国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

抑制AMPK激活對(duì)腦缺血小鼠行為學(xué)和腦梗死體積的影響*

2016-11-09 07:19:35馬毓黨輝補(bǔ)娟景燕李紅燕朱沂
關(guān)鍵詞:腦缺血腦組織神經(jīng)功能

馬毓黨輝補(bǔ)娟景燕李紅燕朱沂

抑制AMPK激活對(duì)腦缺血小鼠行為學(xué)和腦梗死體積的影響*

馬毓①黨輝①補(bǔ)娟①景燕①李紅燕①朱沂①

目的:探討抑制磷酸腺苷活化蛋白激酶(AMPK)激活對(duì)腦缺血小鼠行為和腦梗死體積的影響。方法:選取雄性昆明小鼠66只,隨機(jī)分為假手術(shù)組、鹽水對(duì)照組及藥物干預(yù)組,每組22只。藥物干預(yù)組在缺血時(shí)腹腔注射AMPK特異性抑制劑Compound C(20 mg/kg),采用線栓法制作大腦中動(dòng)脈栓塞/再灌注模型,鹽水對(duì)照組在相同時(shí)間給予等量0.9%氯化鈉注射液腹腔注射,假手術(shù)組不給予任何藥物。再灌注24 h后對(duì)小鼠進(jìn)行神經(jīng)功能評(píng)分,TTC染色觀察腦梗死體積,Westem-Blot法檢測(cè)缺血側(cè)大腦中pAMPK蛋白表達(dá)。結(jié)果:假手術(shù)組無(wú)神經(jīng)功能缺損和腦梗死灶,腦組織有少量pAMPK蛋白表達(dá),包括皮質(zhì)(0.700±0.197)和海馬(0.690±0.228);腦缺血再灌注損傷后,鹽水對(duì)照組小鼠神經(jīng)功能評(píng)分(2.63±0.52)分,腦梗死體積(49.57±9.71)%,缺血側(cè)腦組織pAMPK蛋白包括皮質(zhì)(1.410±0.322)和海馬(1.510±0.418),均較假手術(shù)組增高(P<0.05);藥物干預(yù)組神經(jīng)功能評(píng)分(1.88±0.64)分,腦梗死體積(24.07±7.74)%,缺血側(cè)腦組織中pAMPK蛋白包括皮質(zhì)(0.930±0.229)和海馬(0.960±0.378),均較鹽水對(duì)照組降低(P<0.05)。結(jié)論:小鼠腦缺血再灌注損傷后,缺血側(cè)腦組織中AMPK被激活,抑制AMPK激活具有神經(jīng)保護(hù)作用。

腦缺血再灌注損傷; 磷酸腺苷活化蛋白激酶; 神經(jīng)保護(hù)

First-author's address:The People's Hospital of Xinjiang Uygur Autonomous Region,Urumqi 830001,China

腦梗死(cerebral infarction,CI)是指多種因素引起腦部血流受阻,相應(yīng)血供障礙的腦組織出現(xiàn)不可逆損傷,最終導(dǎo)致局部腦組織發(fā)生缺血缺氧性壞死,是常見(jiàn)于中老年人的腦血管疾病,腦梗死占所有腦卒中的87%[1]。腦血管堵塞引發(fā)復(fù)雜的缺血誘導(dǎo)事件,包括細(xì)胞能量耗竭、代謝應(yīng)激、離子穩(wěn)態(tài)失衡、興奮性氨基酸毒性、梗死灶周邊去極化、脂質(zhì)過(guò)氧化、錯(cuò)誤蛋白合成、DNA損傷和細(xì)胞凋亡等[2-3]。缺氧引起細(xì)胞代謝急劇下降,抑制相關(guān)能源依賴途徑,破壞神經(jīng)膠質(zhì)細(xì)胞膜、血管內(nèi)皮和脈絡(luò)膜內(nèi)皮間穩(wěn)定的溶質(zhì)梯度,以上最終導(dǎo)致不可逆神經(jīng)損傷[4]。腦梗死是能量衰竭始發(fā)的能量代謝障礙性疾病,能夠感知能量失衡的分子對(duì)減輕腦缺血損傷至關(guān)重要[5]。

