扈鴻霞,馬宇軒,王艷紅,林 峻,李占武,季 榮
?
蝗蟲(chóng)微孢子蟲(chóng)套式PCR檢測(cè)方法的建立及應(yīng)用
扈鴻霞1,馬宇軒1,王艷紅2,林 峻3,李占武2,季 榮1
(1新疆師范大學(xué)生命科學(xué)學(xué)院/新疆特殊環(huán)境物種多樣性應(yīng)用與調(diào)控實(shí)驗(yàn)室/中亞區(qū)域跨境有害生物聯(lián)合控制國(guó)際研究中心,烏魯木齊 830054;2新疆哈密地區(qū)蝗蟲(chóng)鼠害預(yù)測(cè)預(yù)報(bào)防治站,新疆哈密 839000;3新疆維吾爾自治區(qū)蝗蟲(chóng)鼠害預(yù)測(cè)預(yù)報(bào)防治中心站,烏魯木齊 830046)
【目的】建立一種靈敏、快捷的檢測(cè)蝗蟲(chóng)微孢子蟲(chóng)()的套式PCR方法,為運(yùn)用微孢子蟲(chóng)防治蝗蟲(chóng)提供技術(shù)支持?!痉椒ā恳訥enBank數(shù)據(jù)庫(kù)中公布的保守性高的微孢子蟲(chóng)小核糖體亞單位RNA為目的基因,采用PrimerSelect軟件設(shè)計(jì)兩對(duì)特異的套式PCR引物-F1/-R1和.-F2/-R2,將微孢子蟲(chóng)液用0.2 mol·L-1KOH處理后得到的發(fā)芽液作為模板進(jìn)行PCR擴(kuò)增,建立以-F1/-R1為外側(cè)引物、.-F2/-R2為內(nèi)側(cè)引物的套式PCR,擴(kuò)增產(chǎn)為分別為298和242 bp。對(duì)引物濃度、退火溫度及循環(huán)數(shù)進(jìn)行優(yōu)化,建立套式PCR方法,以此方法對(duì)梯度稀釋的微孢子蟲(chóng)液進(jìn)行靈敏性檢測(cè),并對(duì)采自哈密地區(qū)巴里坤北山的蝗蟲(chóng)樣品進(jìn)行檢測(cè)。同時(shí)對(duì)提取的微孢子蟲(chóng)液進(jìn)行傳統(tǒng)的顯微鏡檢測(cè),并比較兩種方法的靈敏度?!窘Y(jié)果】 建立了蝗蟲(chóng)微孢子蟲(chóng)的套式PCR快速特異性檢測(cè)方法,優(yōu)化后的PCR反應(yīng)體系均為20 μL:Buffer(10×)2.0 μL, dNTPs(10 mmol·L-1)0.3 μL,Taq DNA酶(250 U)0.3 μL,上、下游引物(10 μmol·L-1)各0.3 μL,微孢子蟲(chóng)發(fā)芽液(第2輪以第1輪產(chǎn)物10×稀釋液為模板)1 μL,加水補(bǔ)充至20 μL;PCR反應(yīng)程序?yàn)椋?4℃預(yù)變性3 min;94℃變性30 s,第1輪60℃退火(第2輪62℃退火)30 s,72℃延伸20 s,共35個(gè)循環(huán);72℃延伸10 min,10℃保存。靈敏度試驗(yàn)顯示,檢測(cè)的微孢子蟲(chóng)數(shù)量可以達(dá)到12.2個(gè)孢子/μL(DNA量為1.07 pg·μL-1)。應(yīng)用建立的套式PCR方法,對(duì)采自新疆哈密地區(qū)巴里坤北山的240頭蝗蟲(chóng)樣品進(jìn)行了微孢子蟲(chóng)檢測(cè),檢測(cè)結(jié)果為23.3%的陽(yáng)性,而顯微鏡檢測(cè)結(jié)果陽(yáng)性僅為3.8%?!窘Y(jié)論】 研究建立的套式PCR方法能夠快速特異地檢測(cè)蝗蟲(chóng)微孢子蟲(chóng)的感染,為蝗蟲(chóng)微孢子蟲(chóng)致病性研究及田間應(yīng)用提供了技術(shù)支持。
蝗蟲(chóng)微孢子蟲(chóng);套式PCR;檢測(cè)
