張子揚,沈泰鈺,于洪江,高三思,朱奎玲,黃寶銀,徐 闖,楊 威
?
亞臨床型低血鈣癥奶牛生產(chǎn)性能及糞污排放特性
張子揚,沈泰鈺,于洪江,高三思,朱奎玲,黃寶銀,徐 闖,楊 威
(黑龍江八一農(nóng)墾大學動物科技學院,黑龍江大慶163319)
【目的】探討亞臨床低血鈣癥奶牛飼料采食量、泌乳量、糞尿排放量及糞污所產(chǎn)生污染氣體排放特征的關(guān)系?!痉椒ā亢邶埥臣s化奶牛養(yǎng)殖場選取產(chǎn)后7—14 d年齡、體況、胎次相近的奶牛12頭,根據(jù)血鈣指標分為亞臨床低血鈣癥組和健康組奶牛各6頭,每頭奶牛分別單獨飼養(yǎng),連續(xù)飼養(yǎng)4 d。每天采血檢測血液中Ca、BHBA、NEFA、CLU、P、Mg指標含量;記錄每頭牛每天泌乳量、采食量、糞、尿排放量;通過簡易動態(tài)箱法對試驗?zāi)膛<S尿進行混合,檢測混合物產(chǎn)生的NH3、CO2、CH4氣體排放量并進行分析?!窘Y(jié)果】亞臨床低血鈣癥組奶牛血清Ca、P、Mg濃度極顯著低于健康組奶牛(<0.01),CLU顯著低于健康組(<0.05),BHBA濃度顯著高于健康組(<0.05),NEFA濃度極顯著高于健康組奶牛(<0.01);亞臨床低血鈣癥組奶牛產(chǎn)奶量和4%能量校正乳(ECM)極顯著高于健康組(<0.01),排糞量顯著高于健康組(<0.05);干物質(zhì)消化率和尿量的差異雖然不顯著但都有升高趨勢。亞臨床低血鈣組奶牛采食1 kg干物質(zhì)的產(chǎn)奶量極顯著升高(<0.01),采食1 kg干物質(zhì)的排糞量顯著升高(<0.05);健康組和亞臨床低血鈣癥組奶牛CH4的排放曲線無明顯差異,兩組的產(chǎn)氣趨勢基本相同,于試驗的52 h左右出現(xiàn)峰值,之后下降;總體上看CO2的排放沒有明顯變化趨勢,無明顯規(guī)律,健康組和亞臨床低血鈣癥組分別在48和36 h處出現(xiàn)排放高峰,亞臨床低血鈣癥組出現(xiàn)峰值的時間要早于健康組,之后下降隨即無規(guī)律起伏。亞臨床低血鈣癥組的CO2累計排放量隨時間的推移低于健康組;健康組奶牛NH3排放濃度在24 h處出現(xiàn)高峰,隨后降低,45 h再次出現(xiàn)峰值,之后排放濃度逐漸降低。亞臨床低血鈣癥組奶牛NH3排放濃度在21 h處出現(xiàn)峰值,之后排放濃度降低,兩組試驗的折線趨勢基本一致,都是出現(xiàn)峰值后濃度降低但都是有起伏的波動。亞臨床低血鈣癥組NH3的累計排放量低于健康組?!窘Y(jié)論】亞臨床低血鈣癥奶牛患病期間由于采食攝取營養(yǎng)物質(zhì)不能滿足泌乳需求而處于能量及鈣負平衡狀態(tài)。同時腸道消化吸收率增加,用于滿足泌乳對能量的需求;在相同質(zhì)量的糞尿混合物檢測情況下亞臨床低血鈣癥不會影響CH4的排放量,但亞臨床低血鈣奶牛糞尿中NH3和CO2排放量低于健康牛,然而降低的溫室氣體排放是否與腸道消化吸收率的增加促進了飼料能量的吸收有關(guān)利用仍需進一步研究。
低血鈣癥;生產(chǎn)性能;溫室氣體;糞便;尿液;奶牛
