楊媛媛,高炬
(蘇州科技學院數(shù)理學院,江蘇蘇州215009)
鈣鈦礦錳氧化物的多場調(diào)控
楊媛媛,高炬*
(蘇州科技學院數(shù)理學院,江蘇蘇州215009)
鈣鈦礦型錳氧化物因其各量子態(tài)的自由能相近而存在多個亞穩(wěn)相的共存與競爭,外加場的調(diào)控可導致各相之間的轉(zhuǎn)換??偨Y(jié)了以應力場或光場為基礎的多場調(diào)控研究進展,展望了錳氧化物多場調(diào)控的發(fā)展趨勢。目前研究發(fā)現(xiàn)錳氧化物薄膜中應力誘導磁電阻增強效應、電流增強光電導效應、磁場對持久光電導的擦洗效應等多場調(diào)控效應,這些調(diào)控效應對發(fā)展新一代的氧化物功能器件具有重大意義。
鈣鈦礦錳氧化物;多場調(diào)控;強關(guān)聯(lián)電子體系;亞穩(wěn)相
鈣鈦礦錳氧化物屬于典型的強關(guān)聯(lián)電子體系,由于具有自由能相近的多種量子態(tài)相互競爭,不僅誘導出電荷/軌道有序、相分離、Mott轉(zhuǎn)變等[1-5]奇異特性,而且外加場可引發(fā)各種亞穩(wěn)相間的相互轉(zhuǎn)換,使其輸運特性發(fā)生巨大變化,呈現(xiàn)出龐磁電阻(CMR)、電致電阻(EMR)、持久光電導(PPC)等一系列新的物理現(xiàn)象?;谶@些新的場致效應,有望發(fā)展出新型的氧化物場效應器件。因此,自1994年Jin等人發(fā)現(xiàn)La0.67Ca0.33MnO3-δ薄膜的龐磁電阻效應以來,鈣鈦礦錳氧化物的場調(diào)控特性研究即成為物理、化學、材料、信息等諸多領(lǐng)域的研究熱點[6]。隨后,研究人員發(fā)現(xiàn)了電場對錳氧化物電阻的調(diào)制作用,外加電場或電流可以誘導出龐電致電阻效應、順磁絕緣態(tài)向鐵磁金屬態(tài)的轉(zhuǎn)變等效應[7-10]。Kiryukhin等人報道了Pr0.7Ca0.3MnO3單晶在X光照射下的低溫反鐵磁-鐵磁轉(zhuǎn)變,且電導率增大6個數(shù)量級以上[11-14]。錳氧化物薄膜不僅具有上述光致效應,還呈現(xiàn)出持久光電導現(xiàn)象(PPC),即薄膜電阻在光場撤消后的較長時間內(nèi)保持某個穩(wěn)定值[15-18]。另外,Thiele等對La0.7Sr0.3MnO3薄膜進行應力調(diào)控,發(fā)現(xiàn)面內(nèi)晶格應力減小0.06%,薄膜電阻減小9%[19];Biswas等發(fā)現(xiàn)襯底與薄膜間的晶格失配還能導致La0.67Ca0.33MnO3薄膜相分離現(xiàn)象[20]。錳氧化物單場調(diào)控的綜述見參考文獻[21-24]。
然而,隨著錳氧化物單場調(diào)控研究的不斷深入,人們也逐漸注意到了單場調(diào)控的局限性。例如,光、電、磁場易對電輸運特性產(chǎn)生巨大的調(diào)控效應(如CMR、EMR、光電導等),且響應速度快,但是很難調(diào)控系統(tǒng)的宏觀參數(shù)(如金屬-絕緣體轉(zhuǎn)變溫度Tp、居里點Tc等)。應力場可以有效調(diào)制宏觀參數(shù),但對亞穩(wěn)的量子態(tài)調(diào)控作用有限,且響應速度慢??紤]到光、電、磁場與應力場調(diào)控的互補效應,鈣鈦礦錳氧化物的多場調(diào)控研究有望開發(fā)出高性能的氧化物基場效應器件。筆者圍繞鈣鈦礦錳氧化物多場調(diào)控這一研究熱點,分別以應力場和光場為背景,綜述了多場調(diào)控的研究進展及其應用前景。
