)、天津永和橋(1987年建成)、廣東海印大橋(1988年建成)[4]和法國(guó)Brotonne橋(1977年建成)[5]為雙塔邊跨連續(xù)梁的斜拉-連續(xù)梁橋組合體系;廣東肇慶金馬大橋(1999年建成)[6]為獨(dú)塔斜拉-剛構(gòu)橋組合體系.文獻(xiàn)[1-2,7]簡(jiǎn)要介紹了斜拉橋與梁橋組合體系的優(yōu)缺點(diǎn),文獻(xiàn)[8-14]對(duì)斜拉-剛構(gòu)組合體系進(jìn)行了整體靜動(dòng)力力學(xué)行為、局部受力行為研究. 在建的港珠澳大橋3個(gè)通航孔橋?yàn)樾崩?連續(xù)梁組合體系橋梁的代表[15-18]. 文獻(xiàn)[19]闡述了設(shè)計(jì)過程中考慮到相鄰非通航孔橋可為青州航道橋邊跨提供壓重,且無不利于全橋剛度之處,因此選擇了斜拉-連續(xù)梁組合體系,并計(jì)算了不同體系的活載撓度. 文獻(xiàn)[20-23]對(duì)其結(jié)構(gòu)設(shè)計(jì)方案進(jìn)行了研究.
本研究以在建的港珠澳大橋青州航道橋?yàn)楸尘?,從恒載和活載作用下結(jié)構(gòu)的受力和變形狀態(tài)以及自振特性的角度,通過對(duì)雙塔斜拉-連續(xù)梁組合體系、雙塔斜拉-簡(jiǎn)支梁組合體系及常規(guī)雙塔斜拉橋體系進(jìn)行比較,分析雙塔斜拉-連續(xù)梁組合體系的優(yōu)缺點(diǎn).
港珠澳大橋青州航道橋采用半漂浮體系,為雙塔扇形雙索面鋼箱梁斜拉橋,橋跨布置為110+236 +458+236+110=1 150 m. 中跨及次邊跨布設(shè)斜拉索,次邊跨懸臂吊裝施工至13節(jié)段,中跨懸臂吊裝施工至15節(jié)段;邊跨不布設(shè)斜拉索,整孔吊裝,并向次邊跨懸臂25.8 m. 索塔采用橫向H形框架,創(chuàng)新性采用“中國(guó)結(jié)”造型[24-25]作為上橫梁增加塔柱橫向剛度. 橋型整體布置見圖1. 根據(jù)設(shè)計(jì)圖紙要求,移動(dòng)荷載按現(xiàn)行《公路橋涵設(shè)計(jì)通用規(guī)范》(JTG D60—2004)[26]規(guī)定的汽車荷載提高25%用于設(shè)計(jì)計(jì)算.
采用Midas civil有限元軟件進(jìn)行總體分析. 主梁主要采用Q345鋼材,標(biāo)準(zhǔn)斷面如圖2所示;主塔采用C50混凝土,空心矩形斷面. 塔梁均以三維梁?jiǎn)卧M,共計(jì)727個(gè)單元. 斜拉索為平行鋼絲拉索,設(shè)計(jì)強(qiáng)度1 860 MPa,采用索單元(112個(gè))模擬.
圖1 港珠澳大橋青州航道橋整體布置圖Fig.1 General layout of Qingzhou channel bridge of Hongkong-Zhuhai-Macao bridge
圖2 港珠澳大橋青州航道鋼箱梁標(biāo)準(zhǔn)斷面圖Fig.2 Steel box girder standard section drawing of Qingzhou channel bridge of Hongkong-Zhuhai-Macao bridge
因常規(guī)雙塔三跨斜拉橋邊中跨比近似為0.4,即邊跨長(zhǎng)度小于中跨長(zhǎng)度一半,需增設(shè)邊跨配重以使恒載及中跨滿布活載作用下邊墩不產(chǎn)生負(fù)反力,
如圖3(a). 如引橋與邊跨主梁鉸接,則引橋恒載可替代配重,形成斜拉-簡(jiǎn)支梁組合體系,如圖3(b). 如引橋與邊跨主梁剛接,即梁體連續(xù),形成斜拉-連續(xù)梁組合體系,如圖3(c),則引橋除提供配重外,還改變了橋長(zhǎng)及約束體系.
