王培培 宋萍 張群
(南京農(nóng)業(yè)大學(xué)生命科學(xué)學(xué)院 作物遺傳與種質(zhì)創(chuàng)新國家重點實驗室,南京 210095)
磷脂酶D信號轉(zhuǎn)導(dǎo)與植物耐鹽研究進展
王培培 宋萍 張群
(南京農(nóng)業(yè)大學(xué)生命科學(xué)學(xué)院 作物遺傳與種質(zhì)創(chuàng)新國家重點實驗室,南京 210095)
土壤鹽害是一個全球性的生態(tài)問題,對生態(tài)環(huán)境和農(nóng)業(yè)生產(chǎn)帶來了巨大的負面影響。研究發(fā)現(xiàn),植物磷脂酶D(Phospholipase D,PLD)是磷脂代謝和應(yīng)答非生物脅迫的重要酶類;PLD具有不同的結(jié)構(gòu)、生化和調(diào)節(jié)特性,產(chǎn)生信號分子磷脂酸(Phosphatidic acid,PA)并參與多種脅迫反應(yīng)。總結(jié)了PLD及其產(chǎn)物PA調(diào)控植物耐鹽的相關(guān)報道,探討其感受、應(yīng)答鹽信號的分子機制,為研究植物應(yīng)答高鹽脅迫和農(nóng)作物分子遺傳改良提供相關(guān)參考。
鹽脅迫;磷脂酶D;磷脂酸;信號轉(zhuǎn)導(dǎo)
DOI:10.13560/j.cnki.biotech.bull.1985.2016.10.012
植物細胞膜較早感受、傳導(dǎo)外界各種脅迫信號。磷脂是細胞膜的骨架成分,其水解產(chǎn)物參與生理生化、細胞信號轉(zhuǎn)導(dǎo)以及環(huán)境刺激引起的細胞應(yīng)答等多個過程[1]。磷脂酶是代謝磷脂的關(guān)鍵酶,根據(jù)其水解位點不同分磷脂酶A1(Phospholipase A1,PLA1)、磷脂酶A2(Phospholipase A2,PLA2)、磷脂酶 C(Phospholipase C,PLC)和磷脂酶D(Phospholipase D,PLD)[2,3]。
PLD是植物中最早被發(fā)現(xiàn)和克隆的磷脂酶基因[4],廣泛分布于根、莖、葉、花、果實和種子等各個組織[5]。根據(jù)基因序列和結(jié)構(gòu)域的不同,擬南芥12個PLD基因分為6類:PLDα(1-3),PLDβ(1,2),PLDγ(1-3),PLDδ,PLDε和PLDζ(1,2)[6]。除了PLDζ,植物PLD基因都包括N端的C2結(jié)構(gòu)域,屬于結(jié)合磷脂的折疊域,與Ca2+的結(jié)合有關(guān),是植物PLD特有的結(jié)構(gòu)[7,8];兩個重復(fù)的HKD區(qū)域是所有真核PLD基因共有的結(jié)構(gòu)域[9],對PLD活性非常重要。PLDζ除了含有HKDs結(jié)構(gòu)域,還有兩個N端特殊結(jié)構(gòu)域PX(Phox homology)和PH(Pleckstrin homology),PX富含脯氨酸殘基,可以與磷酸肌醇結(jié)合,而PH可以與磷脂酰肌醇結(jié)合。PLD基因除了結(jié)構(gòu)上的共性以外,還有一些特殊性,如PLDβ1擁有一個PIP2結(jié)合區(qū),可以被PIP2和Ca2+協(xié)同激活[10];PLDα1在兩個HKDs結(jié)構(gòu)域中間包含DRY基序,此結(jié)構(gòu)域可以和異三聚體G蛋白亞基α(Gα)結(jié)合,從而增強Gα的GTP酶活性,共同調(diào)節(jié)氣孔運動與水分散失[11]。在第一個HKD結(jié)構(gòu)域后,PLDδ包含一個油酸結(jié)合區(qū)域[12]。另外,PLD基因的亞細胞分布及在組織、器官中的表達和分布也是不同的,最終導(dǎo)致了其功能的特異性[6]。
研究表明,植物能夠迅速感受、應(yīng)答各種脅迫環(huán)境,該信號轉(zhuǎn)導(dǎo)過程與特異的磷脂酶激活有關(guān)。PLDα1參與鹽脅迫、脫水、活性氧誘導(dǎo)的氧化脅迫、脫落酸反應(yīng)、氣孔關(guān)閉、凍害和種子老化[6]等多種脅迫反應(yīng);PLDδ涉及凍害、脫水、鹽脅迫和干旱等脅迫反應(yīng)[6];PLDα3介導(dǎo)了植物高滲脅迫應(yīng)答[13];PLDβ1和PLDδ在植物抵御病害中發(fā)揮重要作用[14,15];PLDε參與氮信號轉(zhuǎn)導(dǎo)[16];PLDζ2參與磷饑餓[17]、生長素響應(yīng)和囊泡運輸[18];PLDγs活性受鋁脅迫誘導(dǎo),在植物耐鋁性中起負調(diào)控作用[19]。