早期應力場的調(diào)控主要通過薄膜與襯底間的晶格失配來實現(xiàn)[25-27]。如圖1(a)所示的電阻隨溫度變化曲線(R-T曲線),生長在不同襯底上的La0.8Ca0.2MnO3薄膜展示出迥異的電阻溫度行為[28-29]。人們認為晶格畸變改變了Mn-O的結(jié)合及Mn-O-Mn的鍵角,影響了雙交換耦合作用和Jahn-Teller畸變,進而導致磁有序排列、金屬-絕緣體相變[30]、CMR[31]、相分離[19]等性質(zhì)的改變。然而,晶格失配無法連續(xù)調(diào)控應力場,缺乏靈活性。近年來,氧化物壓電材料的發(fā)展為實現(xiàn)應力場的實時調(diào)控提供了可行性。極化的壓電體具有逆壓電效應,對壓電襯底施加縱向電場可實現(xiàn)其面內(nèi)晶格的伸縮(如圖2),為實現(xiàn)應力場的連續(xù)調(diào)控提供另一有效手段[32-34]。2012年,Wang等人在壓電材料Pb(Mg1/3Nb2/3)O3-PbTiO3(PMN-PT)上生長了Pr0.7Sr0.3MnO3薄膜,發(fā)現(xiàn)約2.3%的應變使薄膜的金屬-絕緣體轉(zhuǎn)變溫度上升了17 K,電阻下降約70%[17]。PMN-PT晶體不僅具有優(yōu)良的鐵電效應和壓電效應,而且其鈣鈦礦結(jié)構(gòu)與大多數(shù)錳氧化物晶格相匹配,因而可構(gòu)造出PMN-PT基的多層膜結(jié)構(gòu),為實時改變應力場從而實現(xiàn)晶格畸變下的多場量子調(diào)控提供了可能。
圖1 應力場與光電磁場耦合對鈣鈦礦錳氧化物電阻-溫度曲線的影響
1.1應力場與光場共同作用
2011年,Guo等人對La0.8Ca0.2MnO3/PMN-PT薄膜進行了應力場與光場的調(diào)控研究,如圖1(b)所示[35]。實驗發(fā)現(xiàn),230 K時在10 kV·cm-1電場下薄膜面內(nèi)應力減小約0.12%,誘導電阻減小約1 kΩ;而波長為532 nm(2.34 eV)的激光輻照導致電阻增大~340 Ω。兩場共同作用時,薄膜電阻比零場下減小~800 Ω。Guo等人認為,應力減小了PMN-PT與La0.8Ca0.2MnO3的晶格失配,從而削弱了Jahn-Teller畸變和電子晶格耦合作用,促進了電輸運過程;相反光照會引起自旋排列紊亂,破壞鐵磁相與反鐵磁相之間的平衡,使反鐵磁相占優(yōu),導致電阻上升,光電導下降。后續(xù)的研究也支持了這種觀點,2013年,Wang等人利用532 nm波長的可見光照射在La0.39Pr0.24Ca0.37MnO3/PMN-PT薄膜上,在低溫處觀測到PPC效應,通過對比研究發(fā)現(xiàn)光照1 h與施加0.02%應力均對PPC效應有調(diào)制作用,且應力的調(diào)制強度大于光場[36]。相關(guān)對比結(jié)果見表1。據(jù)上述研究,發(fā)現(xiàn)光場與應力場對錳氧化物薄膜的電輸運作用相反,兩場同時作用不利于增加調(diào)制深度,但是應力對光電阻的抑制作用有重要研究價值,如果發(fā)現(xiàn)“應力對光電導的擦洗效應”,光輔助記憶元件將有更大的應用空間。
1.2應力場與電場共同作用
應力場下的電場調(diào)控主要有兩種實現(xiàn)方式(圖2),即電場平行于薄膜表面時的橫向電場(E//)和電場垂直于薄膜表面的縱向電場(E⊥)。施加于PMN-PT單晶的縱向電場主要產(chǎn)生鐵電極化和應力兩種效應[37-38]。Sheng等人對兩種效應進行了研究,發(fā)現(xiàn)溫度低于Mott轉(zhuǎn)變溫度時鐵電極化效應起主導作用;溫度高于Mott轉(zhuǎn)變溫度時應力效應起主導作用[39]。Zheng等人對比了極化前后La0.75Ca0.25MnO3/PMN-PT薄膜的電輸運特性[40]。如圖1(c)所示,經(jīng)過+12 kV·cm-1電場極化后,薄膜面內(nèi)晶格減小0.06%,電阻降低39.3%;-12 kV·cm-1電場誘導出類似的應力效應,但是電阻減小了53.6%,因此,縱向電場對薄膜的電輸運特性有明顯調(diào)控效應。另一方面,Gao等人研究了橫向電場對La0.7Ca0.3MnO3和La0.85Ba0.15MnO3薄膜的電輸運特性,發(fā)現(xiàn)電流密度為8×104A·cm-2的橫向電場可使電阻減小~26%[41-42]。更多相關(guān)結(jié)果見表1。因此,筆者認為應力場與縱橫電場的耦合可能發(fā)展出新型的電流/電場敏感器件,如高密度信息記錄磁盤和新型場效應器件。