圖3 不同結(jié)構(gòu)體系Fig.3 Different structural systems
背景工程輔助墩對(duì)應(yīng)主梁截面(簡(jiǎn)稱連接斷面)連接方式分別采用斷開、鉸接、連續(xù)以模擬圖3中的3種體系,進(jìn)行恒載作用下考慮相同懸臂施工過程的有限元分析計(jì)算,并進(jìn)行靜力對(duì)比分析.
因中跨懸臂吊裝施工節(jié)段多于次邊跨,不同體系成橋狀態(tài)總變形及內(nèi)力差值為邊跨合龍后中跨懸臂吊裝施工及中跨合龍后二期荷載作用產(chǎn)生的差值.
3.1撓度
對(duì)比3種體系考慮施工過程的成橋狀態(tài)懸臂吊裝施工節(jié)段撓度,如圖4. 由圖4可見,常規(guī)體系和斜拉-簡(jiǎn)支梁組合體系成橋狀態(tài)變形一致;斜拉-連續(xù)梁組合體系連接斷面提供彎曲約束,結(jié)構(gòu)整體剛度大,在恒載作用下,次邊跨下?lián)隙刃。锌缟瞎靶?
圖4 主梁成橋狀態(tài)總位移對(duì)比Fig.4 Comparison of displacements of main girders under completion state
3.2彎矩
對(duì)比3種體系考慮施工過程的成橋狀態(tài)懸臂吊裝施工節(jié)段彎矩,如圖5. 由圖5可見,不考慮塔根處彎矩,常規(guī)體系和斜拉-簡(jiǎn)支梁組合體系成橋狀態(tài)彎矩一致,僅中跨有局部負(fù)彎矩,邊跨最大正彎矩出現(xiàn)在11號(hào)節(jié)段向塔端,中跨最大正彎矩出現(xiàn)在8號(hào)節(jié)段向塔端;斜拉-連續(xù)梁組合體系在輔助墩處形成了較大負(fù)彎矩,邊跨和中跨最大正彎矩均出現(xiàn)在8號(hào)節(jié)段向塔端,其中邊跨最大正彎矩明顯小于常規(guī)體系和斜拉-簡(jiǎn)支梁組合體系,中跨正彎矩略小于常規(guī)體系和斜拉-簡(jiǎn)支梁組合體系.
圖5 主梁成橋狀態(tài)彎矩對(duì)比Fig.5 Comparison of moments of main girders under completion state
3.3索力
對(duì)比3種體系考慮施工過程的成橋狀態(tài)拉索索力,如圖6所示. 由圖6可見,常規(guī)體系和斜拉-簡(jiǎn)支梁組合體系成橋狀態(tài)索力一致, 邊跨S12~S14拉索索力小于斜拉-連續(xù)梁組合體系,S1~S11拉索索力大于斜拉-連續(xù)梁組合體系,主跨拉索索力與斜拉-連續(xù)梁組合體系基本相同.
圖6 成橋狀態(tài)拉索索力Fig.6 Bar diagram of cable force under completion state
3.4塔偏
常規(guī)體系、斜拉-簡(jiǎn)支梁組合體系和斜拉-連續(xù)梁組合體系考慮施工過程的成橋狀態(tài)塔頂偏位分別為偏邊跨407、407和267 mm.
根據(jù)對(duì)比結(jié)果,斜拉-簡(jiǎn)支梁組合體系與常規(guī)體系恒載作用下受力及變形狀態(tài)相同. 斜拉-連續(xù)梁組合體系因輔助墩頂處主梁連接斷面連續(xù),可提供彎曲約束,增大了結(jié)構(gòu)整體剛度,降低了各構(gòu)件變形;同時(shí),使邊跨長(zhǎng)索索力增大,進(jìn)而使中短索索力降低,但對(duì)中跨拉索索力影響小,可以忽略. 另外,恒載作用下連接斷面產(chǎn)生較大負(fù)彎矩,降低了邊跨正彎矩,使近輔助墩處次邊跨斷面出現(xiàn)上拱.
