国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

One-pot synthesis of novel 6-chloro substituted 2-(phenoxymethyl) quinoline-3-carboxylic acid derivatives

2016-10-25 07:07FUXinboGAOWentaoLIYangWANGDongfangZHAOYanan
化學(xué)研究 2016年5期
關(guān)鍵詞:李陽(yáng)喹啉甲酸

FU Xinbo, GAO Wentao, LI Yang, WANG Dongfang, ZHAO Ya’nan

(Institute of Superfine Chemicals, Bohai University, Jinzhou 121000, Liaoning, China)

?

One-pot synthesis of novel 6-chloro substituted 2-(phenoxymethyl) quinoline-3-carboxylic acid derivatives

FU Xinbo, GAO Wentao*, LI Yang, WANG Dongfang, ZHAO Ya’nan

(InstituteofSuperfineChemicals,BohaiUniversity,Jinzhou121000,Liaoning,China)

Ethyl 6-chloro-2-(chloromethyl)quinoline-3-carboxylate (1) as a starting compound was subjected to the reaction with various substituted phenols 2a-o by using K2CO3as acid-binding agent and MeCN as solvent by one-pot to obtain corresponding 6-chloro-2-(phenoxymethyl)quinoline-3-carboxylic acid derivatives 3a-o, with containing chlorine atom in quinoline ring. The structure of the synthesized compounds 3a-o was characterized by IR,1H NMR,13C NMR and HRMS.

chlorine atom; phenoxymethyl; quinoline-carboxylic acid; one-pot; synthesis

Article ID: 1008-1011(2016)05-0578-09

Quinoline ring is a back-bone of many natural products and pharmacologically significant compounds displaying a broad range of biological properties[1-2]. Many functionalized quinolines are widely used as antimalarial[3-5], antibacterial[6-9], anti-inflammatory[10-12], anti-tumor[13-15]activities. In addition, quinoline skeleton is also used for the design of many synthetic compounds with diverse pharmacological properties. Indeed, the synthesis of new quinoline derivatives and the development of new synthetic methods would be of considerable importance. In this regard, our research group have reported the synthesis of aryloxymethylquinoline -3-carboxylate derivatives from the reaction between ethyl 2-halomethylquinoline-3-carboxylates and various substituted phenols[16-19].

As well known, halogen substituted quinoline derivatives are important heterocyclic compounds. Because the introduction of halogen atom to quinoline compounds can enhance greatly their biological activity, many synthetic efforts have been made to halogen substituted quinoline derivatives widely applied in the design and discovery of novel bioactive molecules and drugs. 6-Bromoquinoline is widely used in the synthesis of special pharmaceutical intermediates, such as anticancer drugs of reinforcing agent, receptor tyrosine kinase inhibitor and cardiotonic[20]. 3,7-Dichloroquinoline-8-carboxylic acid is a common herbicide, and has good herbicidal effect with long residual period[21]. 4,5,7-Trichloroquinoline is an important pharmaceutical intermediate with antimalarial activity[22]. ZHU et al[23]reported that the response rate of iodoquinoline azo reagent is higher than corresponding bromoquinoline azo reagent as well as unsubstituted quinoline azo reagent. SINGH et al[24]reported 2-chloroquinoline-3-carbonitrile can be used as an interme-diate to obtain more complex quinoline compounds with biological activity.

In order to synthesize structurally novel halogen substituted quinoline compounds with higher biological activities, herein, we report a facile synthesis of halogen substituted phenoxymethylquinoline compounds, i.e., 6-chloro-2-(phenoxymethyl)quinoline-3-carboxylic acid derivatives by the reaction of ethyl 6-chloro-2-(chloromethyl)quinoline-3-carboxylate with phenols.

1 Experimental section

1.1Instruments and reagents

Melting points were determined by using WRS-1B melting points apparatus and were uncorrected. IR spectra of the compounds in KBr pellets were obtained in the range of 400-4 000 cm-1on a Nicolet AVAR 360 FT-IR spectrophotometer.1H (400 MHz) and13C (100 MHz) NMR spectra were recorded on an Agilent1100 using DMSO-d6as the solvent. The reported chemical shifts (δvalues) were given in part per million downfield from tetramethylsilane (TMS) as the internal standard. HRMS spectra was obtained on an Apex Ⅲ (7.0T) FTICR. The progress of reactions was monitored by thin-layer chromatography (TLC) on silica gel GF254 using petroleum ether/ethyl acetate (3:1) as eluent.

All reagents are commercially available for analytical reagent or chemically reagent.

