王翠翠 姚登寶 李寶萍
摘要:
針對(duì)屬性權(quán)重信息完全未知的二型模糊多屬性決策問題,提出了一種基于二型模糊熵和決策者風(fēng)險(xiǎn)態(tài)度的決策方法。首先,為了準(zhǔn)確測度二型模糊集(T2FS)的不確定性,通過引入模糊因子和猶豫因子建立了二型模糊熵的公理化準(zhǔn)則,并基于距離測度給出了對(duì)應(yīng)的計(jì)算公式。其次,為了減少整體不確定信息對(duì)決策結(jié)果的影響,結(jié)合二型模糊熵構(gòu)建非線性規(guī)劃模型來確定屬性權(quán)重。同時(shí),將決策者的風(fēng)險(xiǎn)態(tài)度引入二型模糊信息的得分函數(shù)中并給出具體的決策步驟。最后,通過實(shí)例分析驗(yàn)證了該決策方法的可行性,并與現(xiàn)有文獻(xiàn)對(duì)比發(fā)現(xiàn)該決策方法更具有靈活性。
關(guān)鍵詞:
二型模糊集;二型模糊熵;風(fēng)險(xiǎn)態(tài)度;得分函數(shù);多屬性決策
中圖分類號(hào):
TP18
文獻(xiàn)標(biāo)志碼:A
Abstract:
In order to deal with the type2 fuzzy decisionmaking problem that the attribute weights are unknown, a decisionmaking method based on type2 fuzzy entropy and decisionmakers risk attitude was proposed. Firstly, the axiomatic principles of type2 fuzzy entropy were constructed by introducing fuzzy factor and hesitancy factor to measure the uncertainty of Type2 Fuzzy Set (T2FS), and some formulas were also given based on different distance measures. Secondly, in order to decrease effects of decision results caused by uncertain information, a nonlinear programming model combined with type2 fuzzy entropy was constructed to determine the attribute weights. Meanwhile, a score function was proposed by considering decisionmakers risk attitude and the specific decisionmaking processes were also given. Finally, the feasibility of the proposed method was verified through an example analysis,and the flexibility of the proposed method was also been reflected by comparing with existed references.
英文關(guān)鍵詞Key words:
Type2 Fuzzy Set (T2FS); type2 fuzzy entropy; risk attitude; score function; multiple attribute decisionmaking
0引言