綜上所述,恒載作用下,斜拉-連續(xù)梁組合體系的優(yōu)點(diǎn)是整體剛度大,結(jié)構(gòu)變形??;缺點(diǎn)是輔助墩頂主梁斷面負(fù)彎矩大,邊錨索索力較大.
分別對(duì)背景工程采用如圖3的3種體系進(jìn)行中跨滿布活載作用下的有限元分析計(jì)算,并進(jìn)行靜力對(duì)比分析.
4.1撓度
對(duì)比3種體系中跨滿布活載作用下?lián)隙?,如圖7. 由圖7可見,常規(guī)體系和斜拉-簡(jiǎn)支梁組合體系活載撓度一致;斜拉-連續(xù)梁組合體系連接斷面連續(xù)為次邊跨主梁提供了彎曲約束,各斷面撓度均小于常規(guī)體系和斜拉-簡(jiǎn)支梁組合體系,常規(guī)體系、斜拉-簡(jiǎn)支梁組合體系與斜拉-連續(xù)梁組合體系次邊跨、主跨最大位移比分別為1.51和1.21.
圖7 主梁中跨滿布活載撓度對(duì)比Fig.7 Comparison of mid-span deflections of main girders under full live loads
4.2彎矩
對(duì)比3種體系中跨滿布活載作用下彎矩,如圖8. 由圖8可見,常規(guī)體系和斜拉-簡(jiǎn)支梁組合體系活載彎矩一致;斜拉-連續(xù)梁組合體系連接斷面連續(xù)為次邊跨主梁提供了彎曲約束,形成了輔助墩頂負(fù)彎矩并降低了其他斷面彎矩絕對(duì)值.
4.3索力
對(duì)比3種體系中跨滿布活載作用下拉索索力增量,如圖9. 由圖9可見,常規(guī)體系和斜拉-簡(jiǎn)支梁組合體系在中跨滿布活載作用下拉索索力增量相同. 結(jié)合圖6可知,針對(duì)比較突出的邊錨索疲勞問題,斜拉-連續(xù)梁組合體系邊錨索恒載作用下索力大,中跨滿布活載作用下拉索索力增量小,恒活載作用下應(yīng)力比更接近1,較其他兩體系不易發(fā)生疲勞破壞.
圖8 主梁中跨滿布活載彎矩對(duì)比Fig.8 Comparison of mid-span moments of main girders under full live loads
圖9 中跨滿布活載拉索索力增量Fig.9 Cable force increment of mid-span under full live loads
4.4塔偏
常規(guī)體系、斜拉-簡(jiǎn)支梁組合體系和斜拉-連續(xù)梁組合體系中跨滿布活載作用下塔頂偏位分別為偏邊跨274、274和224 mm.
根據(jù)對(duì)比結(jié)果,斜拉-連續(xù)梁組合體系因輔助墩頂處主梁連接斷面連續(xù),可提供彎曲約束,增大了結(jié)構(gòu)整體剛度,降低了各構(gòu)件中跨滿布活載作用下的變形;同時(shí),邊跨長(zhǎng)索索力增量減小,進(jìn)而使中短索索力增量增大,中跨長(zhǎng)索索力增量增大. 斜拉-簡(jiǎn)支梁組合體系與常規(guī)體系活載作用下受力及變形狀態(tài)相同.
綜上所述,中跨滿布活載作用下,斜拉-連續(xù)梁組合體系的優(yōu)點(diǎn)是整體剛度大,結(jié)構(gòu)變形小,邊錨索索力變化小,不易發(fā)生疲勞破壞;缺點(diǎn)是輔助墩墩頂主梁斷面負(fù)彎矩進(jìn)一步加大.
利用有限元法將結(jié)構(gòu)離散為具有有限個(gè)自由度的計(jì)算模型. 由于阻尼對(duì)結(jié)構(gòu)自振特性的影響較小,因此在求解結(jié)構(gòu)的自振頻率和振型時(shí),通??梢院雎宰枘岬挠绊? 假設(shè)結(jié)構(gòu)具有n個(gè)自由度,那么該體系的自振可表示為
Mü(t)+KU(t)=0
(1)
其中, M為結(jié)構(gòu)總質(zhì)量矩陣; K為結(jié)構(gòu)總剛度矩陣; U(t)為結(jié)構(gòu)體系節(jié)點(diǎn)位移矢量.