【研究意義】隨著全球畜牧業(yè)的發(fā)展,奶牛業(yè)已成為支持畜牧業(yè)發(fā)展的重要產(chǎn)業(yè)。目前中國奶牛的總存欄數(shù)到達1 440萬頭[1],位居世界第三,奶制品產(chǎn)量占世界總量的6%,乳制品總量排在世界領(lǐng)先水平[2]。高產(chǎn)品種的培育和引進,生產(chǎn)性能的不斷提高和飼養(yǎng)管理不當,使得奶牛圍產(chǎn)期疾病日趨突出,給畜牧業(yè)造成巨大的經(jīng)濟損失。介于目前環(huán)境問題日益緊張,畜牧業(yè)溫室氣體排放量為全球排放量的18%[3]。奶牛低血鈣癥是奶牛圍產(chǎn)期常見的一種重要的營養(yǎng)代謝疾病。臨床上以低血鈣、肌無力、四肢癱瘓,精神沉郁甚至昏迷等為主要癥狀。還會引起癱瘓、真胃變位、胎衣不下、子宮復舊緩慢及子宮內(nèi)膜炎等疾病[4]。本研究為明確亞臨床低血鈣癥奶牛生產(chǎn)性能、飼料轉(zhuǎn)化率、糞尿排放及評價糞尿產(chǎn)生的污染氣體的排放指數(shù),為防治奶牛亞臨床低血鈣癥及減少有害氣體排放提供實驗基礎(chǔ)數(shù)據(jù)?!厩叭搜芯窟M展】數(shù)據(jù)顯示,國外分娩奶牛低血鈣癥的發(fā)病率為0.6%—50%[5],亞臨床低血鈣癥的發(fā)生率為14%—50%[6];國內(nèi)奶牛亞臨床低血鈣發(fā)病率可高達80%[7]。亞臨床低血鈣癥(sub clinical hypocalcemia)是奶牛一種鈣代謝負平衡的病理現(xiàn)象。當奶牛血鈣濃度低于2.0 mmol·L-1時可被認為患有亞臨床低血鈣癥。據(jù)報道,美國67%的經(jīng)產(chǎn)奶?;加衼喤R床低血鈣[8]。由于無明顯的臨床癥狀,該病極容易被忽視,加上易繼發(fā)圍產(chǎn)期其他疾病,從而給奶牛業(yè)帶來巨大的經(jīng)濟損失。目前環(huán)境污染問題嚴重,且奶牛業(yè)帶來的能量消耗、環(huán)境污染也成為了一個重要方面。畜牧業(yè)糞尿產(chǎn)生的溫室氣體給環(huán)境帶來了極大的壓力,尤其是二氧化碳(CO2)、甲烷(CH4)、氧化亞氮(N2O)、氨氣(NH3)等,對環(huán)境的污染嚴重[9]。IPCC的數(shù)據(jù)統(tǒng)計表明家畜溫室氣體排放量大約相當于全球人類活動溫室氣體排放量的7%—18%,其中牛類每年GHG排放量在4.6千兆t二氧化碳當量左右,占家畜總排放量的65%,其中肉牛的GHG排放量占44%,奶牛的溫室氣體排放量占21%[10]。2011年GERBER等研究發(fā)現(xiàn)奶牛在生產(chǎn)乳制品時就會排放溫室氣體,隨著奶制品產(chǎn)量的提高甲烷和氧化亞氮的排放量出現(xiàn)相對減少,而二氧化碳的排放量出現(xiàn)相對上升[11]。再加上中國飼料用糧逐年上漲,從1978年的4 575萬t上漲到2003年的16 538萬t,其年增長率為5.3%,遠高于商品糧的1.4%。不僅飼料量的比例逐年上漲,其安全問題也會越來越受到國家的重視,成為維護糧食安全和穩(wěn)定發(fā)展的重要組成部分[12]。飼料的轉(zhuǎn)化率低,對能源的浪費加大,更不利于響應(yīng)低投入、低排放、低能耗、高效益的低碳畜牧業(yè)發(fā)展戰(zhàn)略。【本研究切入點】亞臨床低血鈣癥作為集約化養(yǎng)殖模式下重要的奶牛群發(fā)常見多發(fā)病,對奶牛養(yǎng)殖業(yè)造成嚴重的危害,但目前從疾病的角度來系統(tǒng)闡述亞臨床低血鈣癥奶牛生產(chǎn)性能、飼料利用、糞污及其氣體排放等方面特征的研究較少?!緮M解決的關(guān)鍵問題】探索亞臨床低血鈣癥奶牛的生產(chǎn)性能,飼料轉(zhuǎn)化和糞尿污染及溫室氣體排放特征,為低碳畜牧業(yè)研究提供數(shù)據(jù)參考。
1.1 試驗動物與飼養(yǎng)條件