1.2Preparation of ethyl 6-chloro-2-(chloromethyl)quinoline-3-carboxylate

Ethyl 6-chloro-2-(chloromethyl)quinoline-3-carboxylate was prepared according a reference [25], yield 79%, m.p. 126.3-126.6 ℃ (lit[25]: yield 82%, m.p. 122-123 ℃).

1.3Synthesis of 6-chloro-2-(phenoxymethyl)quinoline-3-carboxylic acid derivatives

A mixture of ethyl 6-chloro-2-(chloromethyl) quinoline-3-carboxylate (1) (0.284 g, 1.0 mmol), substituted phenols 2a-o (1.1 mmol) and K2CO3(0.414 g, 3.0 mmol) was stirred in CH3CN (12 mL) under reflux. After completion of the reaction (monitored by TLC), CH3CN was evaporated. Then, a solution of 2.000 g KOH in 80% ethanol (15 mL) was added to the residue, and the mixture was heated under reflux for 4 h, cooled, and acidified with 1 mol/L HCl solution. The resulting crude product was recrystallized from ethanol to afford pure compounds 3a-o.

6-Chloro-2-(phenoxymethyl)quinoline-3-carboxylic acid (3a): light yellow solid, yield: 84.2%,m.p.: 183.3-184.5 ℃; IR (KBr,υ, cm-1): 3 429, 3 079, 2 913, 2 538, 2 360, 1 933, 1 710, 1 494, 1 227, 940, 838, 762, 698;1H NMR (400 MHz, DMSO-d6):δ13.59 (s, 1H), 8.89 (s, 1H), 8.31 (s, 1H), 8.06 (d,J= 9.0 Hz, 1H), 7.88 (d,J= 8.9 Hz, 1H), 7.29 (t,J= 7.7 Hz, 2H), 7.00 (d,J= 8.1 Hz, 2H), 6.94 (t,J= 7.2 Hz, 1H), 5.57 (s, 2H);13C NMR (100 MHz, DMSO-d6):δ167.58, 158.95, 156.13, 146.07, 139.21, 132.67, 132.39, 131.11, 129.88, 127.91, 127.66, 126.28, 121.25, 115.09, 70.68; HRMS: Calcd. For: C17H13ClNO3[M+H]+: 314.058 4, Found: 314.058 6.

6-Chloro-2-((o-tolyloxy)methyl)quinoline-3-carboxylic acid (3b): light yellow solid, yield: 79.9%, m.p.: 194.1-195.1 ℃; IR (KBr,υ, cm-1): 3 437, 3 062, 2 940, 2 724, 2 551, 2 356, 1 931, 1 721, 1 491, 1 245, 1 123, 935, 835, 755;1H NMR (400 MHz, DMSO-d6):δ13.61 (s, 1H), 8.88 (s, 1H), 8.33 (s, 1H), 8.09 (d,J= 9.0 Hz, 1H), 7.91 (d,J= 9.0 Hz, 1H), 7.14 (d,J= 5.3 Hz, 2H), 7.05 (d,J= 8.4 Hz, 1H), 6.85 (t,J= 7.3 Hz, 1H), 5.57 (s, 2H), 2.14 (s, 3H);13C NMR (100 MHz, DMSO-d6):δ167.83, 156.96, 156.28, 145.94, 138.95, 132.61, 132.39, 131.13, 130.81, 127.89, 127.73, 127.32, 126.68, 126.33, 120.86, 111.83, 70.92, 16.38; HRMS: Calcd. For: C18H15ClNO3[M+H]+: 328.074 0, Found: 328.074 4.

2-((2-(tert-Butyl)phenoxy)methyl)-6-chloroquinoline-3-carboxylic acid (3c): brown solid, yield: 76.7%, m.p.: 190.1-191.5 ℃; IR (KBr,υ, cm-1): 3 442, 3 006, 2 659, 2 350, 1 849, 1 718, 1 573, 1 429, 1 298, 1 049, 923, 829, 749, 672;1H NMR (400 MHz, DMSO-d6):δ13.60 (s, 1H), 8.98 (s, 1H), 8.34 (s, 1H), 8.07 (d,J= 8.9 Hz, 1H), 7.91 (d,J= 8.6 Hz, 1H), 7.24 - 7.15 (m, 2H), 7.10 (d,J= 7.9 Hz, 1H), 6.88 (t,J= 7.3 Hz, 1H), 5.64 (s, 2H), 1.28 (s, 9H);13C NMR (100 MHz, DMSO-d6):δ167.28, 157.73, 156.39, 146.33, 139.85, 137.58, 132.83, 132.41, 131.16, 128.01, 127.65, 127.56, 126.66, 125.66, 120.73, 112.69, 70.63, 34.85, 30.08; HRMS: Calcd. For: C21H21ClNO3[M+H]+: 370.121 0, Found: 370.121 6.

