劉杰Chih-Ta Lin鄧馨
(1.濰坊科技學(xué)院,濰坊 262700;2.中國(guó)科學(xué)院植物研究所 北方資源植物重點(diǎn)實(shí)驗(yàn)室,北京 100093;3. IWBT,Stellenbosch University,Cape Town,Republic of South Africa)
復(fù)蘇植物耐脫水機(jī)制研究進(jìn)展
劉杰1,2Chih-Ta Lin2,3鄧馨2
(1.濰坊科技學(xué)院,濰坊 262700;2.中國(guó)科學(xué)院植物研究所 北方資源植物重點(diǎn)實(shí)驗(yàn)室,北京 100093;3. IWBT,Stellenbosch University,Cape Town,Republic of South Africa)
大多數(shù)高等植物無(wú)法耐受極度脫水狀態(tài),然而有一小部分被稱(chēng)為“復(fù)蘇植物”的植物,它們進(jìn)化出獨(dú)特的耐脫水機(jī)制,能夠耐受體內(nèi)水分喪失90%以上,且復(fù)水后迅速恢復(fù)生活狀態(tài)。對(duì)復(fù)蘇植物分布與分類(lèi),干旱誘導(dǎo)的形態(tài)結(jié)構(gòu)變化,尤其是其耐脫水生理生化及分子機(jī)制進(jìn)行了綜述,并對(duì)復(fù)蘇植物今后的研究和應(yīng)用方向進(jìn)行了展望。
復(fù)蘇植物;耐脫水性;干旱脅迫
DOI:10.13560/j.cnki.biotech.bull.1985.2016.10.011
水分是生物體的重要組成成分,除了維持細(xì)胞膨壓外,還是生物體新陳代謝所必需的。水分的可利用率是影響植物產(chǎn)量的重要因素,同時(shí)也是決定物種分布的主要因素之一[1]。大多數(shù)陸生植物在其生活史的某一個(gè)階段會(huì)遭遇缺水脅迫,為了生存,植物進(jìn)化出各種保護(hù)機(jī)制及適應(yīng)策略。例如,通過(guò)氣孔調(diào)控和特化結(jié)構(gòu)來(lái)增強(qiáng)保水能力,通過(guò)促進(jìn)根系生長(zhǎng)增強(qiáng)吸水能力,通過(guò)累積糖和脯氨酸等物質(zhì)來(lái)提高滲透調(diào)節(jié)能力,通過(guò)抗氧化劑和活性氧清除酶來(lái)降低干旱造成的活性氧傷害等[2]。雖然這些機(jī)制對(duì)抵御輕度和中度干旱脅迫通常有效,但無(wú)法幫助植物有效應(yīng)對(duì)嚴(yán)重持久的干旱脅迫。
自然界中僅有較少一部分植物被稱(chēng)為“復(fù)蘇植物(resurrection plant)”,能夠在極端缺水情況下生存。即使干旱到細(xì)胞已經(jīng)喪失90%以上水分的程度,只要遇水,這類(lèi)植物就能迅速恢復(fù)生活狀態(tài),其所具有的耐脫水性狀被稱(chēng)為耐干性(desiccation tolerance,簡(jiǎn)稱(chēng)DT)[3]。近年來(lái),國(guó)際上對(duì)復(fù)蘇植物的研究日益廣泛,不但因?yàn)閺?fù)蘇植物蘊(yùn)含著強(qiáng)效抗旱基因資源,而且對(duì)其耐旱復(fù)蘇機(jī)制的深入了解,將推動(dòng)人們對(duì)植物抗逆機(jī)理的更廣泛認(rèn)識(shí),并借此找到植物專(zhuān)門(mén)應(yīng)對(duì)嚴(yán)重干旱的更有效的機(jī)制,最終找到使植物徹底擺脫干旱威脅的鑰匙。本文就復(fù)蘇植物的起源、進(jìn)化、種類(lèi)分布及耐脫水機(jī)制研究現(xiàn)狀等進(jìn)行綜述,并對(duì)復(fù)蘇植物未來(lái)的研究方向進(jìn)行了展望。
國(guó)外對(duì)復(fù)蘇植物的認(rèn)識(shí)始于1914年P(guān)ickett[4]對(duì)一些蕨類(lèi)植物的原葉體生態(tài)適應(yīng)性的研究。隨后Myrothamnus flabellifolia、Xerophyta humilis和Craterostigma plantagineum等一些復(fù)蘇植物被陸續(xù)報(bào)道出來(lái)[5]。目前已發(fā)現(xiàn)的復(fù)蘇植物約有1 300種,主要分布在苔蘚和蕨類(lèi)植物中,裸子植物中未見(jiàn),被子植物中僅發(fā)現(xiàn)135種,分屬于15個(gè)科[6]。這些復(fù)蘇植物多為草本,木本植物只有M. flabellifolia一例,主要分布于非洲東部和南部、澳大利亞和南美地區(qū),零散分布于東亞和巴爾干半島。復(fù)蘇植物原生境極其相似,都生長(zhǎng)于巖石表層土壤(大約1 cm厚度),一年中會(huì)經(jīng)歷多次失水及復(fù)水過(guò)程,其中一些種類(lèi)已趨于瀕危[6]。
在中國(guó),對(duì)于復(fù)蘇現(xiàn)象的記錄可以追溯到明朝李時(shí)珍《本草綱目》對(duì)巻柏(Seaslniealla tamarsicnia(P. Beauv.)spring)的記錄:“卷柏,釋名萬(wàn)歲、長(zhǎng)生不死草,可以在晾干后,經(jīng)浸水而生?!逼?,在我國(guó)已被報(bào)道過(guò)的復(fù)蘇植物除卷柏[7]和小立碗蘚[8]等蕨類(lèi)和苔蘚植物外,主要集中于苦苣苔科旋蒴苣苔屬旋蒴苣苔(Boea hygrometrica,俗名牛耳草)[9-11]及其近緣種[12-18]。部分復(fù)蘇植物的種類(lèi)與分布情況見(jiàn)表1。
表1 復(fù)蘇植物種類(lèi)與分布[19]
