龔學(xué), 徐佳寧, 吳凡, 樸勇杰
( 延邊大學(xué)理學(xué)院 數(shù)學(xué)系, 吉林 延吉 133002 )
完備的D -度量空間上具有收縮型條件映射族的唯一公共不動(dòng)點(diǎn)
龔學(xué), 徐佳寧, 吳凡, 樸勇杰*
( 延邊大學(xué)理學(xué)院 數(shù)學(xué)系, 吉林 延吉 133002 )
利用完備的D-度量空間上滿足某種收縮條件的4個(gè)自映射S,T,I,J構(gòu)造了具有唯一極限的序列,并證明了該序列的唯一極限即為S,T,I,J的唯一公共不動(dòng)點(diǎn),且由此得到了更為一般形式的無窮多個(gè)映射的唯一公共不動(dòng)點(diǎn)定理,所得結(jié)果推廣和改進(jìn)了D-度量空間上的若干唯一公共不動(dòng)點(diǎn)定理.
D-度量空間; 弱相容; 重合點(diǎn); 公共不動(dòng)點(diǎn)
1992年,B Dhage[1]引進(jìn)了D-度量空間,并在該空間上得到收縮型映射的不動(dòng)點(diǎn)定理.之后,文獻(xiàn)[2-6]給出了若干滿足收縮條件的一個(gè)映射的不動(dòng)點(diǎn)定理和若干個(gè)映射的公共不動(dòng)點(diǎn)定理,文獻(xiàn)[7-8]分別給出了在D-度量空間上無窮多個(gè)映射的唯一公共不動(dòng)點(diǎn)存在定理.
下面給出本文所需要的基本概念和引理.
定義1[7-8]設(shè)X是非空集合, D∶X×X×X→R+=[0,+∞)為映射.稱(X,D)為D-度量空間,如果滿足如下條件:
(i) D(x,y,z)=0 ? x=y=z (重疊性);
(ii) 對(duì)任何x,y,z∈X, D(x,y,z)=D(u,v,w),?{u,v,w}={x,y,z} (對(duì)稱性);
(iii) 對(duì)任何x,y,z,a∈X, D(x,y,z)≤D(x,y,a)+D(x,a,z)+D(a,y,z).
文獻(xiàn)[2,7]中指出,如果D-度量關(guān)于兩個(gè)變?cè)沁B續(xù)的,則收斂序列的極限是唯一的.本文假設(shè)D-度量關(guān)于兩個(gè)變?cè)沁B續(xù)的.
定義3[9-10]設(shè)X是非空集合, f,g∶X→X是兩個(gè)映射.如果存在x,w∈X使得w=f x=gx, 則稱x是{f,g}的重合點(diǎn), w是{f,g}的重合的點(diǎn).
定義4[11]設(shè)X是非空集合, f,g∶X→X是兩個(gè)映射.如果x∈X且fx=gx時(shí), f g x=g f x成立,則稱{f,g}是弱相容的.
引理1[7,12](D-柯西原理)設(shè){xn}n∈N是D-度量空間X中具有D-有界數(shù)M的序列.如果對(duì)任何n,m∈N且m>n, 成立D(xn,xn+1,xm)≤αnM, 其中0≤α<1, 則{xn}n∈N必是D-柯西序列.
引理2[9-10]如果f,g∶X→X是弱相容的且有唯一的重合的點(diǎn)w=f x=gx, 則w是f和g的唯一公共不動(dòng)點(diǎn).
定理1 設(shè)X是完備的具有D-有界數(shù)M的D-度量空間, S,T,I,J∶X→X是4個(gè)映射,使得SX?JX, TX?IX且I或J是滿映射.假設(shè)對(duì)任何x,y,z∈X, 有
D(S x,Ty,z)≤q D(I x,Jy,z),
(1)
其中0≤q<1, 則{T,J}及{S,I}有相同的唯一重合的點(diǎn).進(jìn)一步,如果{T,J}及{S,I}分別是弱相容的,則{S,T,I,J}有唯一公共不動(dòng)點(diǎn).
證明 任選x0∈X.根據(jù)SX?JX及TX?IX可構(gòu)造兩個(gè)序列{xn}和{yn}滿足
y2n=S x2n=Jx2n+1, y2n+1=Tx2n+1=I x2n+2, n=0,1,2,….