2-((4-(tert-Butyl)phenoxy)methyl)-6-chloroquinoline-3-carboxylic acid (3d): light yellow solid, yield: 84.4%, m.p.: 204.3-205.8 ℃; IR (KBr,υ, cm-1): 3 441, 3 066, 2 958, 2 551, 2 360, 1 901, 1 723, 1 608, 1 507, 1 481, 1 366, 1 297, 1 251, 1 182, 1 029, 933, 825, 749, 660;1H NMR (400 MHz, DMSO-d6):δ13.60 (s, 1H), 8.89 (s, 1H), 8.33 (s, 1H), 8.09 (d,J= 9.2 Hz, 1H), 7.90 (dd,J= 2.0, 8.8 Hz, 1H), 7.30 (d,J= 8.4 Hz, 2H), 6.93 (d,J= 8.4 Hz, 2H), 5.55 (s, 2H), 1.26 (s, 9H);13C NMR (100 MHz, DMSO-d6):δ167.65, 156.71, 156.29, 146.04, 143.40, 139.08, 132.66, 132.38, 131.14, 127.92, 127.69, 126.50, 126.45, 114.54, 70.78, 34.21, 31.76; HRMS: Calcd. For: C21H21ClNO3[M+H]+: 370.121 0, Found: 370.121 4.

6-Chloro-2-((2,4-di-tert-butylphenoxy)methyl)quinoline-3-carboxylic acid (3e): light yellow solid, yield: 70.7%, m.p.: 213.1-214.5 ℃; IR (KBr,υ, cm-1): 3 359, 3 092, 2 933, 2 495, 1 920, 1 714, 1 590, 1 348, 1 022, 912, 832, 750, 689;1H NMR (400 MHz, DMSO-d6):δ13.61 (s, 1H), 8.97 (s, 1H), 8.35 (d,J= 2.2 Hz, 1H), 8.09 (d,J= 9.0 Hz, 1H), 7.91 (dd,J= 9.0, 2.3 Hz, 1H), 7.24 (d,J= 2.2 Hz, 1H), 7.17 (dd,J= 8.5, 2.2 Hz, 1H), 7.02 (d,J= 8.6 Hz, 1H), 5.61 (s, 2H), 1.29 (s, 9H), 1.26 (s, 9H);13C NMR (100 MHz, DMSO-d6):δ167.32, 156.55, 155.49, 146.29, 142.37, 139.76, 136.69, 132.78, 132.38, 131.17, 127.99, 127.65, 125.77, 123.86, 123.42, 112.19, 70.77, 35.00, 34.33, 31.85, 30.16; HRMS: Calcd. For: C25H29ClNO3[M+H]+: 426.183 6, Found: 426.184 1.

6-Chloro-2-((2-methoxyphenoxy)methyl)quinoline-3-carboxylic acid (3f): light yellow solid, yield: 73.7%, m.p.: 186.5-187.8 ℃; IR (KBr,υ, cm-1): 3 501, 3 022, 2 905, 2 548, 2 309, 1 849, 1 702, 1 549, 1 294, 1 044, 975, 829, 723;1H NMR (400 MHz, DMSO-d6):δ13.50 (s, 1H), 8.91 (s, 1H), 8.32 (s, 1H), 8.06 (dd,J= 8.9, 1.1 Hz, 1H), 7.89 (d,J= 8.9 Hz, 1H), 7.05 (dd,J= 7.8, 1.6 Hz, 1H), 6.97 (d,J= 7.3 Hz, 1H), 6.92-6.85 (m, 2H), 5.55 (s, 2H), 3.72 (s, 3H);13C NMR (100 MHz, DMSO-d6):δ167.45, 156.27, 149.61, 148.55, 146.11, 139.38, 132.69, 132.40, 131.12, 127.92, 127.69, 126.24, 121.78, 121.10, 114.40, 112.85, 71.49, 55.96; HRMS: Calcd. For: C18H15ClNO4[M+H]+: 344.068 9, Found: 344.069 2.

6-Chloro-2-((3-methoxyphenoxy)methyl)quinoline-3-carboxylic acid (3g): light yellow solid, yield: 76.4%, m.p. 201.1-202.7 ℃; IR (KBr,υ, cm-1): 3 429, 1 004, 2 890, 1 439, 1 904, 1 722, 1 581, 1 366, 1 120, 984, 859, 744, 674;1H NMR (400 MHz, DMSO-d6):δ13.60 (s, 1H), 8.89 (s, 1H), 8.31 (s, 1H), 8.07 (d,J= 9.0 Hz, 1H), 7.89 (d,J= 8.9 Hz, 1H), 7.18 (t,J= 8.1 Hz, 1H), 6.59 (d,J= 8.4 Hz, 2H), 6.53 (d,J= 8.4 Hz, 1H), 5.56 (s, 2H), 3.72 (s, 3H);13C NMR (100 MHz, DMSO-d6):δ167.58, 160.82, 160.19, 156.05, 146.06, 139.21, 132.68, 132.40, 131.11, 130.36, 127.92, 127.66, 126.31, 107.28, 106.94, 101.39, 70.80, 55.47; HRMS: Calcd. For: C18H15ClNO4[M+H]+: 344.068 9, Found: 344.069 6.