土地鹽堿化是制約農(nóng)業(yè)生產(chǎn)穩(wěn)定發(fā)展的重要因素之一。鹽害是植物體經(jīng)常遭受的非生物脅迫之一,在世界范圍對作物生產(chǎn)會造成重大損失。植物形成各種生理、細胞和遺傳機制使其在高鹽脅迫下得以生存,其中包括SOS(Salt overly sensitive)系統(tǒng)、植物激素、抗氧化防護系統(tǒng)、滲透調(diào)節(jié)物質(zhì)和膜脂信號等[3,6]。其中,PLD及其產(chǎn)物PA在植物耐鹽信號轉(zhuǎn)導(dǎo)中扮演重要角色,本文綜述了PLD/PA參與植物耐鹽脅迫的研究進展及其可能的分子機制,以期為植物耐鹽研究和農(nóng)作物分子改良提供一定的參考。
生長素是植物體內(nèi)唯一具有極性運輸(Polar auxin transport,PAT)特點的激素,它主要在植物莖尖、頂芽、幼葉、發(fā)育的種子、主根根尖的分生組織及發(fā)育的側(cè)根等生長活躍的部位合成,然后通過PAT(主要是從莖頂端向根尖)到達靶細胞來調(diào)節(jié)一系列生理反應(yīng)[20,21]。生長素的極性運輸影響植物體的生長、發(fā)育和繁殖等眾多生理過程:植物的形態(tài)建成和向性反應(yīng)、組織的伸長生長及維管分化、胚胎發(fā)育和光形態(tài)建成等[22,23]。生長素的極性運輸是通過向細胞內(nèi)運輸生長素載體(AUXIN-RESISTANT1,AUX1)和向細胞外運輸生長素載體(PIN-FORMED,PIN)實現(xiàn)的[24,25]。PINs蛋白的極性運輸、分布和表達水平變化,直接影響植物主根、側(cè)根的發(fā)生和發(fā)育[26]。
低鹽處理會減少生長素信號突變體axr1、axr4和tir1中的側(cè)根數(shù)目,并抑制PIN2蛋白的表達,降低PIN2-GFP在根尖伸長區(qū)的分布,鹽信號可能通過轉(zhuǎn)錄水平和轉(zhuǎn)錄后水平調(diào)節(jié)生長素的運輸[27]。鹽誘導(dǎo)PLDα1、PLDα3和PLDδ產(chǎn)生PA,參與擬南芥對鹽害的響應(yīng)過程。擬南芥pldα1pldδ雙突變體的PA含量較低,其耐鹽性也顯著降低[7]。擬南芥PLDα3的插入缺失突變體對鹽害更敏感,而過表達PLDα3基因能顯著提高植株的耐鹽性[13]。PLDζ2及其產(chǎn)物PA通過調(diào)節(jié)PIN2蛋白的囊泡循環(huán)過程,影響了生長素的極性運輸、分布[28]。近期研究表明,鹽脅迫促進PLDζ2依賴的網(wǎng)格蛋白招募到質(zhì)膜和PIN2的內(nèi)化、回收到根的一側(cè),最終導(dǎo)致生長素的差異分布及其根部彎曲,從而促使植物避開鹽環(huán)境;對鹽脅迫響應(yīng)是PIN2蛋白特有的,而不是其他膜蛋白共有的[29]。
PA調(diào)控生長素信號通路的關(guān)鍵靶蛋白可能是蛋白磷酸酶PP2A。PLD來源的PA結(jié)合PP2A的亞基PP2AA1,二者的互作誘導(dǎo)質(zhì)膜PP2AA1含量增加和活性升高,并調(diào)控PP2A介導(dǎo)的PIN1去磷酸化水平,進而影響生長素的分布[30]。
植物體在高鹽脅迫下會接受并且轉(zhuǎn)導(dǎo)脅迫信號,啟動植物對鹽脅迫的響應(yīng)機制。植物蛋白激酶在信號轉(zhuǎn)導(dǎo)中起著重要作用,蛋白質(zhì)的磷酸化和去磷酸化可以實時調(diào)節(jié)細胞穩(wěn)態(tài),維持植物體正常的生命活動[31]。
2.1蛋白激酶分類
蛋白激酶數(shù)量多、功能多樣化,根據(jù)底物特異性分為5類:絲/蘇氨酸蛋白激酶、組/精/賴氨酸蛋白激酶、酪氨酸蛋白激酶、色氨酸蛋白激酶和天冬酰胺基/谷氨酰胺基蛋白激酶[32]。根據(jù)催化域氨基酸序列的不同分為5類:AGC 類(包括蛋白激酶A、G、C),CaMK 類(CDPK 家族)和需要 SNF1/ AMP 活化的蛋白激酶家族(SNF1-related protein kinase),CMGC 類(包括細胞周期蛋白依賴激酶CDK、糖原合成酶激酶(GSK-3)、促分裂原活化蛋白激酶MAPK以及酪蛋白激酶CKⅡ,常規(guī) PTK 類和其他類蛋白激酶[33]。
2.2PLD調(diào)控植物鹽脅迫信號轉(zhuǎn)導(dǎo)的蛋白激酶
MAPKs家族成員是絲氨酸/蘇氨酸蛋白激酶,參與多種信號傳遞過程,包括分裂原激活的蛋白激酶(MAPK)、分裂原激活蛋白激酶的激酶(MAPKK)和分裂原激活蛋白激酶的激酶的激酶(MAPKKK)3種類型。通過MAPK/MAPKK/MAPKKK間逐級磷酸化形成一個MAPK級聯(lián)系統(tǒng)[34]。鹽脅迫可以激活擬南芥MAPK3、MAPK4和MAPK6,過表達MAPKK2可以增加MAPK4和MAPK6活性,提高植株的耐鹽性和耐凍性[35]。研究表明,PA調(diào)控鹽信號的靶蛋白激酶是MAPK6[36]。鹽脅迫下,PLDα1被激活產(chǎn)生的PA與MAPK6的結(jié)合,誘導(dǎo)MAPK6激酶活性增加,促進Na+/H+轉(zhuǎn)運蛋白SOS1的磷酸化水平,增加其外排Na+的活性,提高了植物的抗鹽性[36]。