磷酸腺苷活化蛋白激酶(AMP-activated protein kinase,AMPK)是進(jìn)化上保守的絲氨酸/蘇氨酸蛋白激酶,是異質(zhì)三聯(lián)體,包含α催化亞基(α1、α2)和β、γ調(diào)節(jié)亞基(β1、β2、γ1、γ2、γ3),通過(guò)α亞基上蘇氨酸-172的磷酸化被激活[6-7]。AMPK是許多生物(從酵母到哺乳動(dòng)物)關(guān)鍵的能量監(jiān)控器,也是細(xì)胞能量平衡的關(guān)鍵調(diào)節(jié)器,當(dāng)細(xì)胞能量供應(yīng)缺乏時(shí),AMPK被激活[8-9]。在細(xì)胞水平,激活A(yù)MPK通過(guò)抑制消耗ATP的合成代謝途徑,同時(shí)激活產(chǎn)生ATP的分解代謝途徑維持能量?jī)?chǔ)備,啟動(dòng)級(jí)聯(lián)反應(yīng)確保代謝適應(yīng)和細(xì)胞生存力[10]。在外周,AMPK調(diào)節(jié)細(xì)胞新陳代謝,減少能量?jī)?chǔ)備,增加能量利用,為能源不足細(xì)胞提供ATP[11]。此外,AMPK也是主要代謝轉(zhuǎn)換器,控制細(xì)胞和整體能量平衡,有研究表明AMPK通過(guò)與線粒體生物發(fā)生、蛋白質(zhì)合成和降解途徑的相互作用在細(xì)胞生長(zhǎng)中發(fā)揮重要作用[12]。因此,已將靶向AMPK治療糖尿病、肥胖、癌癥和心血管病等多種疾病。中樞神經(jīng)系統(tǒng)神經(jīng)元、神經(jīng)膠質(zhì)細(xì)胞和血管內(nèi)皮細(xì)胞中均有AMPK表達(dá),AMPK在中樞神經(jīng)系統(tǒng)廣泛分布的特點(diǎn)為其成為有效神經(jīng)保護(hù)靶標(biāo)提供重要生物學(xué)基礎(chǔ)[13-15]。有研究已經(jīng)提出AMPK代表內(nèi)源性的神經(jīng)保護(hù)通路,該信號(hào)通路在腦卒中病理生理過(guò)程中發(fā)揮重要作用[16]。在本研究中,筆者制作小鼠腦缺血再灌注模型,檢測(cè)缺血側(cè)腦組織中AMPK蛋白表達(dá),觀察抑制AMPK后小鼠的行為結(jié)局和腦梗死體積,現(xiàn)報(bào)道如下。

1 材料與方法

1.1動(dòng)物分組和處理 清潔級(jí)健康成年雄性昆明小鼠66只,體重25~30 g,由新疆實(shí)驗(yàn)動(dòng)物研究中心提供(許可證號(hào):SCXK新2011-0001)。按照隨機(jī)數(shù)字表法將其分為假手術(shù)組、鹽水對(duì)照組(腦缺血再灌注損傷模型組)、藥物干預(yù)組(Compound C給藥組),每組22只。藥物干預(yù)組小鼠在造模、線栓剛插入時(shí)立即腹腔注射AMPK特異性抑制劑Compound C,即6-{4-[2-(1-哌啶基)乙氧基]苯基}-3-(4-吡啶基)吡唑并[1,5-A]嘧啶20 mg/kg(美國(guó)Sigma公司),鹽水對(duì)照組在相同時(shí)間點(diǎn)給予等量生理鹽水腹腔注射,假手術(shù)組則不予任何藥物[17]。

1.2方法

1.2.1制作動(dòng)物模型 采用改良線栓法制作短暫性右側(cè)大腦中動(dòng)脈栓塞模型[18]。應(yīng)用氯胺酮復(fù)合麻醉劑(氯胺酮、安定、阿托品按2∶1∶1配伍,0.9%氯化鈉注射液稀釋至15 mL,新疆醫(yī)科大學(xué)一附院動(dòng)物實(shí)驗(yàn)研究中心)以1.5~2 mL/kg體重腹腔注射麻醉小鼠。沿頸部正中線縱行剪開(kāi)2 cm切口,暴露右側(cè)頸總動(dòng)脈、頸外動(dòng)脈及頸內(nèi)動(dòng)脈,在頸外動(dòng)脈遠(yuǎn)端距分叉處約6 mm處斜剪一切口,將0.22 mm硅膠線栓(北京沙東生物技術(shù)有限公司生產(chǎn))緩慢插入,沿頸內(nèi)動(dòng)脈向前推進(jìn)約10 mm,有輕微阻力時(shí)則停止進(jìn)入,此時(shí)開(kāi)始記錄缺血時(shí)間,缺血60 min后,緩慢拔出線栓恢復(fù)血流再灌注,縫合手術(shù)切口。小鼠清醒后出現(xiàn)對(duì)側(cè)肢體偏癱,表示模型制作成功。假手術(shù)組僅分離頸總、頸外和頸內(nèi)動(dòng)脈,不插入線栓,術(shù)中控制小鼠體溫在37 ℃左右。