【研究意義】蝗蟲(chóng)是威脅農(nóng)牧業(yè)生產(chǎn)的重要害蟲(chóng),目前對(duì)蝗蟲(chóng)控制主要依賴化學(xué)防治方法,給環(huán)境造成了嚴(yán)重污染。積極探索有效的生物治蝗技術(shù),是當(dāng)前國(guó)內(nèi)外蝗災(zāi)綜合治理的發(fā)展趨勢(shì)。20世紀(jì)80年代,微孢子蟲(chóng)被作為控制蝗蟲(chóng)的生物制劑[1],現(xiàn)在已有121種直翅目昆蟲(chóng)能夠感染蝗蟲(chóng)微孢子蟲(chóng)()[2]?;认x(chóng)感染微孢子蟲(chóng)的早期階段很難從蝗蟲(chóng)的臨床癥狀觀察出來(lái)。因此,噴灑微孢子蟲(chóng)制劑后,定期對(duì)蝗蟲(chóng)進(jìn)行微孢子蟲(chóng)感染率檢測(cè),分析其擴(kuò)散傳播情況,掌握其流行動(dòng)態(tài)等十分必要?!厩叭搜芯窟M(jìn)展】蝗蟲(chóng)微孢子蟲(chóng)作為主要感染蝗蟲(chóng)脂肪體的脂肪細(xì)胞,因其具有垂直和水平傳播能力、致病力溫和、在宿主體內(nèi)能夠大量產(chǎn)生孢子和孢子在0℃以下長(zhǎng)期保存等優(yōu)點(diǎn),已成為一種非常有效的蝗蟲(chóng)生物殺蟲(chóng)劑[3-4]。中國(guó)部分蝗區(qū)實(shí)施了微孢子蟲(chóng)生物治蝗措施,并取得了良好的效果[5-7]。目前微孢子蟲(chóng)的檢測(cè)方法主要有顯微鏡檢測(cè)技術(shù)、免疫學(xué)檢測(cè)技術(shù)以及PCR檢測(cè)技術(shù)[8]。傳統(tǒng)的顯微鏡檢測(cè)技術(shù),操作繁瑣,靈敏度差,容易帶來(lái)主觀誤差;由于微孢子蟲(chóng)表面具有多抗原決定簇,假陽(yáng)性比例較高,導(dǎo)致免疫學(xué)檢測(cè)技術(shù)難以推廣應(yīng)用[9]。應(yīng)用PCR方法檢測(cè)微孢子蟲(chóng)的報(bào)道較多[10-12],與傳統(tǒng)的顯微鏡法比較,PCR法更加靈敏和快捷[13]。如對(duì)家蠶微孢子蟲(chóng)()的檢測(cè)靈敏度可達(dá)到102—104/mL[14]。套式PCR(nested-PCR)是一種建立在普通聚合酶鏈反應(yīng)PCR基礎(chǔ)上的核酸檢測(cè)技術(shù),使用內(nèi)、外兩對(duì)PCR引物對(duì)有限的目的基因進(jìn)行擴(kuò)增,經(jīng)過(guò)兩輪PCR擴(kuò)增,能夠很大程度地增加靈敏性和特異性,已應(yīng)用于多種病原體和基因的檢測(cè)[15],但在蝗蟲(chóng)微孢子蟲(chóng)的檢測(cè)應(yīng)用上未見(jiàn)報(bào)道?!颈狙芯壳腥朦c(diǎn)】傳統(tǒng)的顯微鏡檢測(cè)方法對(duì)蝗蟲(chóng)微孢子蟲(chóng)檢測(cè)中,不僅費(fèi)時(shí)耗力,而且靈敏度低,人為因素影響檢測(cè)結(jié)果,假陰性現(xiàn)象普遍存在。因此,建立一種更為方便快捷的檢測(cè)技術(shù),是科學(xué)研究與生產(chǎn)實(shí)踐中的迫切需求?!緮M解決的關(guān)鍵問(wèn)題】根據(jù)微孢子小亞單位核糖體RNA基因(SSrRNA)中保守的區(qū)域序列設(shè)計(jì)了兩對(duì)特異性的套式PCR引物,并進(jìn)行應(yīng)用評(píng)價(jià),以期建立一種用于檢測(cè)蝗蟲(chóng)微孢子的敏感性高,快捷可靠的檢測(cè)方法,為蝗蟲(chóng)微孢子蟲(chóng)感染監(jiān)測(cè)提供技術(shù)支持。
試驗(yàn)于2015年3月至2016年4月在中亞區(qū)域跨境有害生物聯(lián)合控制國(guó)際研究中心實(shí)驗(yàn)室完成。
1.1 材料與試劑
1.1.1 材料 供試用飛蝗()蟲(chóng)卵和蝗蟲(chóng)微孢子蟲(chóng)濃縮液均由中國(guó)農(nóng)業(yè)大學(xué)農(nóng)業(yè)部生物防治重點(diǎn)開(kāi)放實(shí)驗(yàn)室提供。將蝗卵置于人工氣候箱中孵化、飼養(yǎng),條件為溫度(26±2)℃,相對(duì)濕度50%,光周期14L﹕10D。孵出后飼養(yǎng)供試驗(yàn)所用。
1.1.2 試劑 TaqDNA聚合酶、dNTPs、DL2000 marker購(gòu)自大連寶生物工程有限公司;Goldviewer購(gòu)自上海賽百盛基因技術(shù)有限公司;瓊脂糖為Biowest公司原裝;其他常規(guī)試劑均為分析純產(chǎn)品。