6-Chloro-2-((4-methoxyphenoxy)methyl)quinoline-3-carboxylic acid (3h): light yellow solid, yield: 80.1%, m.p.: 198.3-198.4 ℃; IR (KBr,υ, cm-1): 3 437, 3 062, 2 831, 2 558, 2 371, 1 851, 1 700, 1 570, 1 519, 1 376, 1 224, 1 043, 943, 885, 828, 755;1H NMR (400 MHz, DMSO-d6):δ13.60 (s, 1H), 8.89 (s, 1H), 8.32 (s, 1H), 8.08 (d,J= 9.0 Hz, 1H), 7.90 (d,J= 8.9 Hz, 1H), 6.95 (d,J= 9.0 Hz, 2H), 6.86 (d,J= 8.9 Hz, 2H), 5.52 (s, 2H), 3.70 (s, 3H);13C NMR (100 MHz, DMSO-d6):δ167.68, 156.34, 153.98, 152.96, 146.03, 139.04, 132.61, 132.35, 131.11, 127.89, 127.64, 126.41, 116.13, 114.92, 71.40, 55.72; HRMS: Calcd. For: C18H15ClNO4[M+H]+: 344.068 9, Found: 344.069 5.

6-Chloro-2-((2-fluorophenoxy)methyl)quinoline-3-carboxylic acid (3i): light yellow solid, yield: 82.0%, m.p.: 192.2-193.3 ℃; IR (KBr,υ, cm-1): 3 436, 2 044, 2 984, 2 601, 2 293, 1 890, 1 710, 1 576, 1 384, 1 046, 933, 846, 732, 669;1H NMR (400 MHz, DMSO-d6):δ13.63 (s, 1H), 8.95 (s, 1H), 8.35 (d,J= 2.2 Hz, 1H), 8.07 (d,J= 9.0 Hz, 1H), 7.91 (dd,J= 9.0, 2.3 Hz, 1H), 7.27 (d,J= 8.3 Hz, 1H), 7.22 (d,J= 11.9 Hz, 1H), 7.11 (t,J= 7.8 Hz, 1H), 6.98 - 6.93 (m, 1H), 5.68 (s, 2H);13C NMR (100 MHz, DMSO-d6):δ167.37, 155.73, 153.34, 150.92, 146.86, 146.11, 139.60, 132.80, 132.47, 131.14, 127.98, 125.92, 125.15, 121.71, 116.50, 115.79, 71.52; HRMS: Calcd. For: C17H12ClFNO3[M+H]+: 332.048 9, Found: 332.049 2.

6-Chloro-2-((4-chlorophenoxy)methyl)quinoline-3-carboxylic acid (3j): light yellow solid, yield: 86.3%, m.p.: 206.6-207.4 ℃; IR (KBr,υ, cm-1): 3 398, 3 028, 2 605, 2 323, 1 855, 1 719, 1 569, 1 330, 1 219, 1 054, 945, 836, 775, 639;1H NMR (400 MHz, DMSO-d6):δ13.64 (s, 1H), 8.93 (s, 1H), 8.34 (d,J= 2.2 Hz, 1H), 8.06 (d,J= 9.0 Hz, 1H), 7.90 (dd,J= 9.0, 2.3 Hz, 1H), 7.34 (d,J= 8.9 Hz, 2H), 7.04 (d,J= 8.9 Hz, 2H), 5.60 (s, 2H);13C NMR (100 MHz, DMSO-d6):δ167.47, 157.85, 155.84, 146.08, 139.41, 132.75, 132.42, 131.12, 129.61, 127.96, 127.66, 126.01, 124.89, 116.90, 70.99; HRMS: Calcd. For: C17H12Cl2NO3[M+H]+: 348.019 4, Found: 348.019 8.