苔蘚、藻類(lèi)、地衣、蕨類(lèi)以及擬蕨類(lèi)植物的生殖及營(yíng)養(yǎng)器官都具有耐脫水性,干旱和復(fù)蘇過(guò)程都很快,在幾小時(shí)之內(nèi)即發(fā)生明顯的形態(tài)變化,被認(rèn)為是一種“完全型”耐干性(Full DT)[20]。雖然幾乎所有被子植物的種子都具有耐脫水性,但只有少數(shù)被子植物的營(yíng)養(yǎng)器官耐脫水,這可能意味著維管植物本身結(jié)構(gòu)和形態(tài)更為適應(yīng)陸地環(huán)境,體內(nèi)保水調(diào)控能力更強(qiáng),營(yíng)養(yǎng)器官耐脫水復(fù)蘇能力逐漸退化丟失。因此,Oliver、Farrant和Moore等[20,21]進(jìn)一步提出,種子的耐脫水能力可能是從低等植物“完全型”耐干性進(jìn)化而來(lái),最終成為一種由發(fā)育程序調(diào)控的細(xì)胞保護(hù)系統(tǒng);在干旱頻發(fā)的生境中,一些植物通過(guò)對(duì)種子耐脫水性調(diào)控程序的“重新編程”,使之在營(yíng)養(yǎng)組織中可響應(yīng)干旱誘導(dǎo),最終進(jìn)化出復(fù)蘇植物的“改良型”耐干性(Modified DT)。圖1展示了幾種被子復(fù)蘇植物脫水和復(fù)蘇狀態(tài)。
復(fù)蘇被子植物大多為多年生、株型矮小的草本,生長(zhǎng)于巖石表層土壤(大約1 cm厚度),一生中會(huì)經(jīng)歷多次失水及復(fù)水過(guò)程。與仙人掌等耐旱植物不同,復(fù)蘇植物大多缺乏特殊的保水性結(jié)構(gòu),如特化為針形的葉片,或者較厚的蠟質(zhì)層等。因此在干旱來(lái)臨時(shí),復(fù)蘇植物葉片失水速度很快,迅速向枝干折疊(圖1- A),或干枯卷曲(圖1-C),或向葉柄方向卷曲(圖1-E)。單子葉復(fù)蘇植物X. humilis脫水過(guò)程中葉片會(huì)沿葉中脈折疊成原來(lái)葉片的一半[22]。很多復(fù)蘇植物的葉背有柔毛或者剛毛,在葉片脫水收縮后,這些毛密度和硬度增大,覆蓋整個(gè)葉背,使植物的外觀形態(tài)結(jié)構(gòu)和硬度發(fā)生明顯變化,其生化生理機(jī)制尚未被揭示。這些變化在雨后或者澆水后逆轉(zhuǎn),恢復(fù)正常狀態(tài),植物也恢復(fù)生長(zhǎng)發(fā)育(圖1-B,D,F(xiàn))。
復(fù)蘇植物所要面對(duì)的干旱脅迫是一種極端干旱,葉片等營(yíng)養(yǎng)組織可干旱至脫水狀態(tài),即含水量最低降至10%以下,相當(dāng)于超干種子的含水量。Vicré等[23]總結(jié)脫水對(duì)植物的損傷主要表現(xiàn)為3個(gè)方面:(1)細(xì)胞失水達(dá)到一定閾值(細(xì)胞內(nèi)含水量低于40%[19])后原生質(zhì)體收縮引發(fā)機(jī)械損傷;(2)膜系統(tǒng)穩(wěn)定性下降;(3)細(xì)胞失水后代謝物濃度變化、大分子結(jié)構(gòu)和功能的破壞對(duì)代謝速率和方向的影響。
低等復(fù)蘇植物應(yīng)對(duì)脫水主要依賴(lài)于復(fù)水過(guò)程中的損傷修復(fù)機(jī)制,需消耗大量能量;而被子復(fù)蘇植物在脫水時(shí)主要傾向于加強(qiáng)保護(hù)、減小損傷的機(jī)制,不需消耗過(guò)多能量[20]。這些植物中均發(fā)現(xiàn)干旱誘導(dǎo)大量基因表達(dá),通過(guò)調(diào)節(jié)細(xì)胞壁成分和物理性質(zhì)、滲透調(diào)節(jié)、抗氧化、光合保護(hù)以及蛋白質(zhì)質(zhì)量控制等過(guò)程參與耐旱保護(hù)。
3.1細(xì)胞壁折疊
植物細(xì)胞脫水時(shí)原生質(zhì)體縮小會(huì)引發(fā)機(jī)械壓力,其主要根源在于細(xì)胞壁的剛性結(jié)構(gòu)。研究發(fā)現(xiàn)復(fù)蘇植物如牛耳草和C. wilmsii,葉肉細(xì)胞的細(xì)胞壁可以在細(xì)胞脫水后發(fā)生折疊,不但可確保質(zhì)壁分離的程度不至于引起質(zhì)膜的撕裂,而且維持了胞間連絲的結(jié)構(gòu)[24-27]。免疫細(xì)胞化學(xué)分析發(fā)現(xiàn)C. wilmsii脫水組織細(xì)胞壁可萃取性與水合組織有所不同:脫水組織細(xì)胞壁發(fā)生重組修飾,主要涉及一系列諸如鈣-果膠交聯(lián)物和木葡聚糖修飾等誘導(dǎo)因子,以促進(jìn)細(xì)胞壁的交聯(lián)和緊縮[24]。C. plantagineum脫水脅迫時(shí)α-expansin 蛋白表達(dá)明顯上調(diào),被證明能夠增加細(xì)胞壁的可延展性[25]。木本復(fù)蘇植物M. flabellifolia脫水組織與水合組織中果膠、木葡聚糖以及阿拉伯糖抗原表位并沒(méi)有差異,其特征主要是在脫水組織中聚集高濃度的阿拉伯糖,形成阿拉伯糖與阿拉伯半乳糖聚合物[26,27]。
3.2滲透調(diào)節(jié)與大分子保護(hù)
滲透調(diào)節(jié)是水分脅迫下細(xì)胞避免機(jī)械傷害、維持結(jié)構(gòu)完整和膜穩(wěn)定的廣泛機(jī)制。復(fù)蘇植物脫水過(guò)程中也會(huì)積累蔗糖[28],一方面可以通過(guò)滲透調(diào)節(jié)和形成原生質(zhì)體“玻璃化”溶膠狀態(tài)來(lái)維持生物大分子結(jié)構(gòu)的穩(wěn)定從而保護(hù)生物膜系統(tǒng)的完整;另一方面作為信號(hào)分子來(lái)調(diào)控碳水化合物的水平、調(diào)節(jié)植物生長(zhǎng)以及能量代謝。C. plantagineum新鮮葉片中含有高濃度、在其它植物中少見(jiàn)的C8-糖-2-辛酮糖,脫水過(guò)程中大量轉(zhuǎn)化成蔗糖[29,30]。很多被子復(fù)蘇植物在脫水過(guò)程中也會(huì)積累棉子糖和海藻糖等低聚糖[31,32]。