1.2.2神經(jīng)功能評(píng)分 再灌注24 h后,按Longa等[19]方法對(duì)各組小鼠進(jìn)行神經(jīng)功能評(píng)分。評(píng)分標(biāo)準(zhǔn)如下:0分:無(wú)神經(jīng)功能缺損征象;1分:缺血對(duì)側(cè)前肢內(nèi)收;2分:行走時(shí)向癱瘓側(cè)轉(zhuǎn)圈;3分:行走時(shí)向癱瘓側(cè)傾倒;4分:不能自發(fā)行走、意識(shí)喪失或死亡。1~3分為模型成功,0、4分及出現(xiàn)癲癇發(fā)作、取材時(shí)發(fā)現(xiàn)腦出血者均予剔除并隨機(jī)補(bǔ)充。

1.2.3腦梗死體積測(cè)定 再灌注24 h后,頸椎脫臼法處死小鼠,速取腦組織,置入-20 ℃冰箱速凍10 min,離額極2 mm向后連續(xù)等距切取4個(gè)冠狀腦片,間距2 mm,將切片放進(jìn)1%的 2,3,5-氯化三苯基四氮唑(TTC,美國(guó)Sigma公司)磷酸鹽緩沖液中,37 ℃恒溫箱避光孵育20 min,再在4%多聚甲醛(美國(guó)Gibco公司)液中固定2 h,數(shù)碼相機(jī)照相。正常腦組織染成紅色,梗死組織為白色。采用Image pro plus 5.0軟件測(cè)量梗死面積,計(jì)算梗死灶體積:V=∑(S1+S2)×d/2,V為總體積;S1、S2分別表示切片頭側(cè)和尾側(cè)面積;d為切片厚度。為除去患側(cè)腦水腫因素,腦梗死體積(%)=腦梗死體積/非梗死側(cè)大腦半球體積×100%。

1.2.4Westem-Blot法檢測(cè)缺血側(cè)腦組織中AMPK和磷酸化的AMPK(pAMPK)蛋白表達(dá) 再灌注24 h后,處死小鼠,速取腦組織在冰上分離缺血側(cè)腦皮質(zhì)和海馬,分別置于細(xì)胞裂解液中低溫勻漿、離心、取上清,置-80 ℃冰箱保存。用BCA蛋白定量試劑盒(江蘇海門碧云天生物試劑有限公司)測(cè)定蛋白濃度,行SDS-PAGE電泳,再用蛋白轉(zhuǎn)移裝置將蛋白轉(zhuǎn)移到PVDF膜上。AMPK、pAMPK(Thr172)和β-actin用相應(yīng)抗體檢測(cè),β-actin為內(nèi)參照。加入一抗[pAMPK(Thr172)(1∶1000,美國(guó)CST公司)、AMPK(1∶1000,美國(guó)CST公司)、β-actin(1∶5000,武漢博士德生物工程有限公司)]溶液,4 ℃孵育過(guò)夜,將PVDF膜移入TBST溶液(包含4%牛血清白蛋白和0.1% Tween-20)中,室溫下輕振蕩10 min;再將膜置于二抗[羊抗兔IgG(1∶5000,武漢博士德生物工程有限公司)]溶液中孵育,最后用ECL化學(xué)發(fā)光試劑盒(江蘇海門碧云天生物試劑有限公司)顯色。測(cè)定每一條帶灰度值,用pAMPK(Thr172)灰度值/AMPK灰度值表示pAMPK蛋白相對(duì)表達(dá)量。

1.3統(tǒng)計(jì)學(xué)處理 使用SPSS 17.0軟件對(duì)所得數(shù)據(jù)進(jìn)行統(tǒng)計(jì)學(xué)分析,計(jì)量資料以(±s)表示,多組間比較用單因素方差分析,組間兩兩比較用LSD法,以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。

2 結(jié)果

2.1小鼠腦缺血再灌注損傷后缺血側(cè)腦組織中pAMPK蛋白表達(dá) 假手術(shù)組小鼠腦組織中有少量pAMPK蛋白表達(dá),包括皮質(zhì)(0.700±0.197)和海馬(0.690±0.228),鹽水對(duì)照組包括皮質(zhì)(1.410±0.322)和海馬(1.510±0.418),和假手術(shù)組相比pAMPK蛋白表達(dá)明顯增加,比較差異有統(tǒng)計(jì)學(xué)意義(皮質(zhì):P=0.000;海馬:P=0.000);給予20 mg/kg Compound C干預(yù)后,可顯著抑制pAMPK蛋白水平,包括皮質(zhì)(0.930±0.229)和海馬(0.960±0.378),與鹽水對(duì)照組比較差異有統(tǒng)計(jì)學(xué)意義(皮質(zhì):P=0.005;海馬:P=0.017)。三組間比較皮質(zhì)和海馬pAMPk蛋白表達(dá)比較差異均有統(tǒng)計(jì)學(xué)意義(F1=12.000,F(xiàn)2=8.530;P1=0.001,P2=0.003),各組小鼠腦皮質(zhì)和海馬區(qū)pAMPK蛋白表達(dá)見(jiàn)圖1、2。