2014年12月,于黑龍江省某集約化奶牛養(yǎng)殖場,選取產(chǎn)后7—14 d年齡、體況、胎次相近的荷斯坦奶牛12頭作為試驗動物,根據(jù)其血鈣濃度,分亞臨床低血鈣癥組(1.4 mmol·L-1<血鈣濃度<2.0 mmol·L-1,無明顯臨床癥狀)和健康組(2.1 mmol·L-1<血鈣濃度<2.5 mmol·L-1,無其他任何癥狀),每組各6頭。奶牛飼喂圍產(chǎn)期全混合日糧(TMR)組成見表1。每頭奶牛均為單獨飼養(yǎng),連續(xù)飼養(yǎng)4 d,記錄每天每頭牛的采食量、泌乳量、排糞量、排尿量。
1.2 樣品的采集與處理
試驗?zāi)膛G宄匡曃骨拔察o脈采血10 mL,迅速離心(3 000 r/min,5 min)分離血清,置于-20℃冰箱冷凍保存待檢。于全自動生化分析儀中(型號modull- arDPP,德國)檢測每頭試驗?zāi)膛C刻煅逯械拟}(Ca),β-氫丁酸(BHBA),葡萄糖(GLU),磷(P),鎂(Mg),游離脂肪酸(NEFA)。
試驗?zāi)膛C刻煺ト?次,記錄3次榨乳量相加為一天的泌乳量。
表1 奶牛TMR日糧組分表
陰道按摩法采集排尿中間部分的尿液50 mL,置于-20℃冰箱冷凍保存待檢。每天每8 h收集1次試驗場地排尿溝內(nèi)的尿液,記錄每頭牛每天尿量。
每頭奶牛每天經(jīng)直腸采集糞便或采集剛排出的未被污染的糞便樣品0.5 kg,置于-20℃冰箱冷凍保存待檢。每天每8 h清理飼養(yǎng)場地的糞便并稱量,記錄當天奶牛的排糞量。
1.3 檢測項目及方法
血液檢測方法:鈣(Ca,比色法)、磷(P,比色法)、鎂(MG,絡(luò)合指示劑和全自動生化分析儀)、β-羥丁酸(BHBA,酶聯(lián)免疫法)、葡萄糖(GLU,葡萄糖氧化酶法),游離脂肪酸(NEFA,比色法)。
乳汁檢測指標:乳脂率、乳蛋白率、乳糖率用乳成分分析儀檢測(荷蘭DELTA LactoScope FTIR,表2)。
氣體試驗方法:氣體試驗是在黑龍江八一農(nóng)墾大學動物科技學院恒溫氣候室進行,采用簡易動態(tài)箱法對試驗?zāi)膛<S尿氣體排放進行測定,健康組糞尿混合比例為1.4﹕1,亞臨床低血鈣癥組糞尿混合比例為1.6﹕1,共計200 g。分別混合健康組所有奶牛每天的糞便和尿液,按同樣方法分別混合亞臨床低血鈣癥組奶牛糞便和尿液。分別置于底面積為78.5 cm2,高20 cm的廣口瓶子中,25℃下進行,進氣口位于瓶子頂端以2 L·min-1送空氣,出氣口位于離糞尿5 cm高度,試驗持續(xù)120 h,每3 h采集一次氣體50 mL置于氣袋中,用INNOVA 1412光聲氣體檢測儀器(AirTech Instruments A/S,Ballerup,Denmark)檢測CO2、CH4、N2O濃度氣體,NH3濃度用納氏試劑分光度法測定。
1.4 數(shù)據(jù)處理
所有數(shù)據(jù)均采用SPSS19.0軟件進行獨立樣本t檢驗分析,數(shù)據(jù)以“均值±標準差”表示。同行數(shù)據(jù)后所標*表示差異顯著(<0.05),**表示差異極顯著(<0.01),未標*表示差異不顯著(>0.05)。
1.5 4%能量校正乳和干物質(zhì)消化率計算
4%能量校正乳(ECM)=(0.038×乳脂g+0.024×乳蛋白g+0.017×乳糖g)×產(chǎn)奶量kg÷3.14;
干物質(zhì)消化率=(干物質(zhì)采食量﹣干物質(zhì)糞量)/干物質(zhì)采食量。
公式參照文獻[13]、[14]。
表2 乳汁指標檢測
同行數(shù)據(jù)后所標*表示差異顯著(<0.05),**表示差異極顯著(<0.01),未標*表示差異不顯著(>0.05)。下同