1.2 儀器與設(shè)備
Mastercyclerpros梯度PCR儀和5430R臺(tái)式高速冷凍離心機(jī)(德國(guó)Eppendorf公司產(chǎn)品);BIO-RAD Gel Doc XR+凝膠成像分體系統(tǒng)(美國(guó)BIO-RAD公司產(chǎn)品);NanoDrop2000(美國(guó)Thermo公司產(chǎn)品)。
1.3 方法
1.3.1 微孢子蟲(chóng)發(fā)芽液的制備 微孢子蟲(chóng)粗提液的制備參考丁曉宇等[16]的方法,將感染微孢子蟲(chóng)的蝗蟲(chóng)制成微孢子蟲(chóng)粗提液。蝗蟲(chóng)微孢子蟲(chóng)發(fā)芽處理參照何永強(qiáng)等[17]的方法,取0.5 mL蝗蟲(chóng)微孢子蟲(chóng)粗提懸浮液,5 000 r/min離心5 min,離心后棄上清,保留孢子,同時(shí)加入0.2 mol·L-1KOH 0.25 mL,充分混合,27℃誘導(dǎo)1 h后5 000 r/min離心5 min,去除誘導(dǎo)液,加入pH 7.4的PBS緩沖液0.5 mL重懸,25℃放置30 min,使孢子充分發(fā)芽。將上述發(fā)芽后的懸液5 000 r/min離心5 min,去除PBS,加入TE緩沖液0.5 mL懸浮,作為蝗蟲(chóng)微孢子蟲(chóng)的發(fā)芽液,直接供PCR作為模板使用。
1.3.2 引物設(shè)計(jì) 在GenBank數(shù)據(jù)庫(kù)中下載小孢子蟲(chóng)屬的SSUrRNA序列,通過(guò)序列比對(duì)后,利用PrimerSelect軟件,在序列保守區(qū)域設(shè)計(jì)兩對(duì)套式PCR引物(表1),由上海生工生物技術(shù)有限公司合成。
表1 PCR擴(kuò)增引物
1.3.3 套式PCR條件的優(yōu)化 兩次PCR反應(yīng)體系均為20 μL:Buffer(10×)2.0 μL,dNTPs(10 mmol·L-1)0.3 μL,Taq DNA酶(250 U)0.3 μL,上、下游引物(10 μmol·L-1)各0.3 μL,微孢子蟲(chóng)發(fā)芽液(或者第1輪產(chǎn)物稀釋液)1 μL,加水補(bǔ)充到20 μL。第2輪PCR以第1輪PCR產(chǎn)物10倍倍比稀釋為模版。PCR反應(yīng)程序:94℃預(yù)變性3 min;94℃變性30 s,第1輪50—62℃優(yōu)化退火溫度(第2輪50—62℃優(yōu)化退火溫度)30 s,72℃延伸20 s,共30個(gè)循環(huán);72℃延伸10 min,4℃保存。用膠回收試劑盒對(duì)PCR產(chǎn)物進(jìn)行純化,并與p-MD18T載體連接,轉(zhuǎn)化入DH5感受態(tài)細(xì)胞,PCR檢測(cè)后選取陽(yáng)性克隆送上海生物工程有限公司測(cè)序。
1.3.4 靈敏度試驗(yàn) 將1×109個(gè)孢子/mL微孢子蟲(chóng)原液進(jìn)行10倍梯度稀釋作為母液(1×108個(gè)孢子/mL)使用,然后依次進(jìn)行2倍梯度稀釋,共21個(gè)稀釋度。按照上述方法提取DNA后,從每個(gè)稀釋度各取1 μL作為模板進(jìn)行第1次PCR擴(kuò)增(20 μl反應(yīng)體系),然后進(jìn)行第2次套式PCR擴(kuò)增,最后通過(guò)1%的瓊脂糖凝膠電泳檢測(cè)該套式PCR反應(yīng)體系的敏感性。
1.3.5 田間樣品檢測(cè)從新疆哈密地區(qū)巴里坤北山采
集的240份蝗蟲(chóng)樣本,單頭置于研缽中,加入1 mL蒸餾水研磨后過(guò)濾,制得微孢子蟲(chóng)粗提液。按照1.3.1方法發(fā)芽后,作為PCR模版,采用優(yōu)化過(guò)的套式PCR檢測(cè)方法進(jìn)行擴(kuò)增,結(jié)果經(jīng)凝膠電泳分析。同時(shí)對(duì)樣品進(jìn)行常規(guī)的顯微鏡鏡檢,統(tǒng)計(jì)并比較這兩種方法的檢測(cè)結(jié)果。