圖1 各組小鼠缺血側(cè)大腦皮質(zhì)中pAMPK蛋白表達(dá)

圖2 各組小鼠缺血側(cè)腦海馬中pAMPK蛋白表達(dá)

2.2神經(jīng)功能評(píng)分 假手術(shù)組小鼠未出現(xiàn)神經(jīng)功能缺損癥狀,評(píng)分0分;鹽水對(duì)照組小鼠可見(jiàn)明顯神經(jīng)功能缺損癥狀,如Horner征,左側(cè)前肢無(wú)力,行走時(shí)身體向左側(cè)旋轉(zhuǎn),甚至徹底向左側(cè)跌倒或不能行走,提尾時(shí)左前肢屈曲,評(píng)分(2.63±0.52)分;藥物干預(yù)組小鼠僅出現(xiàn)輕微神經(jīng)功能缺損癥狀,表現(xiàn)不能完全伸展左側(cè)前爪或爬行時(shí)向左側(cè)傾斜,評(píng)分(1.88±0.64)分。藥物干預(yù)組神經(jīng)功能評(píng)分與鹽水對(duì)照組比較顯著降低,比較差異有統(tǒng)計(jì)學(xué)意義(P=0.005)。三組間比較差異有統(tǒng)計(jì)學(xué)意義(F=64.658,P=0.000),各組小鼠神經(jīng)功能評(píng)分見(jiàn)圖3。

圖3 各組小鼠神經(jīng)功能缺損評(píng)分

2.3腦梗死體積 再灌注24 h后,假手術(shù)組小鼠TTC染色腦組織完全紅染,無(wú)肉眼可見(jiàn)梗死灶,組織結(jié)構(gòu)清晰;鹽水對(duì)照組和藥物干預(yù)組小鼠TTC染色后均可見(jiàn)腦組織蒼白色梗死灶,內(nèi)部結(jié)構(gòu)消失,腫脹明顯,部位主要累及大腦中動(dòng)脈供血區(qū)(包括皮質(zhì)和海馬),腦梗死體積分別為(49.57±9.71)%與(24.07±7.74)%,與鹽水對(duì)照組比較,藥物干預(yù)組腦梗死體積顯著縮小,比較差異有統(tǒng)計(jì)學(xué)意義(P=0.006)。三組間比較差異有統(tǒng)計(jì)學(xué)意義(F=39.959,P=0.000),各組小鼠腦組織TTC染色及腦梗死體積比較分別見(jiàn)圖4、5。

圖4 各組小鼠腦梗死體積(TTC染色)

圖5 各組小鼠腦梗死體積比較

3 討論

缺血性腦卒中是一個(gè)嚴(yán)重的能量缺乏狀態(tài),乳酸積聚、自噬和再灌注期間失調(diào)的葡萄糖轉(zhuǎn)運(yùn)蛋白導(dǎo)致的葡萄糖增加都會(huì)加重卒中損傷,在缺血缺氧性腦損傷早期,以能量代謝障礙為中心環(huán)節(jié)[11]。磷酸腺苷活化蛋白激酶(AMPK)是關(guān)鍵的應(yīng)激與代謝感受器,涉及許多調(diào)解途徑,位于多個(gè)代謝通路的交叉點(diǎn),對(duì)于調(diào)解能量平衡有非常重要的作用,故AMPK在缺血性腦卒中中的重要性已逐漸得到重視[20]。

筆者應(yīng)用小鼠腦缺血再灌注模型,在缺血1 h、再灌注24 h后,應(yīng)用Westem-Blot法檢測(cè)小鼠缺血側(cè)腦組織中pAMPK蛋白表達(dá),結(jié)果顯示pAMPK蛋白水平顯著升高,即AMPK被過(guò)度激活,小鼠出現(xiàn)明顯神經(jīng)功能缺損癥狀,大片腦梗死灶形成,說(shuō)明AMPK激活在缺血腦中是有害的。