6-Chloro-2-((2-bromophenoxy)methyl)quinoline-3-carboxylic acid (3k): light yellow solid, yield: 79.7%, m.p.: 207.7-209.3 ℃; IR (KBr,υ, cm-1): 3 441, 3 079, 2 907, 2 545, 2 366, 1 939, 1 710, 1 589, 1 386, 1 309, 1 227, 1 137, 1 074, 1 048, 933, 877, 749, 685;1H NMR (400 MHz, DMSO-d6):δ13.62 (s, 1H), 8.97 (s, 1H), 8.36 (d,J= 2.0 Hz, 1H), 8.07 (d,J= 8.8 Hz, 1H), 7.92 (dd,J= 8.8, 2.4 Hz, 1H), 7.59 (dd,J= 8.0, 1.2 Hz, 1H), 7.34 (t,J= 8.0 Hz, 1H), 7.24 (d,J= 7.6 Hz, 1H), 6.91 (t,J= 7.2 Hz, 1H), 5.69 (s, 2H);13C NMR (100 MHz, DMSO-d6):δ167.26, 155.71, 155.29, 146.09, 139.71, 133.35, 132.81, 132.48, 131.15, 129.32, 128.01, 127.78, 125.96, 122.60, 114.45, 111.42, 71.73; HRMS: Calcd. For: C17H12BrClNO3[M+H]+: 391.968 9, Found: 391.969 0.

6-Chloro-2-((4-bromophenoxy)methyl)quinoline-3-carboxylic acid (3l): light yellow solid, yield: 82.4%, m.p.: 211.6-212.5 ℃; IR (KBr,υ, cm-1): 3 439, 3 065, 2 900, 2 602, 2 411, 1 893, 1 720, 1 577, 1 255, 1 167, 1 056, 963, 862, 768, 687;1H NMR (400 MHz, DMSO-d6):δ13.62 (s, 1H), 8.92 (s, 1H), 8.33 (s, 1H), 8.05 (d,J= 8.8 Hz, 1H), 7.89 (d,J= 8.7 Hz, 1H), 7.45 (d,J= 8.5 Hz, 2H), 6.98 (d,J= 8.6 Hz, 2H), 5.59 (s, 2H);13C NMR (100 MHz, DMSO-d6):δ167.45, 158.29, 155.82, 146.07, 139.43, 132.75, 132.50, 132.41, 131.11, 127.96, 127.65, 125.98, 117.43, 112.63, 70.89; HRMS: Calcd. For: C17H12BrClNO3[M+H]+: 391.968 9, Found: 391.969 3.

2-((4-tert-Butyl)-2-fluorophenoxy)methyl)-6-chloroquinoline-3-carboxylic acid (3m): light yellow solid, yield: 82.6%, m.p.: 231.9-233.7 ℃; IR (KBr,υ, cm-1): 3 435, 3 072, 2 971, 2 767, 2 551, 2 360, 1 876, 1 716, 1 571, 1 525, 1 424, 1 233, 1 131, 1 061, 927, 838, 762, 634;1H NMR (400 MHz, DMSO-d6):δ13.63 (s, 1H), 8.92 (s, 1H), 8.33 (s, 1H), 8.07 (d,J= 9.0 Hz, 1H), 7.90 (d,J= 8.9 Hz, 1H), 7.24 - 7.18 (m, 1H), 7.15 (t,J= 8.8 Hz, 1H), 7.08 (d,J= 8.6 Hz, 1H), 5.63 (s, 2H), 1.24 (s, 9H);13C NMR (100 MHz, DMSO-d6):δ167.40, 155.86, 150.53, 146.09, 144.88, 144.48, 139.48, 132.76, 132.47, 131.15, 127.96, 127.72, 126.07, 121.30, 121.26, 115.26, 71.69, 34.42, 31.50; HRMS: Calcd. For: C21H20ClFNO3[M+H]+: 388.111 5, Found: 388.111 9.

2-((4-tert-Butyl)-2-chlorophenoxy)methyl)-6-chloroquinoline-3-carboxylic acid (3n): light yellow solid, yield: 80.7%, m.p.: 216.3-217.6 ℃; IR (KBr,υ, cm-1): 3 435, 3 063, 2 953, 2 557, 2 401, 1 855, 1 719, 1 570, 1 524, 1 254, 1 135, 1 035, 944, 843, 775, 666;1H NMR (400 MHz, DMSO-d6):δ13.59 (s, 1H), 8.94 (s, 1H), 8.34 (s, 1H), 8.08 (d,J= 8.9 Hz, 1H), 7.90 (d,J= 8.9 Hz, 1H), 7.39 (s, 1H), 7.28 (d,J= 8.6 Hz, 1H), 7.17 (d,J= 8.6 Hz, 1H), 5.65 (s, 2H), 1.25 (s, 9H);13C NMR (100 MHz, DMSO-d6):δ167.35, 155.82, 152.14, 146.06, 144.74, 139.56, 132.75, 132.48, 131.15, 127.97, 127.76, 127.19, 126.09, 125.21, 121.34, 114.10, 71.70, 34.36, 31.50; HRMS: Calcd. For: C21H20Cl2NO3[M+H]+: 404.082 0, Found: 404.082 4.