與式(1)n個(gè)自由度的振動(dòng)模型相對(duì)應(yīng)的特征方程可表示為
(K-ω2M)U=0
(2)
其中, ω為結(jié)構(gòu)的固有頻率. 因?yàn)槲灰剖侨我獾模蕬?yīng)滿足
(3)
式(3)為特征值方程,通常采用子空間迭代法即可求出結(jié)構(gòu)的自振頻率和相應(yīng)振型[27].
對(duì)斜拉-簡(jiǎn)支梁組合體系與斜拉-連續(xù)兩組合體系進(jìn)行振動(dòng)模態(tài)分析計(jì)算,前4階豎彎模態(tài)及振型如圖10所示. 由圖10可見,振型相似時(shí)兩種體系各階豎彎自振頻率接近,但呈現(xiàn)出斜拉-連續(xù)梁組合體系均大于斜拉-簡(jiǎn)支梁組合體系的現(xiàn)象. 表明了斜拉-連續(xù)梁組合體系較斜拉-簡(jiǎn)支梁組合體系具有整體剛度強(qiáng),結(jié)構(gòu)受力有利的優(yōu)點(diǎn),但易受地震等動(dòng)力作用的影響.
圖10 豎彎頻率對(duì)比Fig.10 (Color online) Comparison of vertical bending frequency
綜上研究可知:
1)斜拉-連續(xù)梁組合體系整體剛度大,結(jié)構(gòu)變形小,邊錨索不易發(fā)生疲勞破壞;但輔助墩頂主梁斷面在恒載和活載作用下負(fù)彎矩大,需特殊設(shè)計(jì).
2)斜拉-連續(xù)梁組合體系較斜拉-簡(jiǎn)支梁組合體系自振頻率高,具有整體剛度強(qiáng),結(jié)構(gòu)受力有利的優(yōu)點(diǎn),但易受地震等動(dòng)力作用的影響.
3)斜拉-簡(jiǎn)直梁組合體系與常規(guī)體系受力及變形狀態(tài)相同,僅節(jié)省了輔助墩配重.
/
[1] 肖汝成. 橋梁結(jié)構(gòu)體系[M]. 北京:人民交通出版社,2013.
Xiao Rucheng. Bridge structural systems[M]. Beijing:China Communications Press,2013.(in Chinese)
[2] 劉士林,王似舜. 斜拉橋設(shè)計(jì)[M]. 北京:人民交通出版社,2006.
Liu Shilin,Wang Sishun. Design of cable stayed bridges[M]. Beijing: China Communications Press,2006.(in Chinese)
[3] 王浩,馬骉,李小祥. 葉新公路泖港大橋拆除重建與頂升保留方案研究[J]. 城市道橋與防洪,2014,187(11):72-76.
Wang Hao,Ma Biao,Li Xiaoxiang. Rebuild construction after demolishing and jack-up retention plan research of Maogang bridge on Yexin highway[J].Urban Roads Bridges and Flood Control,2014,187(11):72-76.(in Chinese)
[4] 胡朝輝,程儉廷. 雙塔單索面斜拉橋自振特性測(cè)試及分析[J]. 低溫建筑技術(shù),2016,38(4):113-115.
Hu Chaohui,Chen Jianting. Vibration characteristics test and analysis of double pylons bridges with single cable plane[J].Low Temperature Architecture Technology,2016,38(4):113-115.(in Chinese)
[5] 沈惠申,王宇新. 斜拉橋主梁靜動(dòng)力可靠性分析[J]. 中國(guó)公路學(xué)報(bào),1996,9(1):59-65.
Shen Huishen,Wang Yuxin. Static and dynamic reliability analysis of girders of cable-stayed bridges[J]. China Journal of Highway and Transport,1996,9(1):59-65.(in Chinese)
[6] 余報(bào)楚,張哲,張洪金. 金馬大橋主梁橫隔板受力分析與預(yù)應(yīng)力施工技術(shù)[J]. 公路交通科技,2006,23(1): 82-85.