腦梗死發(fā)生時(shí),氧糖缺乏導(dǎo)致神經(jīng)元細(xì)胞遭受興奮性毒性和氧化損傷,在修復(fù)損傷過(guò)程中,許多能量消耗過(guò)程(如一連串的氧化和細(xì)胞死亡路徑)被激活,這些途徑過(guò)度激活導(dǎo)致完全的能量衰竭,ATP減少,同時(shí)AMP增加,能量衰竭是啟動(dòng)腦梗死神經(jīng)元損傷的主要因素。AMPK通過(guò)AMP感覺(jué)能量水平變化,激活能源恢復(fù)過(guò)程,抑制能源消耗過(guò)程,通過(guò)調(diào)節(jié)一系列分解代謝和合成代謝過(guò)程適應(yīng)細(xì)胞的新陳代謝[21]。然而,作為機(jī)體針對(duì)缺血應(yīng)激的代償性反應(yīng),有研究指出過(guò)度的AMPK激活可能在應(yīng)激條件下具有不利作用[22]。缺血情況下,腦組織ATP供應(yīng)不能滿足需要,ATP/AMP降低,AMPK在腦中迅速激活,最初的AMPK激活旨在恢復(fù)缺血腦中的能量平衡,然而細(xì)胞死亡啟動(dòng)后,試圖進(jìn)一步從代謝受損的細(xì)胞中產(chǎn)生ATP只會(huì)導(dǎo)致?lián)p傷惡化和更嚴(yán)重的代謝障礙,AMPK激活可促成病理?xiàng)l件下(包括卒中和AD)的神經(jīng)元細(xì)胞死亡[23-24]。AMPK是糖酵解強(qiáng)烈刺激素,大腦中AMPK作為能量感受器,在應(yīng)對(duì)增加的代謝應(yīng)激時(shí)激活糖酵解,進(jìn)而在缺血腦卒中產(chǎn)生乳酸鹽,缺血誘導(dǎo)的AMPK激活通過(guò)增加卒中誘導(dǎo)的乳酸酸中毒加重卒中損傷[25-26]。有研究表明,NMDA或谷氨酸興奮性毒性引起初級(jí)皮層或小腦顆粒細(xì)胞中AMPK激活,長(zhǎng)時(shí)間的AMPK活化可同時(shí)激活A(yù)TP相關(guān)的細(xì)胞死亡過(guò)程——興奮性毒性的凋亡,增加促凋亡Bcl-2家族成員bim(參與凋亡和線粒體去極化的關(guān)鍵蛋白)的轉(zhuǎn)錄活性,導(dǎo)致神經(jīng)元生存力逐步喪失[27]。AMPK活性增加是啟動(dòng)自噬級(jí)聯(lián)反應(yīng)的關(guān)鍵信號(hào),可以激活自噬,研究表明自噬促進(jìn)缺血后神經(jīng)細(xì)胞死亡[28-29]。

為了解抑制AMPK激活在缺血腦卒中的效應(yīng),筆者給予AMPK特異性抑制劑Compound C干預(yù),結(jié)果顯示缺血側(cè)腦組織中pAMPK蛋白表達(dá)顯著減少,即抑制了AMPK激活。另外,小鼠神經(jīng)功能評(píng)分顯著降低,腦梗死體積明顯縮小,表明在缺血條件下抑制AMPK激活可以減輕腦卒中損傷。以上結(jié)果強(qiáng)烈支持筆者關(guān)于抑制缺血腦卒中AMPK過(guò)度活化發(fā)揮神經(jīng)保護(hù)效應(yīng)的假設(shè)。

Zhang等[30]發(fā)現(xiàn)在H2O2處理的SH-SY5Y細(xì)胞中AMPK和pAMPK的表達(dá)顯著上調(diào),這是一個(gè)自我代償反應(yīng),減少能量利用,增加能量產(chǎn)生。然而,體外過(guò)度AMPK激活對(duì)SH-SY5Y細(xì)胞是有害的,抑制AMPK激活可以抑制氧化應(yīng)激,增加細(xì)胞抗應(yīng)激能力。另外,有研究證實(shí)谷氨酸在HT22細(xì)胞中誘導(dǎo)AMPK活性增加,AMPK活化促成谷氨酸氧化毒性誘導(dǎo)的神經(jīng)元細(xì)胞死亡,抑制AMPK激活能保護(hù)神經(jīng)元免受氧化毒性損傷[31]。當(dāng)沙鼠前腦缺血后,海馬CA1區(qū)中AMPK被瞬時(shí)磷酸化,抑制AMPK激活通過(guò)減少海馬CA1區(qū)中ATP損耗和乳酸積聚保護(hù)神經(jīng)元免受缺血缺氧性損傷[32]。在缺血性腦卒中急性能量缺失階段,抑制AMPK活性可能誘導(dǎo)一種“神經(jīng)元冬眠”形式,和低溫的作用機(jī)制一樣,減少能量需求和隨后的代謝衰竭,可能延長(zhǎng)再灌注治療的時(shí)間窗[33]。AMPK激活導(dǎo)致Kif5軸突動(dòng)力蛋白驅(qū)動(dòng)蛋白輕鏈磷酸化,破壞了它和磷脂酰肌醇-3-激酶(phosphatidylinositol-3-kinase,PI3K)的聯(lián)系,故PI3K不能靶向軸突末梢,使軸突極化和生長(zhǎng)被抑制[34-35]。AMPK激活抑制缺血事件后的軸突發(fā)生,急性抑制AMPK激活則對(duì)卒中發(fā)揮保護(hù)作用。AMPK信號(hào)參與腦缺血預(yù)處理,溫和短暫的代謝應(yīng)激通過(guò)緩慢減少AMPK活性導(dǎo)致神經(jīng)元發(fā)生代謝耐受效應(yīng)[36]。文獻(xiàn)[37]指出,在小鼠局灶性腦缺血模型中,腦組織中AMPK活性增加,基因敲除法抑制AMPK活性具有神經(jīng)保護(hù)作用,這與本研究結(jié)果一致。