圖2 鈣鈦礦錳氧化物多場調(diào)控結(jié)構(gòu)示意圖
表1 鈣鈦礦錳氧化物多場調(diào)控對比表
1.3應力場與磁場共同作用
Zheng等人對應力場與磁場的共同作用進行了系統(tǒng)研究[43-45]。如圖1(d)所示,270 K時,1.2 T磁場誘導La0.7Ba0.3MnO3薄膜電阻下降9 kΩ;同一溫度下,0.59%應變誘導電阻下降14 kΩ;兩場共同作用時薄膜電阻比零場條件下減小近23 kΩ。可見磁場與應力場均可增強薄膜的電輸運性能。而且,兩場共同作用使Tp上升了25 K。Jia等人發(fā)現(xiàn)La0.7Ca0.15Sr0.15MnO3薄膜也有類似效應,他們認為Tp與應力場有密切聯(lián)系[46],相關(guān)對比結(jié)果見表1。根據(jù)以上內(nèi)容,發(fā)現(xiàn)應力場與磁場對錳氧化物薄膜的電輸運作用相同,可以明顯增加調(diào)制深度,因此,應力場與磁場的協(xié)同作用有助于增強錳氧化物基傳感器的靈敏度。
光輻照作為一種外界激勵,進入材料后一部分能量轉(zhuǎn)化為熱能,另一部分能量被電子吸收形成電子-空穴對。光場作用的優(yōu)勢在于不需要改變材料的化學組分和晶體結(jié)構(gòu)就可以改變載流子濃度從而影響材料的電輸運特性。1999年,Cauro等人在缺氧的La0.7(Ca,Ba,Pr)0.3MnO3和Pr2/3Sr1/3MnO3-δ薄膜中觀測到可見光誘導的PPC效應,他們將該效應歸結(jié)于氧缺位[47-49]。隨后,Dai等人分別用He-Ne激光(λ=632.8 nm)和汞燈(λ= 435.8 nm~546.1 nm)照射(La0.3Nd0.7)2/3Ca1/3MnO3樣品表面,在低于50 K時觀測到激光誘導的PPC效應及汞燈誘導的正常光電導效應[50-51]。2005年,Huhtinen等人在La0.9Ca0.1MnO3薄膜中不僅觀測到PPC效應而且還發(fā)現(xiàn)光誘導鐵磁性的持續(xù)現(xiàn)象,即去掉光照后鐵磁性能保持十幾個小時[52]。錳氧化物薄膜的光場調(diào)控研究對光電池、光開關(guān)、光敏器件的研發(fā)具有重大意義,但其物理機制尚不明朗。前期研究表明光照可能導致錳氧化物出現(xiàn)新的亞穩(wěn)相。因此,光場下的多場調(diào)控研究有助于加深對錳氧化物諸多新奇物理效應的理解。
2.1光場與電場共同作用
2011年,Gao等人利用波長為532 nm的激光和橫向電流作用于Pr0.7Sr0.3MnO3薄膜,實驗結(jié)構(gòu)見圖2。結(jié)果顯示,與10 nA橫向電流相比,1 μA的橫向電流不僅減小薄膜電阻,而且增強薄膜PPC效應。他們認為這一效應可能與相平衡有關(guān),電流的介入使絕緣相減少,薄膜的電阻降低,PPC效應增強[53]。2012年,Hu等人對缺氧的La7/8Sr1/8MnO3-δ薄膜進行了光場與電場耦合作用的研究,如圖3(a)所示[54-55]。結(jié)果表明,相同電流條件下,光照使電阻減小~1個數(shù)量級;相同光照條件下,電流為1 μA時的薄膜電阻比10 nA時小~3個數(shù)量級,相關(guān)對比結(jié)果請參見表1。由此可見,橫向電流對光電導有明顯增強作用。根據(jù)以上研究,發(fā)現(xiàn)光場與電場對錳氧化物薄膜的電輸運作用相同,可以明顯增加調(diào)制深度,因此,進一步研究光場與電場共同作用下的內(nèi)在機制有助于改善光敏器件的靈敏度。
圖3 光場與電場、磁場耦合下的多場調(diào)控對鈣鈦礦錳氧化物R-T曲線的影響
2.2光場與磁場共同作用