隨著互聯(lián)網(wǎng)、大數(shù)據(jù)等新信息技術(shù)的發(fā)展和應(yīng)用,數(shù)據(jù)信息日益呈現(xiàn)出模糊性、復(fù)雜性、猶豫性等不確定特征,傳統(tǒng)數(shù)學(xué)工具已難以對(duì)其進(jìn)行精確刻畫。1965年Zadeh[1] 提出模糊集理論,成為描述不確定問題的重要工具之一。隨后,眾多學(xué)者將模糊集理論不斷拓展,逐漸建立了包含直覺模糊集[2]、區(qū)間直覺模糊集[3] 和猶豫模糊集[4] 等模糊系統(tǒng)理論。在模糊理論演變過程中最難理解的便是二型模糊理論[5],它將經(jīng)典模糊集中的隸屬度再次進(jìn)行模糊化,整個(gè)隸屬度函數(shù)由主、次隸屬度聯(lián)合表示,從而能夠更加清晰和準(zhǔn)確地刻畫客觀事物的不確定性本質(zhì)。二型模糊理論在建立伊始并未得到學(xué)術(shù)界的普遍關(guān)注,直到近幾年,該理論才開始不斷地應(yīng)用于故障診斷[6]、資源管理[7]、詞計(jì)算[8] 等領(lǐng)域。很多學(xué)者的研究不斷豐富了二型模糊集的理論基礎(chǔ),如文獻(xiàn)[9]通過構(gòu)建二型模糊集的表示定理使得分析其不確定信息變得更加便捷,文獻(xiàn)[10]給出了二型模糊集的一些集成算子,文獻(xiàn)[11]對(duì)近年來二型模糊理論的發(fā)展進(jìn)行了總結(jié)。
實(shí)際中,信息的不確定性常常代表風(fēng)險(xiǎn)、成本等負(fù)面因素,如何量化客觀事物的不確定信息成為學(xué)術(shù)界研究的重要課題。為了測度模糊信息的不確定性,Zadeh[12] 首次提出了模糊熵的概念,從此便成為了量化不確定信息的主要方法。為了拓廣模糊熵的應(yīng)用范圍,該概念被引入到了模糊集的其他拓展理論中,如直覺模糊熵[13-15]、猶豫模糊熵[16-17]等。但是目前只有少部分學(xué)者開始研究二型模糊集的不確定測度問題,雖然文獻(xiàn)[18-21]給出了一些構(gòu)造二型模糊集的模糊熵公理,但都過分關(guān)注次隸屬度的模糊性而忽略了主隸屬度的模糊性和主、次隸屬度之間的交叉影響,也未考慮主隸屬度分布的分散性所產(chǎn)生的不確定信息。通過深入分析二型模糊集的內(nèi)部結(jié)構(gòu)發(fā)現(xiàn),二型模糊信息的不確定性主要由兩部分構(gòu)成:模糊性和猶豫性,前者主要取決于主、次隸屬度的模糊性,而后者基本上由主隸屬度分布的分散程度所決定。因此,本文通過引入模糊因子和猶豫因子,克服了現(xiàn)有文獻(xiàn)的不足,進(jìn)一步完善了二型模糊熵的公理化準(zhǔn)則,并根據(jù)距離測度與二型模糊熵的內(nèi)在聯(lián)系,給出了一些二型模糊熵的具體計(jì)算公式。
目前,大多數(shù)學(xué)者都以區(qū)間值二型模糊信息為數(shù)據(jù)環(huán)境,建立了一系列的多屬性決策方法,如文獻(xiàn)[22]針對(duì)機(jī)器人選擇問題提出一類多屬性決策方法,文獻(xiàn)[23]將TOPSIS方法引入?yún)^(qū)間值二型模糊決策問題,文獻(xiàn)[24]通過利用綜合排序值方法解決區(qū)間值二型模糊信息的群決策問題。這些文獻(xiàn)一方面缺乏對(duì)一般二型模糊信息的決策問題進(jìn)行深入探討,另一方面所建立的決策方法大多依賴于集成算子,沒有考慮決策者的風(fēng)險(xiǎn)態(tài)度因素。文獻(xiàn)[25]雖然討論了二型模糊的決策方法,但其屬性權(quán)重確定方法有些粗糙,且沒有考慮決策者的風(fēng)險(xiǎn)態(tài)度問題。因此,本文針對(duì)屬性權(quán)重信息完全未知的二型模糊信息決策問題,基于二型模糊熵構(gòu)建非線性規(guī)劃模型求解屬性權(quán)重公式,并結(jié)合決策者的風(fēng)險(xiǎn)態(tài)度提出一類新的得分函數(shù),從而建立一套系統(tǒng)完整的二型模糊多屬性決策方法,并通過反艦導(dǎo)彈武器系統(tǒng)的方案選擇問題驗(yàn)證了該決策方法的有效性和可行性。
2二型模糊熵
自從模糊集理論提出以后,對(duì)其不確定信息的度量成為理論界研究的基礎(chǔ)性問題之一,為此,Zadah將信息論中的“熵”的概念引入模糊集中,作為度量其模糊性的一種重要工具。隨后,模糊熵又被推廣到直覺模糊集和猶豫模糊集等理論中,用以量化其不確定信息。文獻(xiàn)[18-20]在二型模糊集中引入了二型模糊熵,但他們只考慮了次隸屬度的模糊性而忽略了主隸屬度的模糊性,同時(shí)也沒有考慮因主隸屬度的分散性所引發(fā)的不確定性。為了克服這些不足,需要重新分析二型模糊集中產(chǎn)生不確定性信息的內(nèi)在因素,由此提出一個(gè)構(gòu)造二型模糊熵的公理化準(zhǔn)則。