2.1 套式PCR退火溫度優(yōu)化及最終反應(yīng)體系建立
兩輪PCR退火溫度分別在50、52、54、56、58、60和62℃下電泳結(jié)果如圖1。結(jié)果表明,第1輪PCR最佳退火溫度為60℃,第2輪PCR最佳退火溫度為62℃。套式PCR最終反應(yīng)體系為Buffer(10×)2.0 μL,dNTPs(10 mmol·L-1)0.3 μL,Taq DNA酶(250 U)0.3 μL,上、下游引物(10 μmol·L-1)各0.3 μL,微孢子蟲(chóng)發(fā)芽液(或者第1輪產(chǎn)物稀釋液)1 μL,加水補(bǔ)充到20 μL。第2輪PCR以第1輪PCR產(chǎn)物10倍倍比稀釋為模版。PCR反應(yīng)程序?yàn)?4℃ 3 min;94℃ 30 s、60℃(第2輪62℃)30 s、72℃ 20 s,30個(gè)循環(huán)。PCR第1輪產(chǎn)物擴(kuò)增片段為298 bp,經(jīng)克隆測(cè)序后Blast分析表明,序列與GenBank中公布的山松甲蟲(chóng)()微孢子蟲(chóng)(登錄號(hào):GQ337704)、玉米螟()微孢子蟲(chóng)(登錄號(hào):NFU26532)等小亞單位核糖體RNA序列同源性分別為99%和99.7%;PCR第2輪產(chǎn)物片段為242 bp(圖2)。
2.2 靈敏度檢測(cè)
將1×109孢子/mL微孢子蟲(chóng)原液進(jìn)行10倍梯度稀釋作為母液(DNA量為8.8 ng·μL-1)使用,然后依次進(jìn)行2倍梯度稀釋,共21個(gè)稀釋度。從每個(gè)稀釋液各取1 μL作為模板進(jìn)行套式PCR擴(kuò)增。結(jié)果表明,套式PCR的第1次擴(kuò)增可檢測(cè)到微孢子蟲(chóng)為781.25個(gè)孢子/μL(DNA量為27.5 pg·μL-1)(圖2),將第1次PCR產(chǎn)物作為模板進(jìn)行套式PCR的第2次擴(kuò)增后,在對(duì)原液進(jìn)行81 920倍稀釋后仍可擴(kuò)增出清晰的目的片段(圖2),此模板微孢子蟲(chóng)含量為12.2個(gè)孢子/μL(DNA量為1.07 pg·μL-1)。
A:第1輪PCR The first round PCR;B:第2輪PCR The second round PCR;1—7:分別為50、52、54、56、58、60和62℃退火溫度擴(kuò)增的條帶 Amplified bands of the PCR annealing temperature of 50, 52, 54, 56, 58, 60 and 62℃, respectively;M:DL-2000 Marker
M:DL-2000 marker;1—21:分別為1﹕21—1﹕221倍稀釋1﹕21-1﹕221 dilution, respectively;“-”:陰性對(duì)照Negative control
2.3 田間蝗蟲(chóng)微孢子蟲(chóng)檢測(cè)
利用建立的套式PCR方法對(duì)哈密地區(qū)巴里坤北山的240頭蝗蟲(chóng)進(jìn)行檢測(cè),同時(shí)建立陰、陽(yáng)性對(duì)照,檢測(cè)結(jié)果56頭擴(kuò)增出了242 bp的條帶,為陽(yáng)性,184頭為陰性(圖3),陽(yáng)性率為23.3%。與顯微鏡檢測(cè)結(jié)果進(jìn)行比較,顯微鏡檢測(cè)結(jié)果陽(yáng)性為9頭,陽(yáng)性率為3.8%。套式PCR方法與顯微鏡觀察方法中,檢測(cè)每頭平均耗時(shí)分別為5和24 min(表2)。
21世紀(jì)以來(lái),化學(xué)防控蝗蟲(chóng)的方法已逐步被生物防治方法替代[18]。早在20世紀(jì)80年代,新疆就有用微孢子蟲(chóng)防治草原蝗蟲(chóng)的報(bào)道[19]?;认x(chóng)感染微孢子蟲(chóng)后常呈亞致病性狀態(tài),是一種慢性的隱性感染,因此對(duì)于草原蝗蟲(chóng)是否感染微孢子蟲(chóng)進(jìn)行長(zhǎng)期監(jiān)測(cè)具有重要意義。