蛋白激酶CTR1(Constitutive triple response)是乙烯信號途徑的負調(diào)控因子,PA與CTR1能夠結(jié)合并抑制后者與乙烯受體ETR1(Ethylene receptor)的互作[37]。研究表明乙烯信號途徑是植物耐鹽所必需的。擬南芥etr-1突變體表現(xiàn)為鹽敏感表型[38],乙烯信號的核心組分EIN2(ETHYLENE INSENSITIVE 2)的突變體也對鹽脅迫非常敏感[39]。但是,PA如何通過精細調(diào)節(jié)乙烯信號通路,并進而調(diào)控植物對鹽信號的感受、應(yīng)答,仍然需要更多的分子細胞和遺傳證據(jù)。
作為AGC激酶的上游激活因子,蛋白激酶PDK1(3-phosphoinositide-dependent kinase 1)能夠激活生長素信號途徑重要的蛋白激酶PID(PINOID),進而調(diào)控植物生長素極性運輸和植物的耐鹽性[40]。PA能特異結(jié)合PDK1并激活下游AGC活性,該激活效應(yīng)是依賴PDK1的[40,41]。因此,可以推測,PA依賴的PDK1-PID激酶途徑可能是植物連接生長素信號和植物耐逆的關(guān)鍵因子[42]。PA也能結(jié)合和激活鞘氨醇激酶(Sphingosine kinase,SPHK)并促使后者產(chǎn)生鞘氨醇-1-磷酸(Phytosphingosine 1-phosphate,Phyto-S1P),共同調(diào)節(jié)ABA介導(dǎo)的氣孔運動途徑[43,44],但上述互作是否影響植物耐鹽性尚無報道。
另外,OsMAPK5能夠正向調(diào)節(jié)水稻對鹽的耐受性[45];OsMAPK33通過調(diào)節(jié)Na+/K+,維持植物體內(nèi)穩(wěn)態(tài),增強耐鹽性[46]。CDPK家族GsCBRLK[47]、AtCPK3[48]、OsCPK2、OsCPK4、OsCPK7和OsCPK12都參與植物耐鹽[49,50];RLK家族OsSIK1和OsSIK2都能使水稻轉(zhuǎn)基因植株耐鹽性提高[51,52]。PLD成員是否參與其中,值得進一步研究。
細胞骨架(包括微管、微絲和中間纖維)是位于細胞膜內(nèi)側(cè)面的蛋白質(zhì)絲纖維網(wǎng)架系統(tǒng),參與細胞運動、細胞分裂、細胞分化以及細胞信號轉(zhuǎn)導(dǎo)過程,并且在抗逆反應(yīng)中起到重要作用[53]。微管主要由α-、β-微管蛋白(tubulin)和少量的微管結(jié)合蛋白(MAP)構(gòu)成。微管結(jié)合蛋白可以與微管特異結(jié)合,從而影響微管的結(jié)構(gòu)與功能,調(diào)節(jié)微管穩(wěn)定性,促使微管與質(zhì)膜等細胞結(jié)構(gòu)交聯(lián)[54]。
早期研究發(fā)現(xiàn),150 mmol/L NaCl處理煙草BY-2懸浮細胞后,細胞微管由橫定性轉(zhuǎn)變?yōu)闊o序狀態(tài)[55];Wang等[56]研究表明鹽脅迫誘導(dǎo)擬南芥植株根部向右彎曲生長并伴隨著皮層微管的解聚;Mao等[57]發(fā)現(xiàn)AtMAP65-6能夠誘導(dǎo)單根微管形成致密的網(wǎng)狀結(jié)構(gòu),該網(wǎng)狀結(jié)構(gòu)可以抵抗500 mmol/L NaCl的脅迫;這些都表明微管參與了應(yīng)答高鹽刺激。
PLD蛋白或者其產(chǎn)物PA可能是連接微管和細胞膜的重要因子[58],Zhang等[59]近期研究表明,pldα1突變體的細胞微管對NaCl脅迫超敏感,而外源補充PA能顯著提高其抗性;PA能結(jié)合并激活微管蛋白MAP65-1,形成PA-MAP65-1-微管復(fù)合體,促使微管形成更多的維管束結(jié)構(gòu),緩解脅迫對細胞的傷害,提高擬南芥植株對鹽害的抵抗力;過表達MAP65-1增強了擬南芥細胞耐鹽的能力;PA與MAP65-1蛋白有3個關(guān)鍵的結(jié)合區(qū)域(53-55、61-63和428-429位氨基酸),突變上述的結(jié)合區(qū)域?qū)е缕渚酆衔⒐苣芰ο陆?,細胞耐鹽性降低。因此,PA可能通過靶蛋白MAP65-l將質(zhì)膜和細胞骨架聯(lián)系在一起并轉(zhuǎn)導(dǎo)鹽信號,對研究植物抗鹽有重要的指導(dǎo)作用。