崔云安 王晶辰
摘 要:主要探討了有關(guān)平均非擴(kuò)張映射的不動(dòng)點(diǎn)性質(zhì),先驗(yàn)證了具有Opial性質(zhì)的弱緊凸集在平均非擴(kuò)張映射下具有不動(dòng)點(diǎn)性質(zhì);接著探討了平均非擴(kuò)張映射下,具有漸近正規(guī)結(jié)構(gòu)的自反Banach空間X中的弱緊凸集中存在不動(dòng)點(diǎn);最后證明了GarciaFalset常數(shù)滿足特定的不等式時(shí),平均非擴(kuò)張映射T具有不動(dòng)點(diǎn)性質(zhì)。
關(guān)鍵詞:平均非擴(kuò)張映射;不動(dòng)點(diǎn);漸近正規(guī)結(jié)構(gòu);GarciaFalset常數(shù)
DOI:10.15938/j.jhust.2018.04.023
中圖分類號(hào): O177.2
文獻(xiàn)標(biāo)志碼: A
文章編號(hào): 1007-2683(2018)04-0122-05
Abstract:In this paper, it mainly discussed the fixed point properties of the mean nonexpansive mapping. First of all, it proved the weakly compact convex subset with Opial properties for mean nonexpansive mapping that has weak fixed point property. Secondly, it discussed the weakly compact convex subset of reflexive Banach space X which has asymptotic normal structure that has a fixed point for mean nonexpansive mapping Finally, it proved that when the GarciaFalset constant satisfied specific inequality, the mean nonexpansive mapping T has a fixed point.
Keywords:mean nonexpansive mapping; fixed point; asymptotic norml structure; GarciaFalset constant
參 考 文 獻(xiàn):
[1] 張石生. 不動(dòng)點(diǎn)理論及應(yīng)用[M]. 重慶:重慶出版社, 1984: 100-200.
[2] 陳汝棟. 不動(dòng)點(diǎn)理論及應(yīng)用[M]. 北京:國防工業(yè)出版社, 2012: 58-70.
[3] 楊?yuàn)檴? Banach空間中平均非擴(kuò)張映射的不動(dòng)點(diǎn)問題[J]. 哈爾濱工業(yè)大學(xué)學(xué)報(bào), 2003, 35(6): 101-103.
[4] 陳開周, 黨床寅, 楊再福. 不動(dòng)點(diǎn)理論和計(jì)算[M]. 西安:西安電子科技大學(xué)出版社, 1990: 100-210.
[5] JUNG JS. Iterative Approaches to Common Fixed Points of Nonexpansive Mappings in Banach Spaces[J].Journal of Mathematical Analysis & Applications, 2005, 302(2): 509-520.
[6] KIRK WA. A Fixed Point Theorem for Mappings Which do Not Increase Distance[J]. American Mathematical Monthly, 1965, 72(9): 1004-1006.
[7] BROWDER FE. Nonexpansive Nonlineare Operators in a Banach Space[J]. Proceedings of the American Mathematical Society, 1965, 54(4): 1041-1044.
[8] SIMS B. Orthogonality and Fixed Points of Nonexpansive Maps[J]. Proc. Centre.Math.Anal.Nat.Univ.Austral, 1988, 20(7): 176-186.
[9] BAE JS. Fixed Point Theorems of Generalized Nonexpansive Maps[J]. Journal of the Korean Mathematical Society, 1984, 21(2): 233-248.
[10]KANNAN R, Fixed Point Theorems in Reflexive Banach Spaces[J]. Proceedings of the American Mathematical Society, 1973, 38(1): 111-118.
[11]吳春雪. 關(guān)于平均非擴(kuò)張映射的公共不動(dòng)點(diǎn)問題[J]. 煙臺(tái)大學(xué)學(xué)報(bào), 2003, 17(3): 161-163.
[12]SCHAUDER J. Der Fixpunktsatz in Funktionalraumen[J]. Studia Mathematica, 1930, 35(2): 17-22.
[13]BANACH S. Sur Les Opérations Dans Les Ensembles Abstraits et Leur Application Aux quations Intégrales[J]. Fundamenta Mathematicae, 1922, 3(1): 51-57.
[14]KIRK WA, SIMS B. Handbook of Metric Fixed Point Theory[M]. Springer Netherlands, 2001, 101(1): 11-26.
[15]OPIAL Z. Weak Convergence of the Sequence of Successive Approximations for Nonexpansive Mappings[J]. Bull Amer.Math. Soc, 1967, 50(73): 591-597.
[16]BELLUCE LP, KIRK WA, STEINER EF. Normal Structure in Banach Space. Pacific Journal of Mathematics, 1968, 26(3): 433-440.
[17]BENAVIDES TDN. Weak Uniform Normal Structure in Direction Sum Spaces[J]. Studia Mathematica, 1992, 103(3): 293-299.
[18]GARICIAFALSET J. Stability and Fixed Points for Nonexpansive Mappings[J]. Huston Math, 1994, 233(20): 495-505.
[19]DOMNGUEZ T Benavides. A Geometrical Coefficient Implying the Fixed Point Property and Stability Results[J]. Houston Journal of Mathematics, 1996, 22(4): 835–849.
[20]WANG JM, CHEN LL, CUI YA. The Fixed Point Property of Mean Nonexpansive Mapping[J]. Journal of Natural Science of Heilongjiang University, 2006, 23(3): 298-301.
(編輯:關(guān) 毅)