除滲透調(diào)節(jié)保護(hù)物質(zhì)外,一些特定的親水性蛋白如胚胎晚期豐富蛋白(LEA)、熱激蛋白(HSPs)也對(duì)細(xì)胞結(jié)構(gòu)以及包括膜脂和膜蛋白在內(nèi)的大分子的穩(wěn)定性起重要保護(hù)作用。當(dāng)水分匱缺時(shí),植物會(huì)同時(shí)激活不同種類(lèi)的LEA蛋白,形成必要的互作關(guān)系網(wǎng)絡(luò)在不同的組織或細(xì)胞結(jié)構(gòu)中來(lái)保護(hù)和穩(wěn)定生物大分子[33]。Xiao等[11]對(duì)牛耳草全基因組測(cè)序數(shù)據(jù)分析發(fā)現(xiàn)牛耳草基因組中存在大量的LEA基因,且其中2/3在脫水時(shí)表達(dá)明顯增加,表明LEA蛋白對(duì)于牛耳草脫水響應(yīng)起重要作用。另外,牛耳草中克隆到29個(gè)HSP蛋白基因。HSPs作為分子伴侶同其它蛋白質(zhì)結(jié)合來(lái)促進(jìn)蛋白質(zhì)的正確折疊、組裝并轉(zhuǎn)運(yùn)到特定的亞細(xì)胞區(qū)域,或者識(shí)別未折疊或錯(cuò)誤折疊的蛋白防止其不可逆的聚集[34,35]。
3.3抗氧化系統(tǒng)
復(fù)蘇植物體內(nèi)存在的抗氧化系統(tǒng)對(duì)防止膜脂過(guò)氧化、維持膜及細(xì)胞結(jié)構(gòu)的穩(wěn)定也起了重要作用。Kranner等[36]發(fā)現(xiàn)M. flabellifolia的復(fù)蘇能力與其體內(nèi)抗氧化防御系統(tǒng)有直接關(guān)系,脫水時(shí)間延長(zhǎng)至8個(gè)月時(shí),其體內(nèi)抗氧化劑耗盡便不能復(fù)蘇。
植物體內(nèi)抗氧化防御系統(tǒng)由非酶組分和酶組分兩部分組成??寡趸瘎┖兔割?lèi)的積累及其相關(guān)基因的表達(dá)在多種復(fù)蘇植物中均已被檢測(cè)到[37-41]。干旱及復(fù)水過(guò)程中,C. wilmsii和X. viscosa營(yíng)養(yǎng)組織中APX,GR以及SOD等抗氧化酶基因的表達(dá)都會(huì)升高[37]。X. viscosa中還確定了一個(gè)新的干旱誘導(dǎo)的過(guò)氧化物酶基因XvPer1,其編碼蛋白的功能是保護(hù)細(xì)胞核內(nèi)的核酸免受氧化脅迫損傷[38]。牛耳草、H. rhodopensis、Ramonda serbica 和R. nathaliae等苦苣苔科復(fù)蘇植物離體葉片脫水過(guò)程中發(fā)現(xiàn)除谷胱甘肽-S-轉(zhuǎn)移酶、抗壞血酸、GSH及維生素E(α生育酚)的含量明顯增加外,多酚含量和多酚氧化酶活性也明顯升高[39-41]。
3.4光合保護(hù)
植物遭受水分脅迫時(shí),光合作用是最敏感的生理過(guò)程,而光合作用的降低有利于減少光合過(guò)程中產(chǎn)生的活性氧對(duì)細(xì)胞的損傷[42]。復(fù)蘇植物失水后光合活性也會(huì)迅速下降,甚至在其葉片含水量尚未顯著下降時(shí)就停止了,例如Tripogon loliiformis在葉片失水30%時(shí),光合作用便完全停止[43]。盡管如此,復(fù)蘇植物復(fù)水后光合作用可在幾天之內(nèi)重新恢復(fù),而非復(fù)蘇植物干旱造成的光合失活卻不能逆轉(zhuǎn)。這個(gè)現(xiàn)象意味著復(fù)蘇植物葉綠體中存在某些特殊的保護(hù)機(jī)制。推測(cè)復(fù)蘇植物葉片在干旱后發(fā)生的折疊或卷曲有助于減少葉片對(duì)光能的吸收,防止脫水過(guò)程中光誘導(dǎo)產(chǎn)生的葉綠體活性氧傷害。
蕨類(lèi)植物、苔蘚植物以及雙子葉復(fù)蘇植物葉綠體在脫水時(shí)結(jié)構(gòu)保持完整,大部分葉綠素得以保持,葉綠體內(nèi)部類(lèi)囊體的垛疊結(jié)構(gòu)清晰可見(jiàn),膜結(jié)構(gòu)只有輕微損傷,復(fù)水后可以迅速?gòu)?fù)蘇并恢復(fù)光合作用,例如牛耳草[44]和C. wilmsii[45]等(表1),這些植物被稱(chēng)為葉綠素保持型(Homoiochlorophyllous)。牛耳草脫水過(guò)程中類(lèi)囊體膜色素-蛋白復(fù)合體雖然解聚但不降解[9],可能是其干旱后光合活性快速停止以及復(fù)水后迅速恢復(fù)的重要機(jī)制之一。LEA蛋白被發(fā)現(xiàn)在保護(hù)光合作用蛋白穩(wěn)定方面具有明顯效果[45]。復(fù)蘇植物脫水過(guò)程中也大量積累ELIP(early light induced protein)蛋白,例如C. plantagineum類(lèi)囊體膜上大量積累的一種22 kD的蛋白(dsp22)對(duì)于防止脫水過(guò)程導(dǎo)致的光抑制有重要作用[46]。牛耳草全基因組測(cè)序分析也發(fā)現(xiàn)大量ELIP基因,脫水過(guò)程中會(huì)大量轉(zhuǎn)錄,推測(cè)可能在PSII的保護(hù)中起作用[11]。