蛋白激酶如ANP2/ANP3、MPK4和MPK6等均可磷酸化MAP65-1,通過調(diào)節(jié)其蛋白活性,參與細胞微管排布和分裂周期的調(diào)控[59]。另外,PA還能結(jié)合微絲結(jié)合蛋白異二聚體加帽蛋白AtCP,并調(diào)節(jié)后者與微絲的結(jié)合活性[60,61]。深入研究發(fā)現(xiàn),PA和AtCP的互作增加微絲末端動態(tài)變化,促進微絲自由端的伸長,該過程可能調(diào)控花粉管的發(fā)育和植物逆境響應(yīng)(圖1)[62,63]??梢?,植物PLD/PA調(diào)控細胞骨架(微管或微絲)應(yīng)答鹽信號的分子通路相對比較復(fù)雜,且PA靶蛋白之間存在一定的交叉對話[3]。
圖1 PLDs/PA調(diào)控的植物耐鹽信號通路
利用煙草懸浮細胞蛋白抗體,Gardiner等[64]從煙草中分離到一個分子量大小為90 kD的微管結(jié)合蛋白,通過與擬南芥基因數(shù)據(jù)庫比對,發(fā)現(xiàn)該蛋白是PLDδ,并具有酯酶活性。擬南芥PLDδ位于細胞質(zhì)膜,其活性特異性被油酸激活,并參與植物活性氧、耐鹽、氣孔運動和抗凍等多個重要過程[64-66]。利用正丁醇、NaCl等PLD的激活因子處理煙草懸浮細胞,發(fā)現(xiàn)PLD被激活后,細胞周質(zhì)微管解聚,暗示PLDδ可能是植物中連接微管和質(zhì)膜的橋梁蛋白,通過感受外界脅迫信號,調(diào)節(jié)膜脂組合和微管骨架動態(tài),傳導(dǎo)信號到胞內(nèi)[55]。但是,PLDδ蛋白如何調(diào)控微管的動態(tài)變化(解聚或聚合),PLDδ是否也調(diào)控微絲骨架,PLDδ是否通過調(diào)節(jié)細胞骨架從而調(diào)控細胞對鹽害等逆境的響應(yīng),這些都是亟待解決的科學(xué)問題。另外,研究發(fā)現(xiàn),PLDβ能分別被F-肌動蛋白和G-肌動蛋白特異激活和抑制,推測其可能參與微絲重排和花粉管伸長[67]。
活性氧(Reactive oxygen species,ROS)是植物生長發(fā)育和抗逆應(yīng)答中非常重要的信號分子。研究表明,PLDα1來源的PA結(jié)合并激活質(zhì)膜上的NADPH氧化酶,導(dǎo)致胞內(nèi)ROS爆發(fā),轉(zhuǎn)導(dǎo)ABA信號和促進氣孔關(guān)閉[68]。最近研究表明,PLDα1/PA介導(dǎo)的ROS促進了PLDδ與3-磷酸甘油醛脫氫酶(Glyceraldehyde-3-phosphate dehydrogenases,GAPCs)的結(jié)合,二者的互作促使PLDδ活性升高,從而調(diào)控細胞碳素代謝和膜脂變化并傳導(dǎo)ABA信號[69]。上述信號途徑可能也參與植物的耐鹽過程(圖1)。
鹽脅迫是植物體經(jīng)常遭受的非生物脅迫之一,在世界范圍影響農(nóng)作物產(chǎn)量和品質(zhì)。研究植物應(yīng)答高鹽脅迫的分子機制將有助于選育抗逆作物品種。
大量研究表明植物PLDs/PA是植物耐鹽脅迫信號中的重要組成部分,且相關(guān)研究已取得了突破性進展;其中,研究發(fā)現(xiàn)MAPK6和MAP65-1是PLDs/PA應(yīng)答鹽脅迫的重要靶蛋白,并已從生理、細胞和遺傳角度初步揭示其可能的分子機制。在外界脅迫刺激下,PLDs一方面代謝和調(diào)節(jié)膜脂組分,影響膜的流動性,另一方面,通過產(chǎn)物PA識別、結(jié)合和調(diào)節(jié)下游靶蛋白定位、活性或表達,傳遞信號和啟動胞內(nèi)應(yīng)答。然而,PLDs是一個多基因家族,PLDs各成員擁有不同的亞細胞定位、激活條件和調(diào)節(jié)機制,且PLDs的酶解底物存在較大差異,具有一定的功能特異性;每個PLDs如何特異應(yīng)答刺激產(chǎn)生信號分子PA并調(diào)節(jié)下游信號途徑,該方面研究進展較緩慢;同時PLDs也可以在蛋白水平與胞內(nèi)靶蛋白直接互作,調(diào)節(jié)其酯酶活性。所以大部分PLDs轉(zhuǎn)導(dǎo)鹽害等脅迫的分子機制尚不清楚[1]。同時,植物抗鹽是一個復(fù)雜的生理過程,胞內(nèi)信號轉(zhuǎn)導(dǎo)途徑也存在交叉對話,PLDs之間、PLDs與其他細胞內(nèi)信使之間都存在復(fù)雜的信號轉(zhuǎn)導(dǎo)網(wǎng)絡(luò),信號轉(zhuǎn)導(dǎo)網(wǎng)絡(luò)各成員之間都存在直接或間接的相互作用[1,5]。因此要探索PLD介導(dǎo)的植物耐鹽磷脂信號網(wǎng)絡(luò),仍需要大量的深入研究。