綜上所述,AMPK活性增強(qiáng)對(duì)腦組織的作用是復(fù)雜的,AMPK激活的持續(xù)時(shí)間是卒中結(jié)局的關(guān)鍵決定因素[38]。筆者研究證實(shí)缺血性腦卒中后立即抑制卒中誘導(dǎo)的AMPK過(guò)度活化能夠減輕腦卒中損傷,具有顯著神經(jīng)保護(hù)作用,建議AMPK可能是缺血性腦卒中治療的一個(gè)有前景的新靶點(diǎn)。

[1] Truong D T,Venna V R,McCullough L D,et al.Deficits in auditory,cognitive,and motor processing following reversible middle cerebral artery occlusion in mice[J].Exp Neurol,2012,238(2):114-121.

[2] Moskowitz M A,Lo E H,Iadecola C.The science of stroke:mechanisms in search of treatments[J].Neuron,2010,67(2):181-198.

[3] Miao Y,Liao J K.Potential serum biomarkers in the pathophysiological processes of stroke[J].Expert Rev Neurother,2014,14(2):173-185.

[4] Khanna A,Kahle K T,Walcott B P,et al.Disruption of ion homeostasis in the neurogliovascular unit underlies the pathogenesis of ischemic cerebral edema[J].Transl Stroke Res,2014,5(1):3-16.

[5] Hardie D G,Ross F A,Hawley S A.AMPK:a nutrient and energy sensor that maintains energy homeostasis[J].Nat Rev Mol Cell Biol,2012,13(4):251-262.

[6] Weisová P,Dávila D,Tuffy L P,et al.Role of 5-adenosine monophosphate-activated protein kinase in cell survival and death responses in neurons[J].Antioxid Redox Signal,2011,14(10):1863-1876.

[7] Oakhill J S,Steel R,Chen Z P,et al.AMPK is a direct adenylate charge-regulated protein kinase[J].Science,2011,330(6036):1433-1435.

[8] Carling D,Thornton C,Woods A,et al.AMP-activated protein kinase:new regulation,new roles[J].Biochem J,2012,445(1):11-27.

[9] Hardie D G,Ashford M L.AMPK:Regulating energy balance at the cellular and whole body levels[J].Physiology,2014,29(2):99-107.

[10] Bungard D,F(xiàn)uerth B J,Zeng P Y,et al.Signaling kinase AMPK activates stress-promoted transcription via histone H2B phosphorylation[J].Science,2010,329(5996):1201-1205.

[11] Li J,McCulough L D.Effects of AMP-activated protein kinase in cerebral ischemia[J].J Cereb Blood Flow Metab,2010,30(3):480-492.

[12] Luo Z,Zang M,Guo W.AMPK as a metabolic tumor suppressor:control of metabolism and cell growth[J].Future Oncol Mar,2010,6(3):457-470.

[13] Bright N J,Thornton C,Carling D.The regulation and function of mammalian AMPK-related kinases[J].Acta Physiol,2009,196(1):15-26.

[14] Manwani B,McCullough L D.Function of the master energy regulator adenosine monophosphate-activated protein kinase in stroke[J].J Neurosci Res,2013,91(8):1018-1029.

[15] Osuka K,Watanabe Y,Usuda N,et al.Modification of endothelial nitric oxide synthase through AMPK after experimental subarachnoid hemorrhage[J].J Neurotrauma,2009,26(7):1157-1165.