2004年,Moshnyaga等人在La0.7Ca0.3MnO3薄膜中觀察到磁場抑制光致電阻現(xiàn)象[56]。2006年,Sheng等人施加磁場于缺氧的La2/3Sr1/3MnO3-δ薄膜,在50 K下觀察到持久光電導的磁場擦洗效應[57]。研究表明,0.001 T磁場削弱PPC效應73%;0.5 T磁場削弱PPC效應高達97.5%。2012年,Guo等人針對磁場擦洗光電導效應進行了進一步研究,實驗采用波長為633 nm的He-Ne激光的照射于La0.8Ca0.2MnO3薄膜,在180 K下,光場誘導電阻上升6.1%;再施加1 T的磁場,光致電阻下降2.5%;進一步加大磁場至9 T,光致電阻下降至無光照時的電阻值,見圖3(b)[58]。由此可見,磁場削弱了光致電阻效應,相關(guān)對比結(jié)果見表1。根據(jù)以上研究,發(fā)現(xiàn)光場與磁場對錳氧化物薄膜電輸運的相消作用十分顯著,因此,進一步研究光場與磁場的共同作用有助于光輔助記憶元件、磁光記錄裝置等的研發(fā)。
隨著對鈣鈦礦錳氧化物研究的深入,越來越多的研究興趣轉(zhuǎn)向多場調(diào)控研究,并已取得了一定的進展。通過對比研究靜電場、偏置電流、光輻照、外磁場和應力場對錳氧化物中亞穩(wěn)相分布的不同作用,人們對低維體系中場致阻變效應與亞穩(wěn)特性的物理過程有了初步理解。未來可以利用錳氧化物材料結(jié)構(gòu)上的相似性、性質(zhì)上的差異以及多種自由度共存與激烈競爭等特點,設計并制備錳氧化物基外延低維結(jié)構(gòu),并通過耦合鐵電、磁性、電輸運等特性,加強低維結(jié)構(gòu)對外場的響應性能及人工調(diào)節(jié)性能。開展多場(電、磁、光、應力、微波以及溫度場)綜合調(diào)控將有助于發(fā)展高敏功能傳感器和新型場效應器件。
[1]HELMOLT R V,WECKER J,HOLZAPFEL B,et al.Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOxferromagnetic films[J]. Physical Review Letters,1993,71(14):2331-2333.
[2]GHOSH K,OGALE S B,RAMESH R,et al.Transition-element doping effects in La0.7Ca0.3MnO3[J].Physical Review B,1999,59(1):533-537.
[3]SALAMON M B,JAIME M.The physics of manganites:Structure and transport[J].Reviews of Modern Physics,2001,73(3):583-629.
[4]DAGOTTO E.Complexity in strongly correlated electronic systems[J].Science,2005,309(5732):257-262.
[5]TOKURA Y.Critical features of colossal magnetoresistive manganites[J].Institute of Physics Publishing,2006,69(3):797-851.
[6]JIN S,TIEFEL T H,MCCORMACK M,et al.Thousandfold change in resistivity in magnetoresistive La-Ca-Mn-O films[J].Science,1994,264(5157):413-415.
[7]OGALE S B,TALYANSKY V,CHEN C H,et al.Unusual electric field effects in Nd0.7Sr0.3MnO3[J].Physical Review Letters,1996,77(6):1159-1162.
