李文勝,周 千,楊 青
(西安航空學院 理學院,陜西 西安 710077)
?
隨機脈沖抽象積分方程溫和解的存在性
李文勝,周千,楊青
(西安航空學院 理學院,陜西 西安 710077)
利用凝聚映射不動點定理結合積分預解算子理論,研究了一類隨機脈沖一階抽象積分方程,建立并證明了此類問題溫和解的存在性。
積分方程;積分預解算子;隨機脈沖
近年來,積分微分方程溫和解的存在性越來越受關注[1-4],有關隨機脈沖的相關知識可參見文獻[5-8].
本文主要考慮一類隨機脈沖一階抽象積分方程:
t≠ξk,τ≤t≤T
(1)
(2)
即:
為了證明系統(tǒng)(1)-(2)溫和解的存在性,假設下面條件成立:
并且,對于t∈Rτ,存在一個常數(shù)L0>0,使得
H3.存在常數(shù)Q>0,使得
定理2.1 假設條件H1-H3成立,如果
(3)
(4)
則系統(tǒng)(1)-(2)的溫和解是存在的.
為了應用引理1.2,證明分為以下三步:
所以
由此,對t∈Rτ,可得
第二步,Γ是壓縮的。
由(4)知,Γ有一個不動點x∈Λ.
第三步,類似于文獻[8],Γ是全連續(xù)映射。由引理1.2知,隨機脈沖積分方程問題(1)-(2)至少有一個溫和解.
本文研究了一類隨機脈沖一階抽象積分方程,首先將模型轉化成定義1.2中的積分形式,然后在給定的條件下,利用積分預解算子理論結合凝聚映射不動點定理,證明了此類積分方程溫和解的存在性。
[1] Aníbal C,Manuel P,Daniel S.Weighted Pseudo Almost Periodic Functions,Convolutions And Abstract Integral Equations[J].Journal of Mathematical Analysis and Applications,2016,435(2):1382-1399.
[2] Nugzar S.The Boundary Contact Problem of Electroelasticity And Related Integral Differential Equations[J].Transactions of A.Razmadze Mathematical Institute,2016,170(1):107-113.
[3] Najafalizadeh S,Ezzati R.Numerical Methods for Solving Two-dimensional Nonlinear Integral Equations of Fractional Order by Using Two-dimensional Block Pulse Operational Matrix[J].Applied Mathematics and Computation,2016, 280(C):46-56.
[4] 李文勝.時滯依賴狀態(tài)的非自治多值偏積分微分方程[J].數(shù)學物理學報,2014,34(1),139-149.
[5] Li W S,Chang Y K,Nieto J J.Solvability of Impulsive Neutral Evolution Differential Inclusions with State-dependent Delay[J].Math Comput.Modelling,2009,49(9-10):1920-1927.
[6] Chang Y K,Anguraj A,Mallika M.Existence Results for Non-densely Defined Neutral Impulsive Differential Inclusions with Nonlocal Conditions[J].Journal of Applied Mathematics and Computing,2008,28(1-2):79-91.
[7] 李文勝,周千,韓慧蓉.隨機脈沖隨機偏發(fā)展微分包含解的存在性[J].應用數(shù)學學報,2015,38(6):1059-1073.
[8] Zhao Z H,Chang Y K,Li W S.Asymptotically Almost Periodic,Almost Periodic And Pseudo-almost Periodic Mild Solutions for Neutral Differential Equations[J].Nonlinear Analysis:Real World Applications,2010,11(4):3037-3044.
[9] Yosida K.Functional Analysis[M].6th ed.Berlin:Springer-Verlag,1980.
[10] Lizama C,Poblete V.On Multiplicative Perturbation of Integral Resolvent Families[J].Journal of Mathematical Analysis and Applications.2007,327 (2):1335-1359.
[11] Zhao Z H,Chang Y K,Guérékata G M N.Pseudo-almost Automorphic Mild Solutions to Semilinear Integral Equations in A Banach Space[J].Nonlinear Analysis TMA.2011,74(8):2887-2894.
[12] Sadovskii B N.A Fixed-point Principle[J].Functional Analysis and Its Applications.1967,1(2):74-76.
[責任編輯、校對:周千]
Existence Results of Mild Solution to A Random Impulsive Abstract Integral Equations
LiWen-sheng,ZhouQian,YangQing
(Faculty of Science,Xi'an Aeronautical University,Xi'an 710077)
This paper is concerned with the existence of mild solution to a random impulsive abstract integral equation.Using the condensing mapping fixed point theorem and the integral resolvent operator theory,the existence of mild solutions is established and proven.
Integral Equations;Integral Resolvent Operator;Random Impulsive
2016-07-06
陜西省教育廳科研項目(15JK1379);西安航空學院科研基金(2014KY1210)
李文勝(1984-),男,陜西禮泉人,講師,從事泛函微分方程理論研究。
O175.22
A
1008-9233(2016)05-0069-03