單子葉復(fù)蘇植物在脫水時(shí)大部分葉綠素降解,膜結(jié)構(gòu)破壞,類(lèi)囊體解體,復(fù)水后需要重新合成葉綠素并修復(fù)膜結(jié)構(gòu),復(fù)蘇時(shí)間較長(zhǎng),不能迅速恢復(fù)光合作用,被稱(chēng)為葉綠素變化型(Poikilochlorophyllous),如X. viscosa[22]等(表1)。因此葉綠素保持型復(fù)蘇植物比葉綠素變化型能更快地恢復(fù)光合作用,而且葉綠素保持型復(fù)蘇植物離體葉片可以復(fù)蘇但葉綠素變化型復(fù)蘇植物離體葉片卻不能復(fù)蘇[19]。
脫落酸(ABA)是一種重要的植物激素,在調(diào)控植物的生長(zhǎng)發(fā)育以及植物響應(yīng)干旱、冷等逆境脅迫方面有重要作用[47]。研究認(rèn)為ABA對(duì)于復(fù)蘇植物耐脫水基因的激活發(fā)揮著重要的協(xié)調(diào)作用[48]。Wang等發(fā)現(xiàn)牛耳草體內(nèi)肌醇半乳糖苷及棉子糖的合成是依賴(lài)ABA信號(hào)途徑完成的:BhGoLS1 和 BhRFS的表達(dá)都受ABA誘導(dǎo)[32,49],ABA誘導(dǎo)的轉(zhuǎn)錄因子WRKY能夠結(jié)合BhGoLS1啟動(dòng)子區(qū)的W-box元件,從而調(diào)控BhGoLS1基因表達(dá)[32]。Bartels等[50]發(fā)現(xiàn)C. plantagineum干旱葉片中ABA大量積累,而且外源ABA可促進(jìn)其愈傷組織獲得耐脫水性。但是C. plantagineum脫水早期部分基因的表達(dá)與ABA并不相關(guān),這表明可能有其它的信號(hào)途徑參與植物耐脫水過(guò)程[51]。在另一種苦苣苔科復(fù)蘇植物H. rhodopensis 中茉莉酸比ABA更早響應(yīng)干旱脅迫;而且水楊酸、細(xì)胞分裂素以及生長(zhǎng)素等激素都參與了其脫水響應(yīng)的調(diào)控[52]。
復(fù)蘇植物體內(nèi)的一系列轉(zhuǎn)錄因子都調(diào)控著脫水相關(guān)基因的表達(dá)。例如H. rhodopensis轉(zhuǎn)錄組數(shù)據(jù)分析顯示NAC、NF-YA、MADS box、HSF、GRAS以及WRKY家族的轉(zhuǎn)錄因子在水分匱缺時(shí)被誘導(dǎo)表達(dá)[53]。C. plantagineum中也確定了幾類(lèi)脫水誘導(dǎo)的轉(zhuǎn)錄因子,包括3個(gè)MYB轉(zhuǎn)錄因子[54],7個(gè)亮氨酸拉鏈家族蛋白(HDZIP)[55-57]以及一類(lèi)新的鋅指因子[58]。CPHB-1和CPHB-2是從C. plantagineum中克隆到的兩個(gè)HDZIP基因,都受脫水脅迫誘導(dǎo),但只有CPHB-2受ABA誘導(dǎo),這表明兩個(gè)基因分別在ABA依賴(lài)途徑與非ABA依賴(lài)途徑中發(fā)揮作用;而這兩種蛋白又可以形成異源二聚體,推測(cè)它們可能將ABA依賴(lài)途徑與ABA非依賴(lài)途徑聯(lián)系起來(lái)共同發(fā)揮功能[55]。牛耳草中發(fā)現(xiàn)的熱激因子BhHSF1可通過(guò)誘導(dǎo)抗逆基因的同時(shí)抑制細(xì)胞分裂相關(guān)基因的表達(dá),實(shí)現(xiàn)對(duì)植物在干旱脅迫下能量和物質(zhì)代謝方向的協(xié)同調(diào)控,促使其從生長(zhǎng)需求轉(zhuǎn)向抗逆性[59]。另外,牛耳草的一個(gè)含C2結(jié)構(gòu)域的小蛋白BhC2DP1,可通過(guò)鈣信號(hào)途徑參與ABA對(duì)干旱的調(diào)控[60]。
除轉(zhuǎn)錄水平調(diào)控外,近年來(lái)研究發(fā)現(xiàn)轉(zhuǎn)座子、小RNA與非編碼RNA和表觀遺傳調(diào)控在復(fù)蘇植物抗逆過(guò)程中也發(fā)揮了重要作用。C. plantagineum中發(fā)現(xiàn)的受脫水及ABA誘導(dǎo)的逆轉(zhuǎn)座子CDT-1,能夠指導(dǎo)一雙鏈21 bp的siRNA合成,從而發(fā)揮其功能[50,61,62]。后續(xù)研究發(fā)現(xiàn),C. plantagineum轉(zhuǎn)錄組數(shù)據(jù)中較大一部分無(wú)法匹配到已知序列的轉(zhuǎn)錄本可能是非編碼RNAs,這些序列在基因組中存在大量的拷貝,并在脫水過(guò)程中被大量誘導(dǎo)表達(dá)[63];其中一個(gè)長(zhǎng)非編碼RNA,在脫水過(guò)程中大量表達(dá),猜測(cè)可能通過(guò)表觀遺傳、轉(zhuǎn)錄水平或轉(zhuǎn)錄后水平來(lái)調(diào)控基因的表達(dá)從而在植物耐脫水中起重要作用[64]。與C. plantagineum相似,牛耳草中克隆到的逆轉(zhuǎn)座子片段S21發(fā)揮功能的形式與CDT-1類(lèi)似,可能是通過(guò)轉(zhuǎn)錄產(chǎn)生干擾RNA來(lái)發(fā)揮作用[65]。
“組學(xué)”技術(shù)的發(fā)展實(shí)現(xiàn)了以高通量的方式來(lái)檢測(cè)生物大分子在植物體內(nèi)的豐度,所以研究者利用轉(zhuǎn)錄組、蛋白質(zhì)組以及代謝組研究方法可以全面獲取復(fù)蘇植物在脫水及復(fù)水過(guò)程中轉(zhuǎn)錄本、蛋白質(zhì)、代謝物的變化情況。轉(zhuǎn)錄組分析在多種復(fù)蘇植物中鑒定了脫水復(fù)水誘導(dǎo)或抑制的轉(zhuǎn)錄本及其所富集的生物學(xué)過(guò)程和代謝過(guò)程,如逆境響應(yīng)、氧化-還原反應(yīng)、糖代謝和脂代謝、蛋白質(zhì)降解與穩(wěn)態(tài)維持和自噬等[38,53,66,67]。