[8]ODAGAWA A,SATO H,INOUE I H,et al.Colossal electroresistance of a Pr0.7Ca0.3MnO3thin film at room temperature[J].Physical Review B,2004,70(22):224403.
[9]PONNAMBALAM V,PARASHAR S,RAJU A R,et al.Electric-field-induced insulator-metal transitions in thin films of charge-ordered rareearth manganates[J].Applied Physics Letters,1999,74(2):206-208.
[10]GUHA A,KHARE N,RAYCHAUDHURI A K,et al.Magnetic field resulting from nonlinear electrical transport in single crystals of chargeordered Pr0.63Ca0.37MnO3[J].Physical Review B:Condensed Matter and Materials Physics,2000,62(18):11941-11944.
[11]KIRYUKHIN V,CASA D,KEIMER B,et al.X-ray induced insulator-metal transitions in CMR manganites[C]//Materials Research Society Proceedings.Boston:Cambridge University Press,1997,494:65-76.
[12]MIYANO K,TANAKA T,TOMIOKA Y,et al.Photoinduced insulator-to-metal transition in a perovskite manganite[J].Physical Review Letters,1997,78(22):4257-4260.
[13]FIEBIG M,MIYANO K,TOMIOKA Y,et al.Visualization of the local insulator-metal transition in Pr0.7Ca0.3MnO3[J].Science,1998,280(5371):1925-1928.
[14]HU L,SUN Y P,WANG B,et al.Modulation of insulator-metal transition temperature by visible light in La7/8Sr1/8MnO3thin film[J].Chinese Physical Letters,2010,27(9):097504.
[15]CAURO R,GILABERT A,CONTOUR J P,et al.Persistent and transient photoconductivity in oxygen-deficient La2/3Sr1/3MnO3-δ thin films[J]. Physical Review B,2001,63(17):174423.
[16]DAI J M,SONG W H,WANG S G,et al.Visible-light-induced persistent photoconductivity in perovskite manganite films of(La0.3Nd0.7)2/3Ca1/3MnO3[J].Journal of Applied Physics,2001,90(6):3118-3120.
[17]WANG J F,GAO J.Phase competition induced nonlinear elastoresistance effect in thin films of Pr0.7Sr0.3MnO3[J].Applied Physics Letters,2012,100(13):131903.
[18]ZHENG R K,WANG Y,CHAN H L W,et al.Determination of the strain dependence of resistance in La0.7Sr0.3MnO3/PMN-PT using the converse piezoelectric effect[J].Physical Review B,2007,75(21):212102.
[19]THIELE C,DORR K,F(xiàn)AHLER S,et al.Voltage-controlled epitaxial strain in La0.7Sr0.3MnO3/Pb(Mg1/3Nb2/3)O3-PbTiO3(001)films[J].Applied Physics Letters,2005,87(26):262502-262502-3.
[20]BISWAS A,RAJESWARI M,SRIVASTAVA R C,et al.Strain-driven charge-ordered state in La0.67Ca0.33MnO3[J].Physical Review B,2001,63(18):184424.
[21]SUN J Z,GUPTA A.Spin-dependent transport and low-field magnetoresistance in doped manganites[J].Annual Review of Materials Science,1998,28(1):45-78.
[22]PRELLIER W,LECOEUR P,MERCEY B.Colossal-magnetoresistive manganite thin films[J].Journal of Physics:Condensed Matter,2001,13(48):915-963.
[23]HAGHIRI-GOSNET A M,RENARD J P.CMR manganites:physics,thin films and devices[J].Journal of Physics D:Applied Physics,2003,36(8):R127-R150.
[24]MERCONE S,PERRONI C A,CATAUDELLA V,et al.Transport properties in manganite thin films[J].Physical Review B,2005,71(6):064415.
[25]KOO T Y,PARK S H,LEE K B,et al.Anisotropic strains and magnetoresistance of La0.7Ca0.3MnO3[J].Applied Physics Letters,1997,71(7):977-979.
[26]WANG H S,LI Q,LIU K,et al.Low-field magnetoresistance anisotropy in ultrathin Pr0.67Sr0.33MnO3films grown on different substrates[J].Applied Physics Letters,1999,74(15):2212-2214.