[16] Kuramoto N,Wilkins M E,F(xiàn)airfax B P,et al.Phosphodependent functional modulation of GABA(B) receptors by the metabolic sensor AMP-dependent protein kinase[J].Neuron,2007,53(2):233-247.

[17] Li J,Zeng Z,Viollet B,et al.Neuroprotective effects of adenosine monophosphate-activated protein kinase inhibition and gene deletion in stroke[J].Stroke,2007,38(11):2992-2999.

[18] Luo C X,Zhu X J,Zhou Q G,et al.Reduced neuronal nitric oxide synthase is involved in ischemia-induced hippocampal neurogenesis by up-regulating inducible nitric oxide synthase expression[J].J Neurochem,2007,103(5):1872-1882.

[19] Longa E Z,Weinstein P R,Carlson S,et al.Reversible middle cerebral artery occlusion without craniectomy in rats[J].Stroke,1989,20(1):84-91.

[20] Du L,Hickey R W,Bayir H,et al.Starving neurons show sex difference in autophagy[J].J Biol Chem,2009,284(4):2383-2396.

[21] Hardie D G.AMP-activated protein kinase:an energy sensor that regulates all aspects of cell function[J].Genes Dev,2011,25(18):1895-1908.

[22] Zheng S,Li W,Xu M,et al.Calcitonin gene-related peptide promotes angiogenesis via AMP-activated protein kinase[J].Am J Physiol Cell Physiol,2010,299(6):C1485-C1492.

[23] Venna V R,Li J,Benashski S E,et al.Preconditioning induces sustained neuroprotection by downregulation of adenosine 5-monophosphate-activated protein kinase[J].Neuroscience,2012,201(15):280-287.

[24] Kwon K J,Kim H J,Shin C Y,et al.Melatonin potentiates the neuroprotective properties of resveratrol against beta-amyloidinduced neurodegeneration by modulating amp-activated protein kinase pathways[J].J Clin Neurol,2010,6(3):127-137.

[25] Kahn B B,Alquier T,Carling D,et al.AMP-activated protein kinase:ancient energy gauge provides clues to modern understanding of metabolism[J].Cell Metab,2005,1(1):15-25.

[26] Yu L,Yang S J.AMP-activated protein kinase mediates activitydependent regulation of peroxisome proliferator-activated receptor gamma coactivator-1α and nuclear respiratory factor 1 expression in rat visual cortical neurons[J].Neuroscience,2010,169(1):23-38.

[27] Concannon C G,Tuffy L P,Weisová P,et al.AMP kinasemediated activation of the BH3-only protein Bim couples energy depletion to stress-induced apoptosis[J].J Cell Biol,2010,189(1):83-94.

[28] Egan D F,Shackelford D B,Mihaylova M M,et al. Phosphorylation of ULK1(hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy[J].Science,2011,330(6016):456-461.

[29] Wang W,Guan K L.AMP-activated protein kinase and cancer[J].Acta Physiol,2009,196(1):55-63.

[30] Zhang H A,Gao M,Zhang L,et al.Salvianolic acid a protects human SH-SY5Y neuroblastoma cells against H2O2-induced injury by increasing stress tolerance ability[J].Biochem Biophys Res Commun,2012,421(3):479-483.

[31] Jia J,Xiao Y,Wang W,et al.Differential mechanisms underlying neuroprotection of hydrogen sulfide donors against oxidative stress[J].Neurochem Int,2013,62(8):1072-1078.

[32] Nam H G,Kim W,Yoo D Y,et al.Chronological changes and effects of AMP-activated kinase in the hippocampal CA1 region after transient forebrain ischemia in gerbils[J].Neurol Res,2013,35(4):395-405.

[33] Li J,Benashski S,McCullough L D.Post-stroke hypothermia provides neuroprotection through inhibition of AMP-activated protein kinase[J].J Neurotrauma,2011,28(7):1281-1288.

[34] Amato S,Liu X,Zheng B,et al.AMP-activated protein kinase regulates neuronal polarization by interfering with PI 3-kinase localization[J].Science,2011,332(6026):247-251.

[35] Vingtdeux V,Chandakkar P,Zhao H,et al.Novel synthetic small-molecule activators of AMPK as enhancers of autophagy and amyloid-beta peptide degradation[J].FASEB J,2011,25(1):219-231.

[36] Avraham Y,Davidi N,Lassri V,et al.Leptin induces neuroprotection neurogenesis and angiogenesis after stroke[J].Curr Neurovasc Res,2011,8(4):313-322.

[37] Izumi Y,Shiota M,Kusakabe H,et al.Pravastatin accelerates ischemia-induced angiogenesis through AMP-activated protein kinase[J].Hypertens Res,2009,32(8):675-679.