蛋白質(zhì)組學(xué)分析也發(fā)現(xiàn),脫水過(guò)程中積累的脅迫保護(hù)蛋白涉及ROS清除、蔗糖積累、大分子保護(hù)、細(xì)胞壁折疊等不同生物學(xué)過(guò)程[39,68,69]。利用GC-MS、LC-MS、CE-MS以及NMR技術(shù)研究發(fā)現(xiàn)復(fù)蘇植物脫水及復(fù)水過(guò)程中變化的代謝組分包括碳水化合物、氨基酸、核酸衍生物、脂類(lèi)、多胺、抗氧化物以及防御化合物;而碳水化合物的代謝在復(fù)蘇植物耐脫水過(guò)程中細(xì)胞保護(hù)方面起了關(guān)鍵作用[70,71,72]。復(fù)蘇植物形態(tài)研究也從早期的顯微鏡技術(shù)觀察推斷結(jié)構(gòu)及內(nèi)部的變化[73,74],發(fā)展至以高通量技術(shù)檢測(cè)細(xì)胞壁、類(lèi)囊體膜中糖類(lèi)、蛋白的分布狀態(tài),并利用生物信息技術(shù)分析推測(cè)這些大分子在脫水狀態(tài)下的排列[75,76]。表2中列出了已經(jīng)利用“組學(xué)”技術(shù)研究過(guò)的復(fù)蘇被子植物。另外,到目前為止,完成全基因組測(cè)序的復(fù)蘇植物只有苦苣苔科的牛耳草[11]和禾本科的Oropetium thomaeum[77]。O. thomaeum 基因組只有245 Mb,是已知具有最小基因組的禾本科草類(lèi);相比于其它禾本科植物,其基因組中含有較高的串聯(lián)重復(fù)基因;這些串聯(lián)重復(fù)基因主要涉及滲透脅迫響應(yīng),基因調(diào)控以及細(xì)胞代謝機(jī)制等并且對(duì)適應(yīng)進(jìn)化有重要作用[77]。而牛耳草基因組較大,約1 691 Mb,包含75.75%的重復(fù)序列(主要是轉(zhuǎn)座子序列)和約占表達(dá)基因的10%的孤兒基因(Orphan gene),其中有128個(gè)孤兒基因與其復(fù)蘇現(xiàn)象有關(guān)[11]。這表明復(fù)蘇植物基因組在最新進(jìn)化過(guò)程中可能通過(guò)基因組重排,基因組復(fù)制以及轉(zhuǎn)座子或逆轉(zhuǎn)座子的活性產(chǎn)生了獨(dú)特的新基因。
表2 利用“組學(xué)”技術(shù)研究的復(fù)蘇被子植物
復(fù)蘇植物營(yíng)養(yǎng)組織耐脫水機(jī)制與種子耐脫水機(jī)制有較大的相似性,例如高度依賴(lài)于抗氧化物、各種保護(hù)物質(zhì)特別是蔗糖與棉子糖以及親水性蛋白尤其是LEA大量積累的綜合作用[20]。被子復(fù)蘇植物營(yíng)養(yǎng)組織耐脫水性可能來(lái)源于種子,但進(jìn)化又使這種耐脫水性從發(fā)育程序調(diào)控轉(zhuǎn)變?yōu)榄h(huán)境因子誘導(dǎo)調(diào)控,而且產(chǎn)生了CDT-1等新調(diào)控子。高通量技術(shù)數(shù)據(jù)的整合分析發(fā)現(xiàn),脫水誘導(dǎo)基因表達(dá)、蛋白質(zhì)及代謝物積累在復(fù)蘇植物之間非常相似,再次證明了上述所闡述的復(fù)蘇植物共有的耐脫水機(jī)制,同時(shí)也發(fā)現(xiàn)了很大一部分無(wú)法匹配到其它物種已知序列的轉(zhuǎn)錄本、或已鑒定的蛋白質(zhì)和代謝物。這表明專(zhuān)門(mén)針對(duì)復(fù)蘇植物進(jìn)行的多物種基因組測(cè)序分析、進(jìn)一步豐富和完善復(fù)蘇植物特有蛋白質(zhì)和代謝組等高通量數(shù)據(jù)庫(kù)是現(xiàn)階段深化復(fù)蘇植物研究的前提和關(guān)鍵。因此利用“組學(xué)”技術(shù)及生物信息學(xué)方法,進(jìn)一步分析復(fù)蘇植物基因組序列所蘊(yùn)含的遺傳調(diào)控信息(包括基因序列和表觀調(diào)控)、全面整合復(fù)蘇植物轉(zhuǎn)錄組、蛋白質(zhì)組、代謝組以及基因組數(shù)據(jù)并且與近緣的非復(fù)蘇植物相關(guān)數(shù)據(jù)進(jìn)行比較,確定其耐脫水性的關(guān)鍵成員/代謝組分和調(diào)控因子及其調(diào)控分子機(jī)制、比較復(fù)蘇被子植物與種子耐脫水性之間以及復(fù)蘇植物與非復(fù)蘇植物的抗旱反應(yīng)和調(diào)控機(jī)制之間的異同,將成為未來(lái)幾年復(fù)蘇植物研究的方向。這些研究將有助于理解植物抗旱調(diào)控機(jī)理和陸地植物的適應(yīng)性進(jìn)化,并為作物抗逆栽培和品種培育提供理論基礎(chǔ)。
復(fù)蘇植物中發(fā)現(xiàn)了大量與脫水復(fù)蘇相關(guān)的基因,利用基因工程技術(shù)將其轉(zhuǎn)化到模式植物擬南芥或煙草體內(nèi),大大提高了轉(zhuǎn)基因植物自身的抗旱性。隨著基因工程技術(shù)的發(fā)展,將復(fù)蘇植物抗旱基因?qū)胱魑镏仓辏蛊浞€(wěn)定表達(dá),可以培育出極度抗旱新品種,這對(duì)提高全球糧食產(chǎn)量具有重要意義。其中一些如BhLEA1、BhGOLS1、BhHsf1和BhDNAJC2等[31,33,45,60]具有自主知識(shí)產(chǎn)權(quán)的復(fù)蘇植物耐旱功能基因必將在我國(guó)植物抗逆分子育種上發(fā)揮極大作用。
[1] Delmer DP. Agriculture in the developing world:connecting innovations in plant research to downstream applications[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(44):15739-15746.