2-((4-tert-Butyl)-2-bromophenoxy)methyl)-6-chloroquinoline-3-carboxylic acid (3o): white solid, yield: 77.8%, m.p.: 217.5-218.9 ℃; IR (KBr,υ, cm-1): 3 394, 3 044, 2 604, 2 386, 1 901, 1 704, 1 581, 1 422, 1 211, 1 034, 954, 835, 769, 660;1H NMR (400 MHz, DMSO-d6):δ13.56 (s, 1H), 8.94 (s, 1H), 8.34 (s, 1H), 8.07 (d,J= 8.8 Hz, 1H), 7.90 (d,J= 8.6 Hz, 1H), 7.52 (s, 1H), 7.32 (d,J= 8.3 Hz, 1H), 7.14 (d,J= 8.6 Hz, 1H), 5.64 (s, 2H), 1.25 (s, 9H);13C NMR (100 MHz, DMSO-d6):δ167.29, 155.82, 153.07, 146.06, 145.18, 139.61, 132.77, 132.48, 131.16, 130.11, 127.98, 127.79, 126.08, 125.96, 113.92, 111.08, 71.81, 34.33, 31.53; HRMS: Calcd. For: C21H20BrClNO3[M+H]+: 448.031 5, Found: 448.031 8.

2 Results and discussion

Our synthetic equation was shown in Fig. 1. 2-Chloromethyl group of ethyl 6-chloro-2-(chloromethyl) quinoline-3-carboxylate (1) underwent the Williamson reaction with various phenols 2a-o followed by its ethyl ester hydrolysis reaction at the 3-position to afford the target products 3a-o.

Ethyl 6-chloro-2-(chloromethyl)quinoline-3-carboxylate (1) underwent Williamson reaction with phenols bearing various substituents in the presence of potassium carbonate in acetonitrile under reflux. In this reaction, we chose acetonitrile as a solvent because of its low boiling point for much convenience to the workup procedure. After fuu completion of the Williamson reaction as observed on TLC, acetonitrile was evaporated to dryness, then 80% ethanolic potassium hydroxide solution (15 mL) was directly added to the residue, and the resulting reaction mixture was stirred under reflux. After the reactions were completed (monitored by TLC, usually within four hours) the target products were obtained after recrystallization from ethanol.

The beauty of this reaction is that Williamson ether synthesis and subsequent ester hydrolysis take place in one-pot, with operational and experimental simplicity, providing the acids in good yields of 70.7%-86.3% The scope and generality of the synthesized compounds 3a-o are listed in Table 1 together with yields and melting points.

Table 1 Yields and melting points of compounds 3a-o

As shown in Table 1, ethyl 6-chloro-2-(chloromethyl)quinoline-3-carboxylate (1) reacted with phenols 2a-o to give the corresponding 6-chloro-2-(phenoxymethyl)quinoline-3-carboxylic acid derivatives 3a-o in 70.7%-86.3% yields. It seemed that the electronic nature of the substituent has no significant effect on the reaction, all the phenols with electron-donating (entries 2-8), electron-withdrawing (entries 9-12), or the halo- andtert-butyl disubstituted groups (entries 13-15) worked well and give the corresponding target products in good yields. The relatively lower yield of compound 3e may be ascribed to the sterically hindered nature of the two bulkytert-butyl groups at theo-position andp-position of aryl.

The structure of compounds 3a-o was confirmed by their spectroscopic data with the results being in full agreement with the proposed structure. For example, the IR spectrum of compound 3a exhibited the presence of carbonyl group at 1 710 cm-1. The main feature of1H NMR spectrum of compound 3a was the appearance of the carboxyl proton at 13.59, quinoline protons at 8.89-7.88, the benzene ring protons at 7.29-6.94, and the methylene proton at 5.57, respectively. Its13C NMR spectrum was also in good agreement with the assigned structures, which revealed the presence of the carboxyl and methylene carbons at 167.58 and 70.68, respectively. Further the molecular formula of compound 3a was deduced to be C17H12ClNO3from its HR-MS, which shows a pseudo-molecular-ion peak atm/z314.058 6 ([M+H]+; calc. for C17H13ClNO3+: 314.058 4), indicating the presence of 12° of unsaturation.