此外,另一個重要的磷脂酶PLC也參與植物耐鹽過程。PLC的酶解產(chǎn)物DAG可被磷酸化并轉(zhuǎn)化為PA,而該通路如何影響耐鹽尚不明確[7]。Hirayama等[70-72]在1995年克隆了擬南芥PI-PLC基因,隨后發(fā)現(xiàn)其表達受鹽、干旱誘導(dǎo)。在綠豆、玉米、棉花、水稻和煙草中,也證實了PI-PLC基因調(diào)節(jié)植物耐鹽性[73-76]。但是,PLC調(diào)節(jié)植物耐鹽信號機制尚需進一步研究。PLD和PLC在耐鹽信號轉(zhuǎn)導(dǎo)過程也可能存在一些交叉,研究這些機制對闡明植物生長和發(fā)育過程中的磷脂信號轉(zhuǎn)導(dǎo)途徑非常重要。
[1]鐘秀麗, 崔德才, 李玉中. 磷脂酶D的細胞信號轉(zhuǎn)導(dǎo)作用[J].植物生理與分子生物學(xué)學(xué)報, 2005, 31(5):451-460.
[2]Wang XM. Phospholipase D in hormonal ands tress signaling[J]. Current Opinion in Plant Biology, 2002, 5:408-414.
[3]Hong YY, Zhao J, Guo L, et al. Plant phospholipases D and C and their diverse functions in stress responses[J]. Progress in Lipid Research, 2016, 62:55-74.
[4]Hanahan DJ, Chaikoff IL. A new phospholipide-splitting enzyme specific for the ester linkage between the nitrogenous base and the phosphoric acid grouping[J]. The Journal Biological Chemistry,1947, 169:699-705.
[5]閆旭宇, 李玉中, 李玲, 等. 植物中的磷脂酶D信號轉(zhuǎn)導(dǎo)[J].植物生理學(xué)通訊, 2006, 42(6):1183-1189.
[6]Wang X. Lipid signaling[J]. Current Opinion in Plant Biollgy,2004, 7:1-8.
[7]Wang X, Devaiah SP, Zhang W, et al. Signaling functions of phosphatidic acid[J]. Progress in Lipid Research, 2006, 45:250-278.
[8]Qin C, Wang XM. The Arabidopsis phospholipase D family. Characterization of a calcium-independent and phosphatidylcholineselective PLDζ1 with distinct regulatory domains[J]. Plant Physiology, 2002, 128:1057-1068.
[9] Koonin EV. A duplicated catalytic motif in a new superfamily of phosphohydrolases and phospholipid synthases that includes poxvirus envelope proteins[J]. Trends in Biochemical Sciences, 1996, 21:242-243.
[10]Zheng L, Shan J, Krishnamoorthi R, et al. Activation of plant phospholipase Dβ by phosphatidylinositol 4, 5-bisphosphate:characterization of binding site and mode of action[J]. Biochemistry, 2002, 41:4546-4553.
[11]Zhao J, Wang X. Arabidopsis phospholipase Dα1 interacts with the heterotrimeric G-protein α-subunit through a motif analogous to the DRY motif in G-protein-coupled receptors[J]. The Journal Biological Chemistry, 2004, 279:1794-1800.