M:DL-2000 DNA Marker;1—21:檢測(cè)樣品Tested samples;+:陽(yáng)性對(duì)照positive control;-:陰性對(duì)照negative control
表2 哈密地區(qū)巴里坤北山蝗蟲(chóng)微孢子蟲(chóng)檢測(cè)結(jié)果
PCR作為近年發(fā)展起來(lái)的一種特異性擴(kuò)增方法,因其具有快速、特異、靈敏和簡(jiǎn)便的優(yōu)點(diǎn)被廣泛地運(yùn)用于檢測(cè)家蠶微孢子蟲(chóng)病[20]。而套式PCR方法相對(duì)于普通PCR具有準(zhǔn)確和高敏感性等優(yōu)點(diǎn),已被廣泛運(yùn)用到動(dòng)植物病毒的檢測(cè)等很多領(lǐng)域[21-24]。
在本研究中,第1輪PCR擴(kuò)增可檢測(cè)到781.25個(gè)孢子/μL,如果采用傳統(tǒng)的顯微鏡檢測(cè)法,在血球計(jì)數(shù)板中央的25方格計(jì)數(shù)區(qū)中,樣品體積為0.1 μL,相當(dāng)于有78.125個(gè)微孢子,敏感性并沒(méi)有優(yōu)于顯微鏡檢法。但經(jīng)過(guò)第2輪PCR擴(kuò)增后,可檢測(cè)微孢子蟲(chóng)含量為12.207個(gè)孢子/μL,相當(dāng)于顯微鏡檢法中的視野中僅有1.22個(gè)微孢子蟲(chóng),靈敏度明顯高于傳統(tǒng)的檢測(cè)方法。在對(duì)哈密地區(qū)巴里坤北山蝗蟲(chóng)微孢子蟲(chóng)的檢測(cè)中,套式PCR方法的檢出率高于顯微鏡觀察檢出率;其次,建立的套式PCR方法可以避免人員技術(shù)熟練因素造成的誤差,適合快速、大規(guī)模的流行病學(xué)調(diào)查。利用建立的蝗蟲(chóng)微孢子蟲(chóng)套式PCR方法對(duì)不同微孢子蟲(chóng)濃度感染的蝗蟲(chóng)進(jìn)行檢測(cè),均擴(kuò)增出了目的條帶,具有良好的應(yīng)用前景。
本研究參考何永強(qiáng)等[17]的方法,直接取蝗蟲(chóng)微孢子蟲(chóng)的發(fā)芽液作為PCR的模板,簡(jiǎn)便快捷,重復(fù)性好。引物設(shè)計(jì)則選擇了在同屬(柞蠶微孢子屬等)具有高度保守性的微孢子蟲(chóng)SSrRNA基因序列核糖體RNA為模板[25-28],選取該區(qū)域設(shè)計(jì)兩對(duì)特異性引物進(jìn)行微孢子蟲(chóng)的檢測(cè)和鑒定,測(cè)序結(jié)果表明PCR產(chǎn)物為特異性擴(kuò)增。這充分驗(yàn)證了PCR方法的可靠性及小亞單位核糖體RNA序列的高度保守性。
建立的套式PCR方法具有快速、靈敏、特異性強(qiáng)的應(yīng)用價(jià)值。該方法可用于蝗蟲(chóng)微孢子蟲(chóng)的快速檢測(cè),為蝗蟲(chóng)微孢子蟲(chóng)流行動(dòng)態(tài)監(jiān)測(cè)提供了新的有效方法,建議推廣使用。
[1] Lomer C J, Bateman R P, Johnson D L, Langewald J, Thomas M. Biological control of locusts and grasshoppers.,2001, 46: 667-702.
[2] Tounou A K, Kooyman C, Douro-Kpindou O K, Poehling H M. Interaction betweenandvar., two pathogens of the desert locust,under laboratory conditions., 2008, 97(3): 203-210.
[3] Lange C, Azzaro F G. New case of long-term persistence of(Microsporidia) in melanopline grasshoppers (Orthoptera: Acrididae: Melanoplinae) of Argentina., 2008, 99(3): 357-359.