[2] Jaleel CA, Manivannan P, Wahid A, et al. Drought stress in plants:a review on morphological characteristics and pigments composition[J]. International Journal of Agriculture & Biology,2009, 11(1):100-105.
[3] Bewley JD. Physiological aspects of desiccation tolerance[J]. Annual Review Plant Biology, 1979, 30:195-238.
[4] Pickett FL. Some ecological adaptations of certain fern Prothallia-Camptosorus rhizophyllus Link., Asplenium platyneuron Oakes[J]. American Journal of Botany, 1914, 1(9):477-498.
[5] Gaff DF. Desiccation-tolerant flowering plants in southern Africa[J]. Science, 1971, 174(4013):1033-1034.
[6] Gaff DF, Oliver M. The evolution of desiccation tolerance in angiosperm plants:a rare yet common phenomenon[J]. Functional Plant Biology, 2013, 40(4):315-28.
[7] Wang X, Chen S, Zhang H, et al. Desiccation tolerance mechanism in resurrection fern-ally Selaginella tamariscina revealed by physiological and proteomic analysis[J]. Journal of Proteome Research, 2010, 9(12):6561-6577.
[8] Wang XQ, Yang PF, Liu Z, et al. Exploring the mechanism of Physcomitrella patens desiccation tolerance through a proteomic strategy[J]. Plant Physiology, 2009, 149(4):1739-1750.
[9] Deng X, Hu Z, Wang H, et al. Effects of dehydration and rehydration on photosynthesis of detached leaves of the resurrective plant Boea hygrometrica[J]. Acta Botanica Sinica, 1999, 42(3):321-323.
[10] Mitra J, Xu G, Wang B, et al. Understanding desiccation tolerance using the resurrection plant Boea hygrometrica as a model system[J]. Frontiers in Plant Science, 2013, 4:446.
[11] Xiao LH, Yang G, Zhang L C, et al. The resurrection genome of Boea hygrometrica:A blueprint for survival of dehydration[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(18):5833-5837.
[12] 張丹丹, 周守標(biāo), 周會(huì), 等. 大花旋蒴苣苔對(duì)脫水與復(fù)水的生理響應(yīng)[J]. 生態(tài)學(xué)雜志, 2016, 1:74-80.
[13] Shen Y, Tang M J, Hu YL, et al. Isolation and characterization of a dehydrin-like gene from drought-tolerant Boea crassifolia[J]. Plant Science, 2004, 166(5):1167-1175.
[14] Chen BJ, Wang Y, Hu YL, et al. Cloning and characterization of a drought-inducible MYB gene from Boea crassifolia[J]. Plant Science, 2005, 168(2):493-500.
[15] Wu H, Shen Y, Hu Y, et al. A phytocyanin-related early nodulinlike gene, BcBCP1, cloned from Boea crassifolia enhances osmotic tolerance in transgenic tobacco[J]. Journal of Plant Physiology,2011, 168(9):935-943.
[16] Huang W, Yang SJ, Zhang SB, et al. Cyclic electron flow plays an important role in photoprotection for the resurrection plant Paraboea rufescens under drought stress[J]. Planta, 2012, 235(4):819-828.
[17] Fu P, Zhang Y, Fan ZX, et al. Leaf gas exchange and xylem hydraulic traits of a resurrection plant(Paraboea rufescens,Gesneriaceae)and its responses to drought and re-watering. Oral presentation, 7th International workshop on desiccation sensitivity and tolerance across life forms. 2016.
[18] Li A, Wang D, Yu B, et al. Maintenance or collapse:responses of extraplastidic membrane lipid composition to desiccation in the resurrection plant Paraisometrum mileense[J]. PLoS ONE, 2014,9(7):e103430.
[19] Dinakar C, Djilianov D, Bartel D. Photosynthesis in desiccation tolerant plants:Energy metabolism and antioxidative stress defense[J]. Plant Science, 2012, 182:29-41.
[20] Oliver MJ, Tuba Z, Mishler BD. The evolution of vegetative desiccation tolerance in land plants[J]. Plant Ecology, 2000,151(1):85-100.
[21] Farrant JM, Moore JP. Programming desiccation-tolerance:from plants to seeds to resurrection plants[J]. Current Opinion in Plant Biology, 2011, 14(3):340-345.
[22] Sherwin HW, Farrant JM. Protection mechanisms against excess light in the resurrection plants Craterostigma wilmsii and Xerophyta viscosa[J]. Plant Growth Regulation, 1998, 24(3):203-210.
[23] Vicré M, Farrant J M, Driouich A. Insights into the cellular mechanisms of desiccation tolerance among angiosperm resurrection plant species[J]. Plant, Cell & Environment, 2004,27(11):1329-1340.
[24] Vicré M, Sherwin HW, Driouich A, et al. Cell wall characteristics and structure of hydrated and dry leaves of the resurrection plant Craterostigma wilmsii, a microscopical study[J]. Journal of Plant Physiology, 1999, 155(6):719-726.
[25] Jones L, McQueen-Mason S. A role for expansins in dehydration and rehydration of the resurrection plant Craterostigma plantagineum[J]. FEBS Letters, 2004, 559(1-3):61-65.
[26] Moore JP, Nguema-Ona E, Chevalier L, et al. Response of the leaf cell wall to desiccation in the resurrection plant Myrothamnus flabellifolius[J]. Plant Physiology, 2006, 141(2):651-662.
[27] Moore JP, Farrant JM, Driouich A. A role for pectin-associated arabinans in maintaining the flexibility of the plant cell wall during water deficit stress[J]. Plant Signaling & Behavior, 2008, 3(2):102-104.
[28] Ingram J, Bartels D. The molecular basis of dehydration tolerance in plants[J]. Annual Review Plant Physiology and Plant Molecular Biology, 1996, 47:377-403.
[29] Bianchi G, Gamba A, Murelli C, et al. Novel carbohydrate metabolism in the resurrection plant Craterostigma plantagineum[J]. The Plant Journal, 1991, 1(3):355-359.