3 Conclusions

In conclusion, we have described synthesis of a series of new quinoline-3-carboxylic acid with quinoline ring containing chlorine atom, i.e., 6-chloro-2-(phenoxymethyl)quinoline-3-carboxylic acid derivatives. The advantages of the current protocol as a useful method include the ready availability of starting materials, simple experimental operation, and good yields. These compounds could be potentially applied for the development of biologically and pharmaceutically important compounds. Access to such biologically intriguing structures should allow us to study their biological activities, and we will explore this possibility in near future.

[1] LARSEN R D, CORLEY E G, KING A O. Practical route to a new class of LTD4receptor antagonists [J]. J Org Med, 1996, 61(10): 3398-3405.

[2] 呂芬, 楊定喬, 汪朝陽(yáng), 等. Friedlander反應(yīng)研究進(jìn)展[J]. 合成化學(xué), 2003, 11(6): 472-478.

[3] SOARES R R, SILVA J M F, KUMAR S R, et al. New quinoline derivatives demonstrate a promising antimalarial activity against Plasmodium falciparum in vitro and Plasmodium berghei in vivo [J]. Bioorg Med Chem Lett, 2015, 25(11): 2308-2313.

[4] KUMAR A, SRIVASTAVA K, KUMAR S R, et al. Synthesis of new 4-aminoquinolines and quinoline-acridine hybrids as antimalarial agents [J]. Bioorg Med Chem Lett, 2010, 20(23): 7059-7063.

[5] KAUR K, JAIN M, REDDY R P, et al. Quinolines and structurally related heterocycles as antimalarials [J]. Eur J Med Chem, 2010, 45(8): 3245-3264.

[6] NAYAK N, RAMPRASAD J, DALIMBA U. Synthesis and antitubercular and antibacterial activity of some active fluorine containing quinoline-pyrazole hybrid derivatives [J]. J Fluorine Chem, 2016, 183: 59-68.

[7] DOLAN N, GAVIN D P, ESHWIKA A, et al. Synthesis, antibacterial and anti-MRSA activity, in vivo toxicity and a structure-activity relationship study of a quinoline thiourea [J]. Bioorg Med Chem Lett, 2016, 26(2): 630-635.

[8] ABDULLAH M I, MAHMOOD A, MADNI M, et al. Synthesis, characterization, theoretical, anti-bacterial and molecular docking studies of quinoline based chalcones as a DNA gyrase inhibitor [J]. Bioorg Chem, 2014, 54: 31-37.

[9] SUN X Y, WU R, WEN X, et al. Synthesis and evaluation of antibacterial activity of 7-alkyloxy-4,5-dihydro- imidazo[1,2-a]quinoline derivatives [J]. Eur J Med Chem, 2013, 60: 451-455.

[10] EI-FEKY S A H, EI-SAMII Z K A, OSMAN N A, et al. Synthesis, molecular docking and anti-inflammatory screening of novel quinoline incorporated pyrazole derivatives using the Pfitzinger reaction Ⅱ [J]. Bioorg Chem, 2015, 58: 104-116.

[11] EI-FEKY S A, THABET H K, UBEID M T. Synthesis, molecular modeling and anti-inflammatory screening of novel fluorinated quinoline incorporated benzimidazole derivatives using the Pfitzinger reaction [J]. J Fluorine Chem, 2014, 161: 87-94.

[12] RAJANARENDAR E, REDDY M N, KRISHNA S R, et al. Design, synthesis, antimicrobial, anti-inflammatory and analgesic activity of novel isoxazolyl pyrimido[4,5-b]quinolines and isoxazolyl chromeno[2,3-d]pyrimidin -4-ones [J]. Eur J Med Chem, 2012, 55: 273-283.

[13] ABONIA R, INSUASTY D, CASTILLO J, et al. Synthesis of novel quinoline-2-one based chalcones of potential anti-tumor activity [J]. Eur J Med Chem, 2012, 57: 29-40.

[14] SERDA M, KALINOWSKI D S, MROZEK-WILCZKIEWICZ A. et al. Synthesis and characterization of quinoline-based thiosemicarbazones and correlation of cellular iron-binding efficacy to anti-tumor efficacy [J]. Bioorg Med Chem Lett, 2012, 22(17): 5527-5531.

[15] LI Y L, QIN Q P, AN Y F, et al. Study on potential antitumor mechanism of quinoline-based silver(Ⅰ) complexes: synthesis, structural characterization, cytotoxicity, cell cycle and caspase-initiated apoptosis [J]. Inorg Chem Commun, 2014, 40: 73-77.

[16] 李陽(yáng), 張紅, 常明琴, 等. 2-叔丁基-4-氟-苯并氧雜卓并[3,4-b]喹啉并[9,11]二氧戊環(huán)-14-(6H)-酮的合成[J]. 化學(xué)研究與應(yīng)用, 2008, 20(11): 1491-1494.