[4] Plischuk S, Bardi C J, Lange C E. Spore loads of(Microspoidia) in heavily infected grasshoppers (Orthoptera: Acridoidea) of the Argentine Pampas and Patagonia., 2013, 114(1): 89-91.
[5] 蔡德江, 李鵬, 石旺鵬. 蝗蟲(chóng)微孢子蟲(chóng)與卡死克互補(bǔ)應(yīng)用對(duì)海南蝗蟲(chóng)的控制作用. 熱帶農(nóng)業(yè)科學(xué), 2008, 28(2): 21-24.
Cai D J, Li P, Shi W P. Effects of complementary application ofand cascade on locusts and grasshoppers in Hainan., 2008, 28(2): 21-24. (in Chinese)
[6] 蔣湘, 石旺鵬. 蝗蟲(chóng)微孢子蟲(chóng)對(duì)青海省天峻縣草原蝗蟲(chóng)的持續(xù)控制作用. 黑龍江畜牧獸醫(yī), 2003(2): 52-53.
Jiang X, Shi W P. Continuous control ofto grasshopper of tianjun county of qinghai province., 2003(2): 52-53. (in Chinese)
[7] 任程, 蔣湘, 石旺鵬. 蝗蟲(chóng)微孢子蟲(chóng)防治青藏高原蝗蟲(chóng)對(duì)主要天敵種群數(shù)量的影響. 黑龍江畜牧獸醫(yī), 2004(4): 11-13.
Ren C, Jiang X, Shi W P. Effect offor controlling grasshopper on natural enemy in the grassland., 2004(4): 11-13. (in Chinese)
[8] 王永賓, 劉吉平. 微孢子蟲(chóng)檢測(cè)技術(shù)的研究進(jìn)展. 中國(guó)寄生蟲(chóng)學(xué)與寄生蟲(chóng)病雜志, 2009, 27(2): 161-166.
Wang Y B, Liu J P. Research progress on the technology of microsporidian detection., 2009, 27(2): 161-166. (in Chinese)
[9] Franzen C, Müller A. Molecular techniques for detection, species differentiation, and phylogenetic analysis of microsporidia., 1999, 12(2): 243-285.
[10] Blaker E A, Strange J P, James R R, Monroy F P, Cobb N S. PCR reveals high prevalence of non/low sporulating(microsporidia) infections in bumblebees () in Northern Arizona., 2014, 123: 25-33.
[11] Joseph J, Sharma S, Murthy S I, Krishna P V, Garg P, Nutheti R, Kenneth J, Balasubramanian D. Microsporidial keratitis in India: 16S rRNA gene-based PCR assay for diagnosis and species identification of microsporidia in clinical samples., 2006, 47(10): 4468-4473.
[12] Valencakova A, Balent P, Ravaszova P, Horak A, Obornik M, Halanova M, Malcekova B, Novotny F, Goldova M. Molecular identification and genotyping of Microsporidia in selected hosts., 2012, 110(2): 689-693.
[13] Milks M L, Sokolova Y Y, Isakova I A, Fuxa J R, Mitchell F, Snowden K F, Vinson S B. Comparative effectiveness of light-microscopic techniques and PCR in detecting(Microsporidia) infections in red imported fire ants ()., 2004, 51(2): 187-191.
[14] 劉吉平, 曹陽(yáng), Smith J E, 徐興耀. 模擬感染家蠶微粒子病的PCR分子診斷技術(shù)研究. 中國(guó)農(nóng)業(yè)科學(xué), 2004, 37(12): 1925-1931.
Liu J P, Cao Y, Smith J E, Xu X Y. Studies on the application of PCR molecular diagnosis to silkworms with simulated pebrine disease., 2004, 37(12): 1925-1931. (in Chinese)
[15] Fallahi S, Seyyed Tabaei S J, Pournia Y, Zebardast N, Kazemi B. Comparison of loop-mediated isothermal amplification (LAMP) and nested-PCR assay targeting the RE and B1 gene for detection ofin blood samples of children with leukaemia., 2014, 79(3): 347-354.
[16] 丁曉宇, 張龍. 蝗蟲(chóng)微孢子蟲(chóng)與綠僵菌協(xié)調(diào)使用對(duì)東亞飛蝗的毒力測(cè)定. 北京農(nóng)學(xué)院學(xué)報(bào), 2009, 24(1): 9-14.