(2)
對(duì)任何固定的n及z∈X, D(y2n,y2n+1,z)=D(S x2n,Tx2n+1,z)≤q D(I x2n,Jx2n+1,z)=q D(y2n-1,y2n,z)=q D(S x2n,Tx2n-1,z)≤q2D(I x2n,Jx2n-1,z)=q2D(y2n-2,y2n-1,z)≤…≤q2nD(x0,x1,z)≤q2nM, 由此得到
D(y2n+1,y2n+2,z)=D(S x2n+2,Tx2n+1,z)≤q D(I x2n+2,Jx2n+1,z)=q D(y2n+1,y2n,z)≤q2n+1M.
綜合上述兩個(gè)結(jié)論可得到對(duì)任何n,p∈N,
d(yn,yn+1,yn+p)≤qnM.
(3)
假設(shè)J是滿射,則存在v∈X使得u=Jv.對(duì)任何n,
D(u,Tv,u)≤D(y2n,Tv,u)+D(u,y2n,u)+D(u,Tv,y2n)=2D(S x2n,Tv,u)+D(u,y2n,u)≤
2q D(I x2n,Jv,u)+D(u,y2n,u)=2q D(y2n-1,u,u)+D(u,y2n,u).
令n→∞, 則上式右邊的極限為0, 于是D(u,Tv,u)=0, 因此Tv=u=Jv, 即v是{T,J}的重合點(diǎn), u是{T,J}的重合的點(diǎn).
因?yàn)閡=Tv∈TX?IX, 因此存在w∈X使得u=I w.對(duì)任何n,
D(S w,u,u)≤D(y2n+1,u,u)+D(S w,y2n+1,u)+D(S w,u,y2n+1)=
D(y2n+1,u,u)+2D(S w,Tx2n+1,u)≤D(y2n+1,u,u)+2q D(I w,Jx2n+1,u)=
D(y2n+1,u,u)+2q D(u,y2n,u).
令n→∞, 則上式右邊的極限為0, 于是D(S w,u,u)=0, 因此S w=u=I w, 即w是{S,I}的重合點(diǎn), u是{S,I}的重合的點(diǎn).
假設(shè)z=S x=I x也是{S,I}的重合的點(diǎn),則根據(jù)D(z,u,u)=D(S x,Tv,u)≤q D(I x,Jv,u)=q D(z,u,u)及q<1得到D(z,u,u)=0, 于是z=u.這說明u是{S,I}的唯一的重合的點(diǎn).類似地,可證明u也是{T,J}的唯一的重合的點(diǎn).
如果{T,J}及{S,I}分別是弱相容的,則根據(jù)引理2可知u是{T,J}及{S,I}的唯一公共不動(dòng)點(diǎn),于是u是{S,T,I,J}的一個(gè)公共不動(dòng)點(diǎn).顯然, u是{S,T,I,J}的唯一公共不動(dòng)點(diǎn).
如果I是滿映射,可類似地證得相同的結(jié)果,故本證明在此省略.
推論1 設(shè)X是完備的具有D-有界數(shù)M的D-度量空間, S,T∶X→X是2個(gè)映射.假設(shè)對(duì)任何x,y,z∈X,
D(S x,Ty,z)≤q D(x,y,z),
(4)
其中0≤q<1, 則{S,T}有唯一公共不動(dòng)點(diǎn).
證明 只需在定理1中取I=J=1X即可到推論1.
推論2 設(shè)X是完備的具有D-有界數(shù)M的D-度量空間, I,J∶X→X是兩個(gè)滿映射.假設(shè)對(duì)任何x,y,z∈X,
D(x,y,z)≤q D(I x,Jy,z),
(5)
其中0≤q<1, 則{I,J}有唯一公共不動(dòng)點(diǎn).
證明 只需在定理1中取S=T=1X即可到推論2.
注記1 如果在推論1中S=T及在推論2中I=J, 則推論1和推論2分別是Banach收縮原理和第一膨脹映射的不動(dòng)點(diǎn)存在定理[13]在D-度量空間上的一種新的表現(xiàn)形式.
(6)
D(ui,ui,Siui)≤qiD(ui,ui,Siui),
于是得到Siui=ui.類似地,可得到Tiui=Iiui=Jiui=ui, 因此ui是{Si,Ti,Ii,Ji}的一個(gè)公共不動(dòng)點(diǎn).若vi是{Si,Ti,Ii,Ji}的公共不動(dòng)點(diǎn),則ui和vi都是{si,ti,fi,gi}的公共不動(dòng)點(diǎn),于是ui=vi.因此對(duì)每個(gè)i∈N, {Si,Ti,Ii,Ji}有唯一公共不動(dòng)點(diǎn)ui.