Yu Baochu,Zhang Zhe,Zhang Hongjin. Prestressed construction technology and stress analysis of diaphragm in Jinma bridge[J]. Journal of Highway and Transportation Research and Development,2006,23(1): 82-85.(in Chinese)
[7] 樓莊鴻. 斜拉橋與其他橋型組合體系橋[C]// 中國(guó)公路學(xué)會(huì)橋梁和結(jié)構(gòu)工程分會(huì)2004年全國(guó)橋梁學(xué)術(shù)會(huì)議論文集. 北京:人民交通出版社,2004:279-285.
Lou Zhuanghong. Combined system bridge of cable-stayed bridge and other system[C]// Journal of Highway and Transportation Research and Development. Beijing:China Communications Press,2004:279-285.(in Chinese)
[8] 萬其柏. 斜拉-剛構(gòu)協(xié)作體系橋的靜力特性研究[D]. 大連:大連理工大學(xué),2010:56-123.
Wan Qibai. Research on static characteristics of cooperative cable-stayed and rigid frame system bridge[D].Dalian:Dalian University of Technology,2010:56-123.(in Chinese)
[9] 楊朝龍. 獨(dú)塔斜拉-剛構(gòu)組合體系橋結(jié)構(gòu)行為研究[D]. 成都:西南交通大學(xué),2015:60-75.
Yang Chaolong. Study on structure behavior of single pylon cable-stayed bridge combined with continuous rigid frame[D].Chengdu:Southwest Jiaotong University,2015:60-75.(in Chinese)
[10] 崔同松. 大跨徑斜拉-剛構(gòu)組合體系橋地震響應(yīng)分析[D]. 西安:長(zhǎng)安大學(xué),2013:29-68.
Cui Tongsong. Seismic response analysis of long-span cable-stayed combination with rigid-framed system bridge[D]. Xi’an:Chang’an University,2013:29-68.(in Chinese)
[11] 曾要爭(zhēng),喻梅. 大跨度獨(dú)塔連續(xù)剛構(gòu)斜拉橋抗風(fēng)性能研究[J]. 公路交通技術(shù),2015,31(6):55-59.
Zeng Yaozheng,Yu Mei. Research on wind resistance of large-span single-tower continuous steel structure cable-stayed bridges[J].Technology of Highway and Transport,2015,31(6):55-59.(in Chinese)
[12] 尹邦武,苗永抗,郭向榮. 斜拉-連續(xù)剛構(gòu)組合梁橋車-橋耦合動(dòng)力響應(yīng)分析[J]. 鐵道科學(xué)與工程學(xué)報(bào),2013,10(2):11-17.
Yin Bangwu,Miao Yongkang,Guo Xiangrong. The vehicle-bridge coupling dynamic analysis of cable-stayed and continuous rigid-frame composite beam bridge[J]. Journal of Railway Science and Engineering,2013,10(2):11-17.(in Chinese)
[13] 馮東明,李愛群,李建慧,等. 獨(dú)塔斜拉與連續(xù)剛構(gòu)組合橋梁動(dòng)力特性及參數(shù)影響分析[J]. 重慶交通大學(xué)學(xué)報(bào)自然科學(xué)版,2010,29(3):329-332.
Feng Dongming,Li Aiqun,Li Jianhui,et al. Research on dynamic behavior and parameter influence of single pylon cable-stayed and continuous rigid-frame composite bridge[J]. Journal of Chongqing Jiaotong University Natural Science,2010,29(3):329-332.(in Chinese)
[14] 包杰. 獨(dú)塔斜拉連續(xù)剛構(gòu)組合橋局部受力行為分析與施工控制[D]. 成都:西南交通大學(xué),2012:44-64.
Bao Jie. Analysis of local mechcanic behavior and construction control of single tower cable-stayed bridge combinated with continuous rigid frame[D]. Chengdu:Southwest Jiaotong University,2012:44-64.(in Chinese)
[15] 高文博,張鳴功,樸瀧. 港珠澳大橋江海直達(dá)船航道橋整體式鋼塔制造技術(shù)[J]. 橋梁建設(shè),2016,46(2):7-12.