[30] Ingram J, Chandler JW, Gallagher L, et al. Analysis of cDNA clones encoding sucrose-phosphate synthase in relation to sugarinterconversions associated with dehydration in the resurrection plant Craterostigma plantagineum Hochst[J]. Plant Physiology,1997, 115(1):113-121.
[31] Norwood M, Truesdale MR, Richter A, et al. Photosynthetic carbohydrate metabolism in the resurrection plant Craterostigma plantagineum[J]. Journal of Experimental Botany, 2000, 51(343):159-165.
[32] Wang Z, Zhu Y, Wang L, et al. A WRKY transcription factor participates in dehydration tolerance in Boea hygrometrica by binding to the W-box elements of the galactinol synthase(BhGolS1)promoter[J]. Planta, 2009, 230(6):1155-1166.
[33] Illing N, Denby KJ, Collett H, et al. The signature of seeds in resurrection plants:a molecular and physiological comparison of desiccation tolerance in seeds and vegetative tissues[J]. Integrative & Comparative Biology, 2005, 45(5):771-787.
[34] 陳世璇, 張振南, 王波, 等. 復(fù)蘇植物旋蒴苣苔J 結(jié)構(gòu)域蛋白編碼基因BhDNAJC2 的克隆, 表達(dá)與功能[J]. 植物學(xué)報(bào),2015, 50(2):180-190.
[35] Zhang Z, Wang B, Sun S, et al. Molecular cloning and differential expression of sHSP gene family members from the resurrection plant Boea hygrometrica in response to abiotic stresses[J]. Biologia, 2013, 68(4):651-661.
[36] Kranner I, Beckett RP, Wornik S, et al. Revival of a resurrection plant correlates with its antioxidant status[J]. The Plant Journal,2002, 31(1):13-24.
[37] Mowla SB, Thomson JA, Farran JM, et al. A novel stress-inducible antioxidant enzyme identified from the resurrection plant Xerophyta viscosa Baker[J]. Planta, 2002, 215(5):716-726.
[38] Zhu Y, Wang B, Phillips J, et al. Global transcriptome analysis reveals acclimation-primed processes in the acquisition of desiccation tolerance in Boea hygrometrica[J]. Plant Cell Physiology, 2015, 56(7):1429-1441.
[39] Jiang G, Wang Z, Shang H, et al. Proteome analysis of leaves from the resurrection plant Boea hygrometrica in response to dehydration and rehydration[J]. Planta, 2007, 225(6):1405-1420.
[40] Jovanovic Z, Rakic T, Stevanovic B, et al. Characterization of oxidative and antioxidative events during dehydration and rehydration of resurrection plants Ramonda nathaliae[J]. Plant Growth Regulation, 2011, 64(3):231-240.
[41] Farrant JM, Vander Willigen C, Loffell DA, et al. An investigation into the role of light during desiccation of three angiosperm resurrection plants[J]. Plant, Cell & Environment, 2003, 26(8):1275-1286.
[42] Karbaschi MR, Williams B, Taji A, et al. Tripogon loliiformis elicits a rapid physiological and structural response to dehydration for desiccation tolerance[J]. Functional Plant Biology, 2016, 43(7):643-655.
[43] Wang L, Shang H, Liu Y, et al. A role for a cell wall localized glycine-rich protein in dehydration and rehydration of the resurrection plant Boea hygrometrica[J]. Plant Biology, 2009,11(6):837-848.
[44] Liu X, Wang Z, Wang L, et al. LEA 4 group genes from the resurrection plant Boea hygrometrica confer dehydration tolerance in transgenic tobacco[J]. Plant Science, 2009, 176(1):90-98.
[45] Alamillo JM, Bartels D. Effects of desiccation on photosynthesis pigments and the ELIP-like dsp 22 protein complex in the resurrection plant Craterostigma plantagineum[J]. Plant Science, 2001, 160(6):1161-1170.
[46] Sherwin HW, Farrant JM. Differences in rehydration of three desiccation-tolerant angiosperm species[J]. Annals of Botany,1996, 78(6):703-710.
[47] Bartels D, Phillips J, Chandler J. Desiccation tolerance:Gene expression, pathways, and regulation of gene expression. [M]// Jenks MA, Wood AJ. Plant desiccation tolerance. Ames, Iowa:Blackwell Publishing, 2007:115-148.
[48] Toldi O, Tuba Z, Scott P. Vegetative desiccation tolerance:is it a goldmine for bioengineering crops?[J]. Plant Science, 2009, 176(2):187-199.
[49] Wang Z, Liu Y, Wei J, et al. Cloning and expression of a gene encoding a raffinose synthase in the resurrection plant Boea hygrometrica[J]. Chinese Bulletin Botany, 2012, 47(1):44-54.
[50] Furini A, Koncz C, Salamini F, et al. High level transcription of a member of a repeated gene family confers dehydration tolerance to callus tissue of Craterostigma plantagineum[J]. The EMBO Journal, 1997, 16(12):3599-3608.
[51] Frank W, Munnik T, Kerkmann K, et al. Water deficit triggers phospholipase D activity in the resurrection plant Craterostigma plantagineum[J]. The Plant Cell, 2000, 12(1):111-124.
[52] Djilianov DL, Dobrev PI, Moyankova DP, et al. Dynamics of endogenous phytohormones during desiccation and recovery of the resurrection plant species Haberlea rhodopensis[J]. Journal of Plant Growth Regulation, 2013, 32(3):564-574.
[53] Gechev TS, Benina M, Obata T, et al. Molecular mechanisms of desiccation tolerance in the resurrection glacial relic Haberlea rhodopensis[J]. Cellular and Molecular Life Sciences, 2013, 70(4):689-709.
[54] Iturriaga G, Leyns L, Villegas A, et al. A family of novel mybrelated genes from the resurrection plant Craterostigma plantagineum are specifically expressed in callus and roots in response to ABA or desiccation[J]. Plant Molecular Biology,1996, 32(4):707-716.
[55] Frank W, Phillips J, Salamini F et al. Two dehydration-inducible transcripts from the resurrection plant Craterostigma plantagineum encode interacting homeodomain-leucine zipper proteins[J]. The Plant Journal, 1998, 15(3):413-421.
[56] Deng X, Phillips J, Meijer A H, et al. Characterization of five novel dehydration-responsive homeodomain leucine zipper genes from the resurrection plant Craterostigma plantagineum[J]. Plant Molecular Biology, 2002, 49(6):601-610.
