楊金龍
中圖分類號(hào):G623.5 文獻(xiàn)標(biāo)識(shí)碼:B 文章編號(hào):1672-1578(2016)07-0217-01
《義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)(2011年版)》把"雙基"改為"四基",新提出了基本思想、基本活動(dòng)經(jīng)驗(yàn),更加系統(tǒng)、精準(zhǔn)的詮釋了三維目標(biāo)要求。那么什么是數(shù)學(xué)基本思想?有哪些基本思想?下面結(jié)合個(gè)人對(duì)課標(biāo)的理解和課堂教學(xué)實(shí)踐的心得,淺談一下數(shù)學(xué)基本思想在課堂教學(xué)中的意義。
數(shù)學(xué)思想,是指人們對(duì)數(shù)學(xué)理論與內(nèi)容的本質(zhì)認(rèn)識(shí),是從某些具體數(shù)學(xué)認(rèn)識(shí)過程中提煉出的一些觀點(diǎn)。數(shù)學(xué)方法,就是解決數(shù)學(xué)問題的方法,即解決數(shù)學(xué)具體問題時(shí)所采用的方式、途徑和手段,也可以說是解決數(shù)學(xué)問題的策略。
史寧中教授指出:基本數(shù)學(xué)思想不應(yīng)當(dāng)是個(gè)案的,而必須是一般的。這大概需要滿足兩個(gè)條件:一是數(shù)學(xué)產(chǎn)生以及數(shù)學(xué)發(fā)展過程中所必須依賴的那些思想。二是學(xué)習(xí)過數(shù)學(xué)的人所具有的思維特征。這些特征表現(xiàn)在日常的生活之中。這就可以歸納為三種基本思想,即抽象、推理和模型。
抽象、推理和模型是數(shù)學(xué)的基本思想,是最高層面的思想,在實(shí)踐中又派生出很多與具體內(nèi)容結(jié)合的具體思想。在小學(xué)階段,具體數(shù)學(xué)思想主要有符號(hào)化思想、化歸思想、分類思想、方程思想、集合思想、數(shù)形結(jié)合思想、統(tǒng)計(jì)與概率思想等等。
1.符號(hào)化思想
西方較早地在數(shù)學(xué)研究中引進(jìn)了符號(hào),十六世紀(jì)數(shù)學(xué)家韋達(dá)對(duì)數(shù)學(xué)符號(hào)作了很多改進(jìn),并且第一個(gè)有意識(shí)地系統(tǒng)地用字母表示已知數(shù)、未知數(shù)及其乘冪,帶來了代數(shù)學(xué)研究的重大拓展,奠定了符號(hào)代數(shù)的基礎(chǔ)。用符號(hào)化的語言(包括字母、數(shù)字、圖形和各種特定的符號(hào))來描述數(shù)學(xué)的內(nèi)容,這就是符號(hào)思想。在數(shù)學(xué)中各種量的關(guān)系,量的變化以及量與量之間進(jìn)行推導(dǎo)和演算,都是用小小的字母表示數(shù),以符號(hào)的濃縮形式來表達(dá)大量的信息,如乘法分配律(a+b)×c=a×c+b×c,這里的a、b、c不僅可以表示1、2、3,也可以表示4、5、6、7……長(zhǎng)方形的面積計(jì)算公式s=a×b,不管世界上有多少個(gè)不同的長(zhǎng)方形,都可用它計(jì)算出來。這種用符號(hào)來體現(xiàn)的數(shù)學(xué)語言是世界性語言,是一個(gè)人數(shù)學(xué)素養(yǎng)的綜合反映。
2.化歸思想
2.1 化歸思想的概念。人們面對(duì)數(shù)學(xué)問題,如果直接應(yīng)用已有知識(shí)不能或不易解決該問題時(shí),往往需要解決的問題不斷轉(zhuǎn)化形式,把它歸結(jié)為能夠解決或比較容易解決的問題,最終使原問題得到解決,這種思想方法稱為化歸(轉(zhuǎn)化)思想。
2.2 化歸所遵循的原則?;瘹w思想的實(shí)質(zhì)就是在已有的簡(jiǎn)單的、具體的、基本的知識(shí)的基礎(chǔ)上,把未知化為已知、把復(fù)雜化為簡(jiǎn)單、把一般化為特殊、把抽象化為具體、把非常規(guī)劃為常規(guī),從而解決各種問題。
2.3 分類思想。數(shù)學(xué)中每一個(gè)概念都有其特有的本質(zhì)特征,它又是按照一定的規(guī)律擴(kuò)展變化的,它們之間都存在著質(zhì)變到量變的關(guān)系。要正確的認(rèn)識(shí)這些概念,就需要具體的概念依據(jù)具體的標(biāo)準(zhǔn)具體分析,這就是數(shù)學(xué)的分類思想,是指按某種標(biāo)準(zhǔn),將研究地?cái)?shù)學(xué)對(duì)象分成若干部分進(jìn)行分析研究。