設(shè)i,j∈N且i≠j.因?yàn)镾iui=Tiui=Iiui=Jiui=ui, Sjuj=Tjuj=Ijuj=Jjuj=uj, 再結(jié)合F的弱可交換性可得
Sjui=SjSiui=SiSjui, Sjui=SjTiui=TiSjui, Sjui=SjIiui=IiSjui, Sjui=SjJiui=JiSjui.
這說明Sjui是{Si,Ti,Ii,Ji}的一個(gè)公共不動(dòng)點(diǎn),于是由{Si,Ti,Ii,Ji}的公共不動(dòng)點(diǎn)唯一性得到Sjui=ui.類似地,可得到Tjui=ui, Ijui=ui, Jjui=ui.于是ui是{Sj,Tj,Ij,Jj}的一個(gè)公共不動(dòng)點(diǎn),由{Sj,Tj,Ij,Jj}的公共不動(dòng)點(diǎn)的唯一性得uj=ui.令u*=ui, 則u*是F的一個(gè)公共不動(dòng)點(diǎn).顯然, u*是F的唯一公共不動(dòng)點(diǎn).
[1] Dhage B. Generalized metric spaces and mappings with fixed points[J]. Bulletin of Calcutta Mathematical Society, 1992,84(4):329-336.
[2] Singh B, Jain S, Jain S. Semicompatibility and fixed point theorems in an unbounded D-metric space[J]. International Journal of Mathematics and Mathematical Science, 2005,2005(5):789-801.
[3] Dhage B, Arya S, Ume J. A general lemma for fixed point theorems involving more than two maps in D-metric spaces with applications[J]. International Journal of Mathematics and Mathematical Science, 2003,2003(11):661-672.
[4] Dhage B, Asha A, Kang S. On common fixed points of pairs of a single and a multivalued coincidentally commuting mappings in D-metric spaces[J]. International Journal of Mathematics and Mathematical Science, 2003,2003(40):2519-2539.
[5] Singh B, Jain S. Common fixed points of weak-compatible maps on D-metric space[J]. Journal of ChungCheong Mathematical Society, 2004,17(2):111-124.
[6] Singh B, Sharma R. Common fixed points via compatible maps in D-metric spaces[J]. Rad Mat, 2002,11(2):145-153.
[8] 沈京虎,樸勇杰.D-度量空間上一族擬收縮自映射的唯一公共不動(dòng)點(diǎn)[J].延邊大學(xué)學(xué)報(bào):自然科學(xué)版,2014,40(1):8-10.
[9] Abbas M, Jungck G. Common fixed point results for noncommuting mappings without continuity in cone metric spaces[J]. Journal of Mathematical Analysis and Applications, 2006,341(1):416-420.
[10] Han Y, Xu S Y. New common fixed point results for four maps on cone metric spaces[J]. Applied Mathematics, 2011,2:1114-1118.
[11] Bari C D, Vetro P.φ-pairs and common fixed points in cone metric spaces[J]. Rendiconti del circolo Matematico Palermo, 2008,57:279-285.
[12] Dhage B. Some results on common fixed points-I [J]. Indian Journal of Pure and Applied Mathematics, 1999,30(8):827-837.
[13] 王尚志,李伯渝,高智民.膨脹映射及其不動(dòng)點(diǎn)定理[J].數(shù)學(xué)進(jìn)展,1982,11(2):149-153.
Unique common fixed points for a family of mappings with contractive type conditions on complete D-metric spaces
GONG Xue, XU Jianing, WU Fan, PIAO Yongjie*
(DepartmentofMathematics,CollegeofScience,YanbianUniversity,Yanji133002,China)
We use four self-mappings S, T, I, J satisfying some contractive conditions on complete D-metric spaces to construct a sequence which has a unique limit, and prove that the unique limit of the sequence is the unique common fixed point of S, T, I, J. Furthermore, we obtain a more general unique common fixed point theorem for an infinite family of self-mappings. The obtained results generalize and improve some unique common fixed point theorems on D-metric spaces.
D-metric space; weakly compatible; coincidence point; common fixed point
2014-12-23 基金項(xiàng)目: 國家自然科學(xué)基金資助項(xiàng)目(11361064)
1004-4353(2015)01-0001-04
O177.3; O189.11
A
*通信作者: 樸勇杰(1962—),男,理學(xué)博士,教授,研究方向?yàn)榉蔷€性分析和不動(dòng)點(diǎn)理論.