[27]KANKI T,TANAKA H,KAWAI T.Anomalous strain effect in La0.8Ba0.2MnO3epitaxial thin film:Role of the orbital degree of freedom in stabiliz-ing ferromagnetism[J].Physical Review B,2001,64(22):224418.
[28]WALZ F,BRABERS J,KRONMUELLER H.Magneto-electronic interactions in La0.8Ca0.2MnO3perovskite[J].J Phys:Condens Matter,1999,11:8901-8912.
[29]郭爾佳.鈣鈦礦氧化物的光電特性及其紫外光探測器研究[D].北京:中國科學院研究生院,2011.
[30]WU T,OGALE S B,SHINDE S R,et al.Substrate induced strain effects in epitaxial La0.67-xPrxCa0.33MnO3thin films[J].Journal of Applied Physics,2003,93(9):5507-5513.
[31]KHARTSEV S I,JOHNSSON P,GRISHIN A M.Colossal magnetoresistance in ultrathin epitaxial La0.75Sr0.25MnO3films[J].Journal of Applied Physics,2000,87(5):2394-2399.
[32]PARK S E,SHROUT T R.Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals[J].Journal of Applied Physics,1997,82(4):1804-1811.
[33]FU H,COHEN R E.Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics[J].Nature,2000,403(6767):281-283.
[34]ZHENG R K,HABERMEIER H U,CHAN H L W,et al.Effects of substrate-induced strain on transport properties of LaMnO3-δand CaMnO3thin films using ferroelectric poling and converse piezoelectric effect[J].Physical Review B,2010,81(10):104427.
[35]GUO E J,GAO J,LU H B.Strain-mediated electric-field control of photoinduced demagnetization in La0.8Ca0.2MnO3thin films[J].Applied Physics Letters,2011,98(8):081903.
[36]WANG J F,JIANG Y C,WU Z P,et al.Modulation of persistent photoconductivity by electric-field-controlled strain in thin films of La0.39Pr0.24Ca0.37MnO3[J].Applied Physics Letters,2013,102(7):071913.
[37]ZHENG R K,WANG J,ZHOU X Y,et al.Effects of ferroelectric polarization and converse piezoelectric effect induced lattice strain on the electrical properties of La0.7Sr0.3MnO3thin films[J].Journal of Applied Physics,2006,99(12):123714.
[38]ZHENG R K,WANG Y,HABERMEIER H U,et al.Interface strain coupling and its impact on the transport and magnetic properties of LaMnO3thin films grown on ferroelectrically active substrates[J].Journal of Alloys and Compounds,2012,519:77-81.
[39]SHENG Z G,GAO J,SUN Y P.Coaction of electric field induced strain and polarization effects in La0.7Ca0.3MnO3/PMN-PT structures[J].Physical Review B,2009,79(17):174437.
[40]ZHENG R K,WANG Y,WANG J,et al.Tuning the electrical properties of La0.75Ca0.25MnO3thin films by ferroelectric polarization,ferroelectricfield effect,and converse piezoelectric effect[J].Physical Review B,2006,74(9):094427.
[41]GAO J,SHEN S Q,LI T K,et al.Current-induced effect on the resistivity of epitaxial thin films of La0.7Ca0.3MnO3and La0.85Ba0.15MnO3[J].Applied Physics Letters,2003,82(26):4732-4734.
[42]GAO J,HU F X.Current-induced metastable resistive state in epitaxial thin films of La1-xCaxMnO3(x=0.2,0.3)[J].Applied Physics Letters,2005,86(9):092504.
[43]ZHENG R K,JIANG Y,WANG Y,et al.Ferroelectric poling and converse-piezoelectric-effect-induced strain effects in La0.7Ba0.3MnO3thin films grown on ferroelectric single-crystal substrates[J].Physical Review B,2009,79(17):174420.
[44]ZHENG R K,HABERMEIER H U,CHAN H L W,et al.Effect of ferroelectric-poling-induced strain on the phase separation and magnetotransport properties of La0.7Ca0.15Sr0.15MnO3thin films grown on ferroelectric single-crystal substrates[J].Physical Review B,2009,80(10):104433.