2.1不確定性因子
只有深刻理解二型模糊集的不確定性才能建立一個(gè)合理有效的二型模糊熵。通過分析發(fā)現(xiàn)二型模糊集的不確定性主要由其模糊性和猶豫性兩方面組成,其中模糊性又可以分為主隸屬度的模糊性和次隸屬度的模糊性,主隸屬度的模糊性可以用主隸屬度與1/2的加權(quán)平均接近程度來測度,而次隸屬度的模糊性則可以用次隸屬度與1/2的算術(shù)平均接近程度來描述;二型模糊集的猶豫性主要體現(xiàn)在主隸屬度的分散性方面,可以用其平均離散程度來刻畫。為了量化二型模糊集的模糊性和猶豫性,這里參考文獻(xiàn)[15]的方法,引入模糊因子和猶豫因子。
不失一般性,這里先考慮單元素論域,即X={x}。對(duì)任意的A∈T2FS(X),不妨記ΔA(x)和σA(x)分別為A的模糊因子和猶豫因子,并分別用來刻畫A的模糊性和猶豫性的強(qiáng)弱。ΔA(x)和σA(x)可按照以下公式計(jì)算:
通過與文獻(xiàn)[25]對(duì)比發(fā)現(xiàn),上述決策方法主要具有兩個(gè)優(yōu)點(diǎn):第一,屬性權(quán)重的確定方法更加客觀和精細(xì),更符合具體問題具體分析的原則;第二,文獻(xiàn)[26]的得分函數(shù)只是上述風(fēng)險(xiǎn)態(tài)度參數(shù)θ=0的情形,實(shí)際上本文決策方法考慮了決策者的風(fēng)險(xiǎn)態(tài)度,決策過程更具靈活性。雖然文獻(xiàn)[22-24]的決策方法不適用于一般形式的二型模糊信息環(huán)境,但從決策思想上來說,上述決策方法突破了這些文獻(xiàn)利用集成算子進(jìn)行信息融合的分析框架,而是通過得分函數(shù)將復(fù)雜的二型模糊信息轉(zhuǎn)換為簡單的單值實(shí)數(shù)信息,從而避免了集成算子的不同選取對(duì)決策結(jié)果的影響。
4結(jié)語
本文將二型模糊信息的不確定性分解為模糊性和猶豫性兩類,通過引入模糊因子和猶豫因子構(gòu)建二型模糊熵的公理化準(zhǔn)則,并結(jié)合熵測度與距離測度之間的內(nèi)在聯(lián)系,給出了三類二型模糊熵的計(jì)算公式。為了減少各屬性不確定信息對(duì)決策結(jié)果的不利影響,針對(duì)屬性權(quán)重信息完全未知的情形,利用二型模糊熵建立非線性規(guī)劃模型,從而確定屬性權(quán)重的計(jì)算公式。考慮到?jīng)Q策者的風(fēng)險(xiǎn)態(tài)度會(huì)對(duì)決策結(jié)果產(chǎn)生影響,通過設(shè)置不同的風(fēng)險(xiǎn)態(tài)度參數(shù)值將其區(qū)分為風(fēng)險(xiǎn)偏好型、風(fēng)險(xiǎn)中性和風(fēng)險(xiǎn)厭惡型三類,并提出了一類新的得分函數(shù)。最后,通過將所構(gòu)建的二型模糊多屬性決策方法應(yīng)用于反艦導(dǎo)彈武器系統(tǒng)的方案選擇問題中,從而驗(yàn)證了該決策方法的可行性,并與現(xiàn)有文獻(xiàn)進(jìn)行了對(duì)比分析以體現(xiàn)其靈活性。
參考文獻(xiàn):
[1]
ZADEH L A. Fuzzy sets [J]. Information and Control, 1965, 8(3): 338-353.
[2]
ATANASSOV K T. Intuitionistic fuzzy sets [J]. Fuzzy Sets and Systems, 1986, 20(1): 87-96.
[3]
ATANASSOV K, GARGOV G. Interval valued intuitionistic fuzzy sets [J]. Fuzzy Sets and Systems, 1989, 31(3): 343-349.
[4]
TORRA T. Hesitant fuzzy sets [J]. International Journal of Intelligent Systems, 2010, 25(6): 529-539.