[12]Wang C, Wang XM. A novel phospholipase D of Arabidopsis that is activated by oleic acid and associated with the plasma membrane[J]. Plant Physiology, 2001, 127:1102-1112.
[13]Hong Y, Devaiah SP, Bahn SC, et al. Phospholipase Dε and phosphatidic acid enhance Arabidopsis nitrogen signaling and growth[J]. The Plant Journal, 2009, 58:376-387.
[14]Zhao J, Devaiah SP, Wang C, et al. Arabidopsis phospholipase Dβ1 modulates defense responses to bacterial and fungal pathogens[J]. New Phytologist, 2013, 199:228-240.
[15]Pinosa F, Buhot N, Kwaaitaal M, et al. Arabidopsis phospholipaseDδ is involved in basal defense and nonhost resistance to powdery mildew fungi[J]. Plant Physiology, 2013, 163:896-906.
[16]Hong Y, Pan X, Welti R, et al. Phospholipase Dα3 is involved in the hyperosmotic response in Arabidopsis[J]. The Plant Cell,2008, 20:803-816.
[17]Cruz-Ramírez A, Oropeza-Aburto A, Razo-Hernández F, et al. Phospholipase DZ2 plays an important role in extraplastidic galactolipid biosynthesis and phosphate recycling in Arabidopsis roots[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103:6765-6770.
[18]Li G, Xue HW. Arabidopsis PLDζ2 regulates vesicle trafficking and is required for auxin response[J]. The Plant Cell, 2007, 19:281-295.
[19]Zhao J, Wang C, Bedair M, et al. Suppression of phospholipase Dγs confers increased aluminum resistance in Arabidopsis thaliana[J]. PLoS One, 2011, 6:e28086.
[20]Ljung K, Ostin A, Lioussanne L, et al. Developmental regulation of indole-3-acetic acid turnover in Scots pine seedlings[J]. Plant Physiology, 2001, 125:464-475.
[21]Normanly J, Cohen JD, Fink GR. Arabidopsis thaliana auxotrophs reveal a tryptophan- independent biosynthetic pathway for indole-3-acetic acid[J]. Proceedings of the National Academy of Sciences of the United States of America, 1991, 90:10355-10359.
[22]夏石頭, 蕭浪濤. 生長素極性運輸?shù)恼{(diào)控及其機制[J]. 植物生理學(xué)通訊, 2003, 39(3):255-261.
[23]劉士平, 王璐, 王繼榮, 等. 高等植物的PIN家族[J]. 植物生理學(xué)通訊, 2009, 45(8):833-841.
[24]Bainbridge K, Guyomarch S, Bayer E, et al. Auxin influx carriers stabilize phyllotactic patterning[J]. Genes Development, 2008,22(6):810-823.
[25]Peer WA, Blakeslee JJ, Yang H, et al. Seven things we think we know about auxin transport[J]. Molecular Plant, 2011, 4(3):487-504.
[26]Feraru E, Friml J. PIN polar targeting[J]. Plant Physiology,2008, 147:1553-1559.
[27]Zhao Y, Wang T, Zhang W, et al. SOS3 mediates lateral root development under low salt stress through regulation of auxin redistribution and maxima in Arabidopsis[J]. New Phytologist,2011, 189:1122-1134.
[28]Li G, Xue HW. Arabidopsis PLDζ2 regulates vesicle trafficking and is required for auxin response[J]. The Plant Cell, 2007, 19:281-295.
[29]Galvan-Ampudia CS, Julkowska MJ, Darwish E, et al. Halotropism is a response of plant roots to avoid a saline environment[J]. Current Biology, 2013, 23:2044-2050.
[30]Gao HB, Chu YJ, Xue HW. Phosphatidic acid(PA)binds PP2AA1 to regulate PP2A activity and PIN1 polar localization[J]. Molecular Plant, 2013, 6:1692-1702.
[31]Xu ZS, Liu L, Ni ZY, et al. W55a encodes a novel protein kinase that is involved in multiple stress responses[J]. Journal of Integrative Plant Biology, 2009, 51(1):58-66.
[32]孫大業(yè). 植物細胞信號轉(zhuǎn)導(dǎo)研究進展[J]. 植物生理學(xué)通訊,1996, 32(2):81-91.
[33]Bayerr G, Stael S, Rocha AG, et al. Chloroplast-localized protein kinases:A step forward towards a complete inventory[J]. Journal of Experimental Botany, 2012, 63(4):1713-1723.
[34]Menke FLH, Van Pelt JA, Pieterse CMJ, et al. Silencing of the mitogen-activated protein kinase MPK6 compromises disease resistance in Arabidopsis[J]. The Plant Cell, 2004, 16(4):897-907.
[35]Ichimura K, Mizoguchi T, Yoshida R, et al. Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6[J]. The Plant Journal, 2000, 24:655-665.
[36]Yu LJ, Nie JN, Cao CY, et, al. Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana[J]. New Phytologist, 2010, 188:762-773.