[17] GAO W T, LIN G H, LI Y, et al. An efficient access to the synthesis of novel 12-phenylbenzo[6,7]oxepino [3,4-b]quinolin-13(6H)-one derivatives [J]. Beilstein J Org Chem, 2012, 8: 1849-1857.

[18] GAO W T, NIE C M, XU L Y, et al. Synthesis of novel oxepine-containing polycyclic-fused quinoline systems [J]. Heterocycl Commun, 2014, 20(3): 161-166.

[19] 符鑫博, 王東方, 趙雅楠, 等. 2-氯甲基-4-甲基-3-喹啉甲酸乙酯與酚的反應(yīng)研究[J]. 化學(xué)研究與應(yīng)用, 2016, 28(1): 63-70.

[20] 孫青斌, 徐桂清, 李偉, 等. 6-溴喹啉合成工藝研究[J]. 廣州化工, 2011, 39(15): 115-116.

[21] GROSSMANN K. Quinclorac belongs to a new class of highly selective auxin herbicides [J]. Weed Sci, 1998, 46(6): 707-716.

[22] 鄭姝, 陳宏博, 王紅萍. 4,5,7-三氯喹啉的合成方法[J]. 農(nóng)藥, 2004, 43(6): 275-277.

[23] 朱有瑜, 譚桂娥. 碘代喹啉偶氮新試劑的合成及其分析性能的研究[J]. 化學(xué)試劑, 1992, 14(3): 139-142.

[24] SINGH R M, KUMAR R, SHARMA N, et al. Palladium-catalyzed one-pot synthesis of benzo[b][1,6] naphthyridines via Sonogashira coupling and annulation reactions from 2-chloroquinoline-3-carbonitriles [J]. Tetrahedron, 2013, 69(45): 9443-9450.

[25] ATAR A B, DINDULKAR S D, JEONG Y T. Lithium triflate (LiTOf): a highly efficient and reusable catalytic system for the synthesis of diversified quinolines under neat conditions [J]. Monatsh Chem, 2013, 144(5): 695-701.

[責(zé)任編輯:劉紅玲]

“一鍋法”合成6-氯取代的2-苯氧甲基-3-喹啉甲酸衍生物

符鑫博,高文濤,李陽(yáng),王東方,趙雅楠

(渤海大學(xué) 超精細(xì)化學(xué)品研究所,遼寧 錦州 121000)

設(shè)計(jì)了以6-氯-2-氯甲基-3-喹啉甲酸乙酯(1)為起始化合物,在溶劑乙腈、縛酸劑無(wú)水碳酸鉀的條件下,通過(guò)“一鍋法”與苯酚及取代苯酚2a-o反應(yīng),合成了喹啉環(huán)上含有氯原子的 6-氯-2-苯氧甲基-3-喹啉甲酸衍生物3a-o. 所合成的化合物3a-o的結(jié)構(gòu)經(jīng)紅外光譜、核磁共振氫譜、核磁共振碳譜和高分辨質(zhì)譜得以證實(shí).

氯原子;苯氧甲基;喹啉甲酸;一鍋法;合成

date: 2016-01-03.

國(guó)家自然科學(xué)基金(21476028, 21402011).

, E-mail: isfc@bhu.edu.cn.

O626 Document code: A

Biography: 符鑫博(1991-), 男, 碩士生,研究方向?yàn)橛袡C(jī)合成.*

猜你喜歡
李陽(yáng)喹啉甲酸
基于甲酸的硝酸亞鈰微波脫硝前驅(qū)體的制備
天竺取經(jīng)之二
特殊的考卷
李陽(yáng) 讓品茶成為視覺(jué)藝術(shù)
完井液用處理劑與甲酸鹽鹽水相容性研究
甲酸治螨好處多
HPLC-Q-TOF/MS法鑒定血水草中的異喹啉類生物堿
開(kāi)在心頭的花
納米二氧化鈦富集-光度法測(cè)定痕量1-羥基-2-萘甲酸
喹啉和喹諾酮:優(yōu)秀的抗結(jié)核藥物骨架
库尔勒市| 鄂托克旗| 孝义市| 丽水市| 财经| 宁都县| 屏东市| 克什克腾旗| 平南县| 三穗县| 边坝县| 南华县| 玛多县| 通河县| 进贤县| 利川市| 嵊州市| 临猗县| 府谷县| 沙洋县| 江都市| 石嘴山市| 白河县| 上饶县| 南开区| 南宁市| 盱眙县| 简阳市| 绍兴县| 卓尼县| 平邑县| 麟游县| 兴安盟| 郧西县| 甘泉县| 杭锦后旗| 唐河县| 清远市| 东宁县| 高雄县| 芦山县|