一般我們分類時(shí)要求滿足互斥,無遺漏、最簡(jiǎn)便的原則。如整數(shù)以能否被2整除為例,可分為奇數(shù)和偶數(shù);若以自然數(shù)的約數(shù)個(gè)數(shù)來分類,則可分為質(zhì)數(shù)、合數(shù)和1。幾何圖形中的分類更常見,如學(xué)習(xí)"角的分類"時(shí),涉及到許多概念,而這些概念之間的關(guān)系滲透著量變到質(zhì)變的規(guī)律。不同的分類標(biāo)準(zhǔn)會(huì)有不同的分類結(jié)果,從而產(chǎn)生新的數(shù)學(xué)概念和數(shù)學(xué)知識(shí)的結(jié)構(gòu)。 由于分類討論,一則在學(xué)習(xí)數(shù)學(xué)的過程中,學(xué)生潛移默化地受到了辨證唯物主義思想的啟蒙教育;又一則對(duì)學(xué)生能力有明顯的區(qū)別功能,再加上現(xiàn)實(shí)世界需要分類研究的普遍性,作為一種數(shù)學(xué)思想必然會(huì)引起人們的重視。
2.4 方程和函數(shù)思想。在已知數(shù)與未知數(shù)之間建立一個(gè)等式,把生活語言"翻譯"成代數(shù)語言的過程就是方程思想。在小學(xué)階段,學(xué)生在解應(yīng)用題時(shí)仍停留在小學(xué)算術(shù)的方法上,一時(shí)還不能接受方程思想,因?yàn)樵谒闱蠼忸}時(shí),只允許具體的已知數(shù)參加運(yùn)算,算術(shù)的結(jié)果就是要求未知數(shù)的解,在算術(shù)解題過程中最大的弱點(diǎn)是未知數(shù)不允許作為運(yùn)算對(duì)象,這也是算術(shù)的致命傷。而在代數(shù)中未知數(shù)和已知數(shù)一樣有權(quán)參加運(yùn)算,用字母表示的未知數(shù)不是消極地被動(dòng)地靜止在等式一邊,而是和已知數(shù)一樣,接受和執(zhí)行各種運(yùn)算,可以從等式的一邊移到另一邊,使已知與未知之間的數(shù)學(xué)關(guān)系十分清晰。數(shù)學(xué)思想是現(xiàn)實(shí)世界數(shù)量關(guān)系深入研究的必然產(chǎn)物,對(duì)于變量的重要性,恩格斯在自然辯證法一書有關(guān)"數(shù)學(xué)"的論述中已闡述得非常明確:"數(shù)學(xué)中的轉(zhuǎn)折點(diǎn)是笛卡兒的變數(shù),有了變數(shù),運(yùn)動(dòng)進(jìn)入了數(shù)學(xué);有了變數(shù),辨證法進(jìn)入了數(shù)學(xué);有了變數(shù),微分與積分也立刻成為必要的了。"數(shù)學(xué)思想本質(zhì)地辨證地反映了數(shù)量關(guān)系的變化規(guī)律,是近代數(shù)學(xué)發(fā)生和發(fā)展的重要基礎(chǔ)。
2.5 集合思想。集合的概念把指定的具有某種性質(zhì)的事物看作一個(gè)整體,就是一個(gè)集合(簡(jiǎn)稱集),其中每個(gè)事物叫做該集合的元素(簡(jiǎn)稱元)。給定的集合,它的元素必須是確定的,即任何一個(gè)事物是否屬于這個(gè)集合是明確的。如"學(xué)習(xí)成績(jī)好的同學(xué)"不能構(gòu)成一個(gè)集合,因?yàn)闃?gòu)成它的元素是不確定的;而"語文和數(shù)學(xué)的平均成績(jī)?cè)?0分及以上的同學(xué)"就是一個(gè)集合。一個(gè)給定集合中的元素是互不相同的,即集合中的元素不重復(fù)出現(xiàn)。只要兩個(gè)集合的元素完全相同,就說這兩個(gè)集合相等。
2.6 數(shù)形結(jié)合思想。數(shù)和形是數(shù)學(xué)研究的兩個(gè)主要對(duì)象,數(shù)離不開形,形離不開數(shù),一方面抽象的數(shù)學(xué)概念,復(fù)雜的數(shù)量關(guān)系,借助圖形使之直觀化、形象化、簡(jiǎn)單化。另一方面復(fù)雜的形體可以用簡(jiǎn)單的數(shù)量關(guān)系表示。在解應(yīng)用題中常常借助線段圖的直觀幫助分析數(shù)量關(guān)系。
2.7 統(tǒng)計(jì)思想。小學(xué)數(shù)學(xué)中的統(tǒng)計(jì)圖表是一些基本的統(tǒng)計(jì)方法,求平均數(shù)應(yīng)用題是體現(xiàn)出數(shù)據(jù)處理的思想方法。
我們廣大小學(xué)數(shù)學(xué)教師要做教學(xué)有心人,有意滲透,有意點(diǎn)撥,重視數(shù)學(xué)史的滲透,重視課堂教學(xué)小結(jié),要以適應(yīng)小學(xué)生年齡特點(diǎn)的大眾化、生活化方式呈現(xiàn)教學(xué)內(nèi)容,讓學(xué)生通過現(xiàn)實(shí)活動(dòng),主動(dòng)參與、自主探究,學(xué)會(huì)用數(shù)學(xué)思維方法提出問題、分析問題、解決問題,從而讓學(xué)生的數(shù)學(xué)思維能力得到切實(shí)、有效地發(fā)展,進(jìn)而提高全民族的數(shù)學(xué)文化素養(yǎng)。
我們要以數(shù)學(xué)思想方法為引領(lǐng)分析問題,解決問題,在解決問題的過程中,經(jīng)過反思、感悟,逐漸提升對(duì)數(shù)學(xué)思想的認(rèn)識(shí)。