Ding X Y, Zhang L. Virulence ofandagainst the nymphs of., 2009, 24(1): 9-14. (in Chinese)
[17] 何永強(qiáng), 吳姍, 魯興萌, 邱海洪, 帥江冰, 張曉峰, 王素華, 徐國(guó)群, 李光才, 董強(qiáng). 不同DNA抽提方法對(duì)普通PCR和實(shí)時(shí)熒光定量PCR方法檢測(cè)家蠶微孢子蟲(chóng)的影響. 昆蟲(chóng)學(xué)報(bào), 2011, 54(11): 1329-1334.
He Y Q, Wu S, Lu X M, Qiu H H, Shuai J B, Zhang X F, Wang S H, Xu G Q, Li G C, Dong Q. Influence of DNA extraction methods on detection ofby traditional PCR and real-time PCR methods., 2011, 54(11): 1329-1334. (in Chinese)
[18] 洪軍, 杜桂林, 王廣君. 我國(guó)草原蝗蟲(chóng)發(fā)生與防治現(xiàn)狀分析. 草地學(xué)報(bào), 2014, 22(5): 929-934.
Hong J, Du G L, Wang G J. The occurring and control situation of grasshopper in the grassland of China., 2014, 22(5): 929-934. (in Chinese)
[19] 王麗英, 嚴(yán)毓驊, 董雁軍, 林志亮. 蝗蟲(chóng)微孢子蟲(chóng)對(duì)東亞飛蝗及蒙、新草原蝗蟲(chóng)的感染試驗(yàn). 北京農(nóng)業(yè)大學(xué)學(xué)報(bào), 1987, 13(4): 459-462.
Wang L Y, Yan Y H, Dong Y J, Lin Z L. Observations of a microsporidian parasitecanning in the oriental migratory locust ((Meyen)) and other hosts from inner Mongolia and Xinjiang., 1987, 13(4): 459-462. (in Chinese)
[20] 邱寶利, 徐興耀, 牟志美, 周鵬. 核酸分子雜交技術(shù)鑒別和檢測(cè)家蠶微孢子蟲(chóng)的研究. 山東農(nóng)業(yè)大學(xué)學(xué)報(bào) (自然科學(xué)版), 2002, 33(1): 14-18.
Qiu B L, Xu X Y, Mu Z M, Zhou P. Identification and detection ofnaegeli by nucleic acid hybridization., 2002, 33(1): 14-18. (in Chinese)
[21] 吳嬡瓊, 謝芝勛, 胡庭俊, 謝麗基, 羅思思, 鄧顯文, 謝志勤, 黃莉, 黃嬌玲, 曾婷婷. H4亞型禽流感病毒套式RT-PCR檢測(cè)方法的建立. 動(dòng)物醫(yī)學(xué)進(jìn)展, 2015, 36(2): 11-15.
WU A Q, Xie Z X, Hu T J, Xie L J, Luo S S, Deng X W, Xie Z Q, Huang L, Huang J l, Zeng T T. Establishment of nested RT-PCR for detection of H4 subtype of., 2015, 36(2): 11-15. (in Chinese)
[22] 王婧, 畢陽(yáng), 朱艷, 韓舜愈, 祝霞, 盛文軍, 李敏. 巢式PCR快速檢測(cè)西瓜細(xì)菌性果斑病菌. 中國(guó)農(nóng)業(yè)科學(xué), 2014, 47(2): 284-291.
Wang J, Bi Y, Zhu Y, Han S Y, Zhu X, ShenG W J, Li M. Nested-PCR rapidly detectesubsp.from watermelon seeds., 2014, 47(2): 284-291. (in Chinese)
[23] Uppal B, Singh O, Chadha S, Jha A K. A comparison of nested PCR assay with conventional techniques for diagnosis of intestinal cryptosporidiosis in AIDS cases from northern India., 2014, 2014: Article ID 706105.
[24] 高文輝, 白昌明, 蔡生力, 王崇明. 基于牡蠣皰疹病毒DNA聚合酶基因的巢式PCR檢測(cè)方法的建立及應(yīng)用. 水產(chǎn)學(xué)報(bào), 2016, 40(3): 326-333.
Gao W H, Bai C M, Cai S L, Wang C M. The development and application of nested PCR detection method for Ostreid herpesvirus-1 based on DNA polymerase gene., 2016, 40(3): 326-333. (in Chinese)
[25] 王見(jiàn)楊, 黃可威, 陸長(zhǎng)德. 家蠶微粒子病原蟲(chóng) ()小亞基核糖體RNA全基因的克隆及其二級(jí)結(jié)構(gòu)的構(gòu)建. 昆蟲(chóng)學(xué)報(bào), 2002, 45(3): 290-295.