[45]ZHENG M,LI X Y,YANG M M,et al.Coupling of magnetic field and lattice strain and its impact on electronic phase separation in La0.335Pr0.335Ca0.33MnO3/ferroelectric crystal heterostructures[J].Applied Physics Letters,2013,103(26):263507.
[46]JIA R R,ZHANG J C,ZHENG R K,et al.Effects of ferroelectric-poling-induced strain on the quantum correction to low-temperature resistivity of manganite thin films[J].Physical Review B,2010,82(10):104418.
[47]CAURO R,GRENET J C,GILABERT A,et al.Persistent photoconductivity in La0.7CaxBa1-xMnO3thin films[J].International Journal of Modern Physics B,1999,13(29/30/31):3786-3791.
[48]GILABERT A,CAURO R,MEDICI M G,et al.Photoconductivity in manganites[J].Journal of Superconductivity,2000,13(2):285-290.
[49]CAURO R,PAPIERNIK R,GILABERT A,et al.Photoconductivity in oxygen deficient La0.7Pbx□0.3-xMnO3-δthin films prepared by chemical route[J].Journal of Superconductivity,2001,14(2):235-244.
[50]DAI J M,SONG W H,WANG S G,et al.Visible-light induced persistent photoconductivity in trilayered films of perovskite manganites[J].Journal of Applied Physics,2001,89(11):6967-6969.
[51]DAI J M,SONG W H,DU J J,et al.Cluster-glass state and photon-induced effects in perovskite manganite(La0.3Nd0.7)2/3Ca1/3MnO3films[J].Physical Review B,2003,67(14):144405.
[52]HUHTINEN H,LAIHO R,ZAKHVALINSKII V.Persistent photoinduced magnetization and hole droplets in La0.9Ca0.1MnO3films[J].Physical Review B,2005,71(13):132404.
[53]WANG J F,GAO J.Persistent photoconductivity induced by electric currents in epitaxial thin films of Pr0.7Sr0.3MnO3[J].Journal of Applied Physics,2011,109(7):07D701.
[54]HU L,SUN Y P,WANG B,et al.Modulation of insulator-metal transition temperature by visible light in La7/8Sr1/8MnO3thin film[J].Chinese Physics Letters,2010,27(9):097504.
[55]HU L,SHENG Z G,HUANG Y N,et al.Remarkable current-enhanced photoconductivity in oxygen-deficient La7/8Sr1/8MnO3-δthin film[J].Applied Physics Letters,2012,101(4):042413.
[56]MOSHNYAGA V,GISKE A,SAMWER K,et al.Giant negative photoconductivity in La0.7Ca0.3MnO3thin films[J].Journal of Applied Physics,2004,95(11):7360-7362.
[57]SHENG Z G,SUN Y P,DAI J M,et al.Erasure of photoconductivity by magnetic field in oxygen-deficient La2/3Sr1/3MnO3-δthin films[J].Applied Physics Letters,2006,89(8):082503.
[58]GUO E J,WANG L,LU H B,et al.Suppression of photoconductivity by magnetic field in epitaxial manganite thin films[J].Applied Physics Letters,2012,100(6):061902.
Multi-field tuning of perovskite manganites
YANG Yuanyuan,GAO Ju
(School of Mathematics and Physics,SUST,Suzhou 215009,China)
The perovskite manganites are located on the quantum phase boundary and their novel behaviors are associated with the coexistence and competition of quantum states,sensitive to the external fields including magnetic field,electrical field,light and strain.In this review,we summarized the effects of multi-field tuning,and mainly focused on the well-controlled lattice strain and light such as strain-enhanced magnetoresistance,currentenhanced photoconductivity,the erasure of persistent photo-induced resistance.These fantastic effects lead to the development of oxide-based field-effect transistors.Besides,we proposed the development tendency of multi-field tuning in manganites.
perovskite manganite;multi-field tuning;strongly electron-correlated system;metastable phase
O469
A
1672-0687(2016)01-0045-07
責任編輯:李文杰
2015-01-26
國家自然科學基金資助項目(11374225)
楊媛媛(1989-),女,江蘇鎮(zhèn)江人,碩士研究生,研究方向:光電材料與器件。*
高炬(1957-),男,教授,博士,博士生導師,E-mail:jugao@hku.hk。