Gao Wenbo,Zhang Minggong,Piao Long. Manufacturing techniques for integral steel pylon of river-to-sea ship channel bridge of Hongkong-Zhuhai-Macao bridge[J]. Bridge construction, 2016,46(2):7-12.(in Chinese)
[16] 盧志君. 港珠澳大橋索塔模塊化吊裝設(shè)備設(shè)計(jì)與分析[D]. 大連:大連交通大學(xué),2015:1-3.
Lu Zhijun. Hongkong-Zhuhai-Macao bridge tower modular lifting equipment design and analysis[D]. Dalian:Dalian Jiaotong University,2015:1-3.(in Chinese)
[17] 楊帥. 三塔鋼箱梁斜拉橋施工控制關(guān)鍵技術(shù)及其參數(shù)敏感性研究[D]. 廣州:華南理工大學(xué),2015:6-15.
Yang Shuai. Research on the key technologies of linear control and parameter sensitivity of steel box girder cable-stayed bridge with three pylons[D]. Guangzhou:South China University of Technology,2015:6-15.(in Chinese)
[18] 王紫超. 九州航道橋主塔柱垂直轉(zhuǎn)體安裝工藝[J]. 施工技術(shù),2015,44(4):85-88.
Wang Zichao. Installation technology of the main tower with vertical swivel method for Jiuzhou channel brifge[J]. Construction Technology,2015,44(4):85-88.(in Chinese)
[19] 劉明虎, 孟凡超, 李國(guó)亮. 港珠澳大橋青州航道橋工程特點(diǎn)及關(guān)鍵技術(shù)[J]. 橋梁建設(shè),2013,43(4):87-93.
Liu Minghu,Meng Fanchao,Li Guoliang. Engineering characteristics and key techniques of Qingzhou ship channel bridge of Honghong-Zhuhai-Macao bridge[J]. Bridge Construction, 2013,43(4):87-93.(in Chinese)
[20] 劉明虎,孟凡超. 港珠澳大橋青州航道橋結(jié)構(gòu)設(shè)計(jì)方案研究[J]. 中外公路,2014,34(1):148-153.
Liu Minghu,Meng Fanchao. Study on structure design program of Qingzhou ship channel bridge of Hongkong-Zhuhai-Macao bridge[J]. Journal of China & Foreign Highway,2014,34(1):148-153.(in Chinese)
[21] 劉明虎,孟凡超,李國(guó)亮,等. 港珠澳大橋青州航道橋設(shè)計(jì)[J]. 公路,2014,59(1):44-51.
Liu Minghu,Meng Fanchao,Li Guoliang,et al. Design of Qingzhou ship channel bridge of Hongkong-Zhuhai-Macao bridge[J].Highway,2014,59(1):44-51.(in Chinese)
[22] 劉明虎,李貞新,李國(guó)亮. 港珠澳大橋青州航道橋結(jié)構(gòu)約束體系研究與設(shè)計(jì)[J]. 橋梁建設(shè),2013, 43(6):76-81.
Liu Minghu,Li Zhenxin,Li Guoliang. Study and design of structural restraint systems for Qingzhou ship channel bridge of Hongkong-Zhuhai-Macao bridge[J]. Bridge Construction,2013,43(6):76-81.(in Chinese)
[23] 劉明虎,薛花娟. 港珠澳大橋超高強(qiáng)度平行鋼絲斜拉索設(shè)計(jì)與技術(shù)研究[J]. 橋梁建設(shè),2014,44(5):88-93.
Liu Minghu,Xue Huajuan. Design and technological study of super high strength parallel steel wire cables for Hongkong-Zhuhai-Macao bridge[J]. Bridge Construction,2014,44(5):88-93.(in Chinese)
[24] 劉明虎,孫鵬,胡廣瑞,等. 港珠澳大橋青州航道橋“中國(guó)結(jié)”形鋼剪刀撐設(shè)計(jì)與施工[J]. 橋梁建設(shè),2016,46(1):81-87.