Wang J Y, Huang K W, Lu C D. Analyses of small subunit ribosomal RNA sequence of the microsporidium,and its secondary structure., 2002, 45(3): 290-295. (in Chinese)
[26] 王林玲, 陳克平, 姚勤, 高貴田, 趙遠(yuǎn). 柞蠶微孢子核糖體基因和轉(zhuǎn)錄間隔區(qū)的序列及系統(tǒng)進(jìn)化分析. 中國(guó)農(nóng)業(yè)科學(xué), 2006, 39(8): 1674-1679.
Wang L L, Chen K P, Yao Q, Gao G T, Zhao Y. The sequence and phylogenetic analysis of the ribosomal RNA gene and the ITS region of., 2006, 39(8): 1674-1679. (in Chinese)
[27] Stentiford G D, Bateman K S, Feist S W, Chambers E, Stone D M. Plastic parasites: extreme dimorphism creates a taxonomic conundrum in the phylum Microsporidia., 2013, 43(5): 339-352.
[28] Gillett A K, Ploeg R, O'Donoghue P J, Chapman P A, Webb R I, Flint M, Mills P C. Ultrastructural and molecular characterisation of an-like microsporidian in Australian sea snakes (Hydrophiinae)., 2016, 11(3): e0150724.
(責(zé)任編輯 岳梅)
Establishment and Application of Nested-PCR Method for Detection of
HU Hong-xia1, MA Yu-xuan1, WANG Yan-hong2, LIN Jun3, LI Zhan-wu2, JI Rong1
(1College of Life Sciences, Xinjiang Normal University/Key Laboratory of Conservation Biology and Management for Xinjiang Special Species/International Research Center for Cross-border Pest Management in Central Asia, Urumqi 830054;2Xinjiang Hami Locust and Rat Plagues Forecast Station, Hami 839000, Xinjiang;3The Locust and Rat Plagues Forecast Center of Xinjiang Uygur Autonomous Region, Urumqi 830046)
【Objective】The objective of this study is to develop a rapid, sensitive and specific nested-PCR method for detection ofand provide effective means for the monitoring of locusts and biological control. 【Method】According to the sequence of small subunit ribosomal RNA genes ofpublished in GenBank, two pairs of primers were designed and synthesized (-F1/-R1 and.-F2/-R2), and a series of assays (involving concentrations of primer pairs, Tm value and the number of cycling) were conducted to optimize the nested-PCR.treated with 0.2 mol·L-1KOH were used as template for nested-PCR.-F1 and-R1 were employed as the initial primers for the first amplification, which generated a 298 bp product, and.-F2 and-R2 as the secondary primers for the final amplification, which generated a 242 bp fragment. Analytical sensitivity and reproducibility were assessed, respectively. The nested-PCR method was used to detect a series of dilution ofsuspension, and to test thesuspension derived from Barkol Bei mountain in Hami region. At the same time, thesuspension was extracted and detected with the traditional microscope, and then the sensitivity of two methods was compared. 【Result】The nested PCR was established. The optimal parameters for the nested PCR reaction were performed in standard mixtures of 20 μL containing 2.0 μL of Buffer (10×), 0.3 μL of dNTPs (10 mmol·L-1), 0.3 μL of Taq DNA polymerase (250 U), 0.3 μL of each primer (10 μmol·L-1), 1 μL of DNA template (or the diluent of the first-round product was then diluted 10-fold with water) and 15.8 μL of double distilled water. Each PCR run was carried out in a thermal cycler. The conditions of the amplification were as follows: 1 cycle at 94℃ for 3 min, 35 cycles at 94℃ for 30 s, 60℃ (62℃ at secondary PCR) for 30 s, and 72℃ for 20 s and then 1 cycle at 72℃ for 10 min, with a final hold at 10℃. The result of two rounds PCR showed that the nested PCR assay could detect 12.2 spores/μL (1.07 pg DNA). A total of 240 locust samples from Bei mountain in Hami region were analyzed by nested PCR and microscope testing, respectively, the results showed that the positive detection rate was 23.3% and 3.8%, respectively. 【Conclusion】 The nested PCR mothed established in this study is more sensitivity than traditional microscope detection method. As well as, this assay can avoid human error, and more suitable for rapid and large-scale infection intensity survey.
; nested polymerase chain reaction; detection
2016-05-16;接受日期:2016-08-02
新疆維吾爾自治區(qū)自然科學(xué)基金面上項(xiàng)目(2014211A042)
聯(lián)系方式:扈鴻霞,E-mail:huhongxia111@126.com。通信作者季榮,E-mail:jirong@xjnu.edu.cn。通信作者李占武,E-mail:lizhanwu2016@126.com