[37]Testerink C, Larsen PB, van der Does D, et al. Phosphatidic acid binds to and inhibits the activity of Arabidopsis CTR1[J]. Journal of Experimental Botany, 2007, 58:3905-3914.
[38]Wang YN, Wang T, Li KX, et al. Genetic analysis of involvement of ETR1 in plant response to salt and osmotic stress[J]. Plant Growth Regulation, 2008, 54:261-269.
[39]Lei G, Shen M, Li ZG, et al. EIN2 regulates salt stress response and interacts with a MA3 domain containing protein ECIP1 in Arabidopsis[J]. Plant Cell and Environment, 2011, 34:1678-1692.
[40]Anthony RG, Henriques R, Helfer A, et al. A protein kinase target of a PDK1 signalling pathway is involved in root hair growth in Arabidopsis[J]. EMBO Journal, 2004, 23:572-581.
[41]Zegzouti RG, Anthony N, Jahchan L, et al. Phosphorylationand activation of PINOID by the phospholipid signaling kinase 3-phosphoinositide-dependent protein kinase 1(PDK1)in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103:6404-6409.
[42]Galvan-Ampudia CS, Testerink C. Salt stress signals shape the plant root[J]. Current Opinion in Plant Biology, 2011, 13:296-302.
[43]Guo L, Mishra G, Taylor K, et al. Phosphatidic acid binds and stimulates Arabidopsis[J]. The Journal of Biological Chemistry,2011, 286:13336-13345.
[44]Guo L, Mishra G. Connections between sphingosine kinase and Phospholipase D in the abscisic acid signaling pathway in Arabidopsis[J]. The Journal of Biological Chemistry, 2012, 287:8286-8296.
[45]Xiong LZ, Yang YN. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase[J]. The Plant Cell, 2003, 15(3):745 -759.
[46]Lee SK, Kim BG, Kwon TR, et al. Overexpression of the mitogenactivated protein kinase gene OsMAPK33 enhances sensitivity to salt stress in rice(Oryza sativa L. )[J]. Journal of Biosciences,2011, 36(1):139-151.
[47]Sun X, Yang S, Sun M, et al. A novel Glycine soja cysteine proteinase inhibitor GsCPI14, interacting with the calcium/ calmodulin-binding receptor-like kinase GsCBRLK, regulated plant tolerance to alkali stress[J]. Plant Molecular Biology, 2014, 85:33-48.
[48]Dammann C, Ichida A, Hong B, et al. Subcellular targeting of nine calcium-dependent protein kinase isoforms from Arabidopsis[J]. Plant Physiology, 2003, 132(4):1840-1848.
[49]Campo S, Baldrich P, Messeguer J, et al. Overexpression of a calcium-dependent protein kinase confers salt and drought tolerance in rice by preventing membrane lipid peroxidation[J]. Plant Physiology, 2014, 165(2):688-704.
[50]Saijo Y, Hata S, Kyozuka J, et al. Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt / drought tolerance onrice plants[J]. The Plant Journal, 2000, 23(3):319-327.
[51]Ouyang SQ, Liu YF, Liu P, et al. Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice(Oryza sativa) plants[J]. The Plant Journal, 2010, 62(2):316-329.
[52]Chen LJ, Wuriyanghan H, Zhang YQ, et al. An s-domain receptorlike kinase, OsSIK2, confers abiotic stress tolerance and delays dark-induced leaf senescence in rice[J]. Plant Physiology, 2013,163(4):1752-1765.
[53]Zhang Q, Lin F, Mao TL, et al. Phosphatidic acid regulates microtubule organization by interacting with MAP65-1 in response to salt stress in Arabidopsis[J]. The Plant Cell, 2012, 24:4555-4576.
[54]時蘭春, 王益川, 王伯初. 植物細胞骨架與細胞生長[J]. 植物生理學(xué)通訊, 2007, 43:1175-1181.
[55]Dhonukshe P, Laxalt AM, Goedhart J, et al. Phospholipase D activation correlates with microtubule reorganization in living plant cells[J]. The Plant Cell, 2003, 15:2666-2679.
[56]Wang C, Li J, Yuan M. Salt tolerance requires cortical microtubule reorganization in Arabidopsis[J]. Plant and Cell Physiology,2007, 48:1534-1547.
[57]Mao G, Chan J, Calder Q, et al. Modulated taigeting of GFPAtMAP65-1 to central spindle microtubules during division[J]. The Plant Journal, 2005, 43:469-478.
[58]Komis G, Quader H, Galatis B, et al. Macrotubule-dependent protoplast volume regulation in plasmolysed root-tip cells of Triticum turgidum:involvement of phospholipase D[J]. New Phytologist, 2006, 171:737-750.
[59]Beck M, Komis G, Muller J, et al. Arabidopsis homologs of nucleusand phragmoplast-localized kinase 2 and 3 and mitogen-activated protein kinase 4 are essential for microtubule organization[J]. The Plant Cell, 2010, 22:755-771.
[60]Huang S, Blanchoin L, Kovar DR, et al. Arabidopsis capping protein(AtCP)is a heterodimer that regulates assembly at the barbed ends of actin filaments[J]. The Journal of Biological Chemistry,2003, 278:44832-44842.