[38] Li J,Benashski S E,Venna V R,et al.Effects of metformin in experimental stroke [J].Stroke,2010,41(11):2645-2652.

The Impact of Inhibiting Adenosine Monophosphate Activated Protein K inase on the Behavior and Cerebral Infarction Volume of Mice after Cerebral Ischemia

MA Y u,DANG Hui,BU J uan,et al.// Medical Innovation of China,2016,13(28):001-006

Objective:To discuss the impact of inhibiting adenosine monophosphate activated protein kinase(AMPK) on the behavior and cerebral infarction volume of mice after cerebral ischemia.Method:Sixtysix male Kunming mice were randomly divided into the sham operation group,saline control group and drug intervention group,each group had 22 mice.The AMPK specific inhibitor Compound C(20 mg/kg)was injected intraperitoneally in the drug intervention group during the time of ischemia,the middle cerebral artery occlusion/ reperfusion model was made by thread embolism method,saline control group was given intraperitoneal injection of normal saline at the same time and the sham operation group did not give any drugs.After reperfusion for 24 h,the neurological function score was evaluated in mice,TTC staining was used to observe the volume of cerebral infarction and Westem-Blot method was used to detect the expression of pAMPK protein in the ischemic side of the brain.Result:There were no neurologic impairments and cerebral infarctions in the sham operation group,there was a small amount of pAMPK protein expression includes cortex(0.700±0.197) and hippocampus(0.690±0.228).After cerebral ischemia reperfusion injury,the neurological function score were(2.63±0.52)in the saline control group,the volume of cerebral infarction was(49.57±9.71)%,ischemia side brain tissue pAMPK protein includes the cortex(1.410±0.322) and the hippocampus (1.510±0.418),were higher than those of the sham operation group(P<0.05).The neurological function scores were(1.88±0.64)in the drug intervention group,the volume of cerebral infarction was(24.07±7.74)%,ischemia side brain tissue pAMPK protein includes the cortex(0.930±0.229) and the hippocampus (0.960±0.378),were lower than those of the saline control group(P<0.05).Conclusion:After cerebral ischemia reperfusion injury,AMPK is overactivated in ischemic brain,inhibiting AMPK plays neuroprotective effect.

Cerebral ischemia reperfusion injury; AMP-activated protein kinase; Neuroprotection

新疆維吾爾自治區(qū)自然科學(xué)基金(2014211A057)

①新疆維吾爾自治區(qū)人民醫(yī)院 新疆 烏魯木齊 830001

朱沂

10.3969/j.issn.1674-4985.2016.28.001

(2016-06-16) (本文編輯:李穎)

猜你喜歡
腦缺血腦組織神經(jīng)功能
間歇性低氧干預(yù)對(duì)腦缺血大鼠神經(jīng)功能恢復(fù)的影響
小腦組織壓片快速制作在組織學(xué)實(shí)驗(yàn)教學(xué)中的應(yīng)用
芒果苷對(duì)自發(fā)性高血壓大鼠腦組織炎癥損傷的保護(hù)作用
中成藥(2017年6期)2017-06-13 07:30:35
原花青素對(duì)腦缺血再灌注損傷后腸道功能的保護(hù)作用
DNA雙加氧酶TET2在老年癡呆動(dòng)物模型腦組織中的表達(dá)及其對(duì)氧化應(yīng)激中神經(jīng)元的保護(hù)作用
血必凈對(duì)大鼠腦缺血再灌注損傷的保護(hù)作用及其機(jī)制
不同程度神經(jīng)功能缺損的腦梗死患者血尿酸與預(yù)后的相關(guān)性研究
細(xì)胞外組蛋白與腦缺血再灌注損傷關(guān)系的初探
辛伐他汀對(duì)腦出血大鼠神經(jīng)功能的保護(hù)作用及其機(jī)制探討
2,4-二氯苯氧乙酸對(duì)子代大鼠發(fā)育及腦組織的氧化損傷作用
临洮县| 东明县| 泾川县| 收藏| 南漳县| 秦皇岛市| 张家口市| 江油市| 阿鲁科尔沁旗| 依安县| 原阳县| 合川市| 阿勒泰市| 义乌市| 中牟县| 遂平县| 庆阳市| 若尔盖县| 曲靖市| 疏勒县| 永昌县| 清新县| 阿拉善左旗| 襄垣县| 武清区| 青神县| 丰县| 泽普县| 宾阳县| 新竹县| 六枝特区| 公主岭市| 博野县| 淮滨县| 凤冈县| 平谷区| 湖口县| 兴山县| 增城市| 临泉县| 辽宁省|