Liu Minghu,Sun Peng,Hu Guangrui,et al. Design and construction of “Chinese knot” style steel cross bracing for pylon of Qingzhou ship channel bridge of Hongkong-Zhuhai-Macao bridge[J]. Bridge Construction,2016,46(1):81-87.(in Chinese)
[25] 王堯,李國(guó)亮. 港珠澳大橋青州航道橋結(jié)形撐的設(shè)計(jì)歷程及質(zhì)量要點(diǎn)[J]. 公路,2015,60(8):115-119.
Wang Yao,Li Guoliang. “Chinese Knot” style steel cross design process and key points for quality of Qingzhou ship channel bridge of Hongkong-Zhuhai-Macao bridge[J]. Highway,2015,60(8):115-119.(in Chinese)
[26] JTG D60—2004 公路橋涵設(shè)計(jì)通用規(guī)范[S].
JTG D60—2004 General specifications for design of highway bridges and culverts[S].(in Chinese)
[27] 劉榮桂,郭青,陳蓓,等. 幾何非線性效應(yīng)下的CFRP索斜拉橋動(dòng)力特性[J]. 長(zhǎng)安大學(xué)學(xué)報(bào)自然科學(xué)版,2014,34(2):59-64.
Liu Ronggui,Guo Qing,Chen Bei,et al. CFRP cable-stayed bridge’s dynamic properities with geometric nonlinear effect considered[J]. Journal of Chang’an University Natural Science Edition,2014,34(2):59-64.(in Chinese)
【中文責(zé)編:坪梓;英文責(zé)編:之聿】
2016-05-11;Accepted:2016-07-01
Mechanical behavior analysis of double-pylon cable-stayed-continuous beam combination system
Zhao Xiaojin, He Shuanhai?, Bai Lutao, and Zhu Zhao
Highway College, Key Laboratory of Bridge Detection Reinforcement Technology Ministry of Communication, Chang’an University, Xi’an 710064, Shaanxi Province, P.R.China
We analyze the advantages and disadvantages of the cable-stayed-continuous beam combination system, by comparisons of the natural vibration characteristics and the responses under dead and live loads of double-pylon cable-stayed-continuous beam combination system, double-pylon cable-stayed-simply-supported beam combination system and common double-pylon cable-stayed bridge system. The results show that cable-stayed-continuous beam combination system has the greatest stiffness, a structure with the least deformation, and side calbles with the least probability of failing by fatigue. While the cross section of the main girder at the top of the auxiliary pier has an excessively big negative moments under the dead and live loads, thus the specific redesign is required. Compared with cable-stayed-single-supported beam combination system, cable-stayed-continuous beam combination system has a higher natural frequency, a stronger stiffness of the whole structure, and a better mechanical performance, but it is more susceptible to dynamical effects such as earthquake.
structural engineering; cable-stayed bridge; cable-stayed-continuous beam combination system; mechanical behavior; natural frequency; stiffness; fatigue failure; live loads; Hongkong-Zhuhai-Macao bridge; Qingzhou channel bridge
Zhao Xiaojin,He Shuanhai,Bai Lutao,et al.Mechanical behavior analysis of double-pylon cable-stayed-continuous beam combination system[J]. Journal of Shenzhen University Science and Engineering, 2016, 33(5): 492-500.(in Chinese)
U 442;U 448.27
Adoi:10.3724/SP.J.1249.2016.05492
陜西省自然科學(xué)基金資助項(xiàng)目(2016JM5030)
趙曉晉(1989—),男,長(zhǎng)安大學(xué)博士研究生.研究方向:橋梁結(jié)構(gòu)體系.E-mail:418336067@qq.com
Foundation:Natural Science Foundation of Shaanxi Province(2016JM5030)
? Corresponding author:Professior He Shuanhai. E-mail:heshai@chd.edu.cn
引文:趙曉晉,賀拴海,白鷺濤,等.雙塔斜拉-連續(xù)梁組合體系的力學(xué)行為分析[J]. 深圳大學(xué)學(xué)報(bào)理工版,2016,33(5):492-500.