[61]Huang S, Gao L, Blanchoin L, et al. Heterodimeric capping protein from Arabidopsis is regulated by phosphatidic acid[J]. Molecular Biology of the Cell, 2006, 17:1946-1958.
[62]Li J, Henty-Ridilla JL, Huang S, et al. Capping protein modulates the dynamic behavior of actin filaments in response to phosphatidic acid in Arabidopsis[J]. The Plant Cell, 2012, 24:3742-3754.
[63]Wang J, Qian D, Fan T, et al. Arabidopsis actin capping protein(AtCP)subunits have different expression patterns, anddownregulation of AtCPB confers increased thermotolerance of Arabidopsis after heat shock stress[J]. Plant Science, 2012:110-119.
[64]Gardiner JC, Harper JD, Weerakoon ND, et al. A 90-kD phospholipase D from tobacco binds to microtubules and the plasma membrane[J]. The Plant Cell, 2001, 13:2143-2158.
[65]Zhang W, Wang C, Qin C, et al. The oleate-stimulated phospholipase D, PLDδ, and phosphatidic acid decrease H2O2-induced cell death in Arabidopsis[J]. The Plant Cell, 2003, 15:2285-2295.
[66]Zhang Q, Zhang W. Regulation of developmental and environmental signaling by interaction between microtubules and membranes in plant cells[J]. Protein Cell, 2016, 7(2):81-88.
[67]Pleskot R, Potocky M, Pejchar P, et al. Mutual regulation of plant phospholipase D and the actin cytoskeleton[J]. The Plant Journal, 2010, 62:494-507.
[68]Zhang Y, Zhu H, Zhang Q, et al. Phospholipase dalpha1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis[J]. The Plant Cell, 2009, 21:2357-2377.
[69]Guo L, Devaiah SP, Narasimhan R, et al. Cytosolic Glyceraldehyde-3-Phosphate Dehydrogenases interact with Phospholipase Dδ to transduce hydrogen peroxide signals in the Arabidopsis response to stress[J]. The Plant Cell, 2012, 24:2200-2212.
[70]Hirayama T, Ohto C, Mizoguchi T, et al. A gene encoding a phosphatidylinositol-specific phospholipase C is induced by dehydration and salt stress in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(9):3903-3907.
[71]Sanchez JP, Chua NH. Arabidopsis PLC1 is required for secondary responses to abscisic acid signals[J]. The Plant Cell, 2001, 13:1143-1154.
[72]Xu X, Cao Z, Liu G, et al. Cloning and expression of AtPLC6, a gene encoding a phosphatidylinositol-specific phospholipase C in Arabidopsis thaliana[J]. Chinese Science Bulletin, 2004, 49(4):567-573.
[73]Yun JK, Kim JE, Lee JH, et al. The Vr-PLC3 gem encodes a putative plasma membrane-localized phosphoinositide-specific phospholipase C whose expression is induced by abiotic stress in mung bean(Vigna radiata L.)[J]. FEBS Letters, 2004, 556(1-3):127-136.
[74]王春榮. 磷脂酶C基因的過表達對玉米轉(zhuǎn)基因植株抗逆性的影響[D].濟南:山東大學(xué), 2008.
[75]梵文菊.轉(zhuǎn)ZmPLC1基因及聚合ZmPLCa/betA基因棉花耐鹽性的研究[D].濟南:山東大學(xué), 2013.
[76]王法微.水稻磷脂酶C調(diào)節(jié)耐鹽性以及磷脂酶D參與種子老化的研究[D].南京:南京農(nóng)業(yè)大學(xué), 2011.
(責(zé)任編輯 馬鑫)
Plant Phospholipase D Signaling Pathway in Response to Salt Stress
WANG Pei-pei SONG Ping ZHANG Qun
(State Key Laboratory of Crop Genetics and Germplasm Enhancement,College of Life Sciences,Nanjing Agricultural University,Nanjing 210095)
Soil salinity is a global ecological problem,which has a great negative impact on ecological environment and agricultural production. Researches showed that Phospholipase D(PLD)was a key enzyme in catalyzing lipids and response to abiotic stresses. PLDs contained diverse structures,distinguishable biochemical and regulatory properties,which produced phosphatidic acid(PA)and participated in plant response to various stresses. This review summarized the current advances in regulating plant salt tolerance,and discussed the putative molecular mechanisms of PLD in sensing and response to salt stress,which might benefit the study of plant salt resistance and crop genetic enhancement.
salt tolerance;PLD;PA;signal transduction
2016-08-26
國家自然科學(xué)基金項目(31470364,31670263)
王培培,女,博士研究生,研究方向:磷脂酶D應(yīng)答和傳導(dǎo)鹽信號的分子機制;E-mail:2014216009@njau.edu.cn
張群,男,博士,副教授,研究方向:植物逆境生理與分子遺傳改良;E-mail:zhangqun@njau.edu.cn