[5]
ZADEH L A. The concept of a linguistic variable and its application to approximate reasoning [J]. Information Sciences, 1975, 8(3): 199-249.
[6]
AGERO J R, VARGAS A. Calculating functions of interval type2 fuzzy numbers for fault current analysis [J]. IEEE Transactions on Fuzzy Systems, 2007, 15(1): 31-40.
[7]
GILAN S S, SEBT M H, SHAHHOSSEINI V. Computing with words for hierarchical competency based selection of personnel in construction companies [J]. Applied Soft Computing, 2012, 12(2): 860-871.
[8]
MENDEL J M. Computing with words and its relationship with fuzzistics [J]. Information Sciences, 2007, 177(4): 988-1006.
[9]
MENDEL J M, JOHN R I B. Type2 fuzzy sets made simple [J]. IEEE Transactions on Fuzzy Systems, 2002, 10(2): 117-127.
[10]
KARNIK N N, MENDEL J M. Operations on type2 fuzzy sets [J]. Fuzzy Sets and Systems, 2001, 122(2): 327-348.
[11]
MENDEL J M. Advances in type2 fuzzy sets and systems [J]. Information Sciences, 2007, 177(1): 84-110.
[12]
ZADEH L A. Probability measures of fuzzy events [J]. Journal of Mathematical Analysis and Applications, 1968, 23(2): 421-427.
[13]
SZMIDT E, KACPRZYK J. Entropy for intuitionistic fuzzy sets [J]. Fuzzy Sets and Systems, 2001, 118(3): 467-477.
[14]
HUNG W L, YANG M S. Fuzzy entropy on intuitionistic fuzzy sets [J]. International Journal of Intelligent Systems, 2006, 21(4): 443-451.
[15]
MAO J, YAO D, WANG C. A novel crossentropy and entropy measures of IFSs and their applications [J]. KnowledgeBased Systems, 2013, 48(2): 37-45.
[16]
XU Z, XIA M. Hesitant fuzzy entropy and crossentropy and their use in multiattribute decisionmaking [J]. International Journal of Intelligent Systems, 2012, 27(9): 799-822.
[17]
ZHAO N, XU Z, LIU F. Uncertainty measures for hesitant fuzzy information [J]. International Journal of Intelligent Systems, 2015, 30(7): 818-836.
[18]
HWANG C M, YANG M S, HUNG W L, et al. Similarity, inclusion and entropy measures between type2 fuzzy sets based on the Sugeno integral [J]. Mathematical and Computer Modelling, 2011, 53(9/10): 1788-1797.
[19]
HWANG C M, YANG M S, HUNG W L. On similarity, inclusion measure and entropy between type2 fuzzy sets [J]. International Journal of Uncertainty, Fuzziness and KnowledgeBased Systems, 2012, 20(3):433-449.
[20]
TAKC Z. Inclusion and subsethood measure for intervalvalued fuzzy sets and for continuous type2 fuzzy sets [J]. Fuzzy Sets and Systems, 2013, 224(4): 106-120.
[21]
鄧廷權(quán),王占江,王培培,等.二型模糊集的模糊熵研究[J].控制與決策,2012,27(3):408-412.(DENG T Q, WANG Z J, WANG P P, et al. Study on fuzzy entropy of type2 fuzzy sets [J]. Control and Decision, 2012, 27(3): 408-412.)
[22]
GHORABAEE M K. Developing an MCDM method for robot selection with interval type2 fuzzy sets [J]. Robotics and ComputerIntegrated Manufacturing, 2016, 37(C): 221-232.
[23]
CHEN T Y. An interval type2 fuzzy technique for order preference by similarity to ideal solutions using a likelihoodbased comparison approach for multiple criteria decision analysis [J]. Computers and Industrial Engineering, 2015, 85(C): 57-72.
[24]
QIN J D, LIU X W. Multiattribute group decision making using combined ranking value under interval type2 fuzzy environment [J]. Information Sciences, 2015, 297(C): 293-315.
[25]
YAO D, LIU X, ZHANG X, et al. Type2 fuzzy crossentropy and entropy measures and their applications [J]. Journal of Intelligent and Fuzzy Systems, 2016, 30(4): 2169-2180.