[57] Deng X, Phillips J, Brautigam A, et al. A homeodomain leucine zipper gene from Craterostigma plantagineum regulates abscisic acid responsive gene expression and physiological responses[J]. Plant Molecular Biology, 2006, 61(3):469-489.
[58] Hilbricht T, Salamini F, Bartels D. CpR18, a novel SAP-domain plant transcription factor, binds to a promoter region necessary for ABA mediated expression of the CDeT27-45 gene from the resurrection plant Craterostigma plantagineum Hochst[J]. The Plant Journal, 2002, 31(3):293-303.
[59] Zhu Y, Wang Z, Jing YJ, et al. Ectopic over-expression of BhHsf1,a heat shock factor from the resurrection plant Boea hygrometrica,leads to increased thermotolerance and retarded growth in transgenic Arabidopsis and tobacco[J]. Plant Molecular Biology,2009, 71:451-467.
[60] Zhang L, Ji F, Wang L, et al. A small C2-domain protein from the resurrection plant Boea hygrometrica promotes plant responses to abscisic acid[J]. Chinese Bulletin of Botany, 2012, 47(1):11-27.
[61] Smith-Espinoza CJ, Phillips JR, Salamini F, et al. Identification of further Craterostigma plantagineum cdt mutants affected in abscisic acid mediated desiccation tolerance[J]. Molecular Genetics and Genomics, 2005, 274(4):364-372.
[62] Hilbricht T, Varotto S, Sgaramella V, et al. Retrotransposons and siRNA have a role in the evolution of desiccation tolerance leading to resurrection of the plant Craterostigma plantagineum[J]. New Phytologist, 2008, 179(3):877-887.
[63] Giarola V, Bartels D. What can we learn from the transcriptome of the resurrection plant Craterostigma plantagineum?[J]. Planta,2015, 242(2):427-434.
[64] Giarola V, Krey S, Frerichs A, et al. Taxonomically restricted genes of Craterostigma plantagineum are modulated in their expression during dehydration and rehydration[J]. Planta, 2015, 241(1):193-208.
[65] Zhao Y, Xu T, Shen CY, et al. Identification of a retroelement from the resurrection plant Boea hygrometrica that confers osmotic and alkaline tolerance in Arabidopsis thaliana[J]. PLoS ONE, 2014,9(5):e98098.
[66] Rodriguez MCS, Edsg?rd D, Hussain SS, et al. Transcriptomes of the desiccation-tolerant resurrection plant Craterostigma plantagineum[J]. The Plant Journal, 2010, 63(2):212-228.
[67] Ma C, Wang H, Macnish AJ, et al. Transcriptomic analysis reveals numerous diverse protein kinases and transcription factors involved in desiccation tolerance in the resurrection plant Myrothamnus flabellifolia[J]. Horticulture Research, 2015, 2:15034.
[68] Ingle R, Schmidt U, Farrant J, et al. Proteomic analysis of leaf proteins during dehydration of the resurrection plant Xerophyta viscosa[J]. Plant, Cell & Environment, 2007, 30(4):435-446.
[69] Oliver MJ, Jain R, Balbuena TS, et al. Proteome analysis of leaves of the desiccation-tolerant grass, Sporobolus stapfianus, in response to dehydration[J]. Phytochemistry, 2011, 72(10):1273-1284.
[70] Moyankova D, Mladenov P, Berkov S, et al. Metabolic profiling of the resurrection plant Haberlea rhodopensis during desiccation and recovery[J]. Physiologia Plantarum, 2014, 152(4):675-687.
[71] Yobi A, Wone BWM, Xu W, et al. Comparative metabolic profiling between desiccation-sensitive and desiccation tolerant species of Selaginella reveals insights into the resurrection trait[J]. The Plant Journal, 2012, 72(6):983-999.
[72] Oliver MJ, Guo L, Alexander DC, et al. A sister group contrast using untargeted global metabolomic analysis delineates thebiochemical regulation underlying desiccation tolerance in Sporobolus stapfianus[J]. The Plant Cell, 2011, 23(4):1231-1248.
[73] Liu YB, Wang G, Liu J, et al. Anatomical, morphological and metabolic acclimation in the resurrection plant Reaumuria soongorica during dehydration and rehydration. [J]Journal of Arid Environments, 2007, 70:183-194.
[74] Moore JP, Hearshaw M, Ravenscroft N, et al. Desiccationinduced ultrastructural and biochemical changes in the leaves of the resurrection plant Myrothamnus flabellifolia. [J]Australian Journal of Botany, 2007, 55:482-491.
[75] Moore JP, Nguema-Ona EE, Vicré-Gibouin M et al. Arabinose-rich polymers as an evolutionary strategy to plasticize resurrection plant cell walls against desiccation. [J]Planta, 2013, 273(3):739-54.
[76] Zia A, Walker B J, Oung H M et al. Protection of the photosynthetic apparatus against dehydration stress in the resurrection plant Craterostigma pumilum. [J]The Plant Journal, 2016, doi:10. 1111/tpj. 13227
[77] VanBuren R, Bryant D, Edger PP, et al. Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum[J]. Nature, 2015, 527(7579):508-511.
(責(zé)任編輯 李楠)
Progress on Mechanisms of Dehydration Tolerance in Resurrection Plants
LIU Jie1,2Chih-Ta Lin2,3DENG Xin2
(1 .Weifang University of Science and Technology,Weifang 262700;2. Key Laboratory of Plant Resources,Institute of Botany,Chinese Academy of Sciences,Beijing 100093;3. IWBT,Stellenbosch University,Cape Town,Republic of South Africa)
Extreme water loss is rarely found in most of higher plants,however,so-called “resurrection plants” evolved uniquely to tolerate the loss more than 90%,and resume living status rapidly after rehydration. This review summarized distribution and classification of these plants,with their morphology,physiological and molecular mechanisms in response to desiccation,and forward research and application prospects.
resurrection plant;desiccation tolerance;drought stress
2016-08-30
國(guó)家自然科學(xué)基金面上項(xiàng)目(31270312)
劉杰,女,博士后,研究方向:植物抗旱分子調(diào)控機(jī)制;E-mail:liujie655@163.com
鄧馨,女,博士生導(dǎo)師,研究方向:植物干旱適應(yīng)及分子調(diào)控機(jī)制;E-mail:deng@ibcas.ac.cn