* mark in the same row means significant difference between the treatments (<0.05), ** mark means highly significant difference between the treatments (<0.01), no mark in the same row means not significant difference between treatments (>0.05). The same as below
2.1 血液指標
由表3可知,亞臨床低血鈣組奶牛Ca、P、Mg、極顯著低于健康組奶牛(<0.01),GLU的含量顯著低于健康組(<0.05),血清BHBA含量顯著高于健康組(<0.05)。NEFA含量極顯著高于健康組(<0.01)。
表3 試驗?zāi)膛Q迳笜藱z測結(jié)果
2.2 亞臨床低血鈣奶牛的產(chǎn)奶量,采食量,排糞量和排尿量
由表4可知,與健康奶牛相比,亞臨床低血鈣奶牛的產(chǎn)奶量極顯著升高(<0.01),4%能量校正乳顯著升高(<0.05),排糞量顯著增加(<0.05),但采食量和排尿量差異不顯著。排尿量有增加趨勢。干物質(zhì)消化率差異不顯著但有升高趨勢。采食1 kg干物質(zhì)的產(chǎn)奶量差異極顯著(<0.01),采食1 kg干物質(zhì)的排糞量差異顯著(<0.05)。
表4 產(chǎn)奶量,采食量,排糞量,排尿量
<0.05;<0.01
2.3 氣體排放
Adviento-borbe等人研究表明N2O在牛的糞便中排放濃度過低可以忽略不計,本試驗所檢測到的N2O的濃度也較低故沒有說明其排放情況[15-16]。
2.3.1 CH4的排放 如圖1、2 所示,健康組和亞臨床低血鈣癥組奶牛CH4的排放曲線無明顯差異,兩組的產(chǎn)氣趨勢基本相同,于試驗的52 h左右出現(xiàn)峰值,之后下降。由于實驗室仿照自然環(huán)境下糞尿分解情況,氧氣量充足,在這種情況下不利于CH4的產(chǎn)生,故排放速率較低。累計排放量差異不顯著。
圖1 CH4的排放特征曲線
圖2 CH4的累計排放量
2.3.2 CO2的排放 CO2的排放濃度沒有明顯變化趨勢,也未見明顯規(guī)律性變化,健康組和亞臨床低血鈣癥組分別在48和36 h處出現(xiàn)高峰,亞臨床低血鈣癥組出現(xiàn)峰值的時間要早于健康組,之后下降隨即無規(guī)律起伏(圖3)。亞臨床低血鈣癥組的累計排放量隨時間的推移低于健康組(圖4)。
2.3.3 NH3的排放 健康組奶牛NH3排放濃度在24 h處出現(xiàn)高峰,隨后降低,45 h再次出現(xiàn)峰值,之后排放濃度逐漸降低。亞臨床低血鈣癥組奶牛NH3排放濃度在21 h處出現(xiàn)峰值,之后排放濃度降低。在圖5中可以看出兩組試驗的折線趨勢基本一致,出現(xiàn)峰值后濃度降低但都是有起伏的波動。亞臨床低血鈣癥組NH3的累計排放量低于健康組(圖6)。
3.1血液指標分析
奶牛低血鈣的產(chǎn)生主要是由于分娩和大量泌乳導致奶牛對鈣離子需求加劇,血液中大量的鈣離子進入乳汁并隨著乳汁排出體外,造成血鈣濃度在短時間內(nèi)急劇下降。小腸是機體鈣吸收的主要場所[17],骨骼是鈣的主要貯存場所,當血鈣濃度低下時機體通過腸道的吸收和骨鈣的動員來補充,然而由于妊娠分娩對奶牛的生理應(yīng)激狀態(tài),此時鈣的穩(wěn)態(tài)調(diào)節(jié)機制尚未充分發(fā)揮作用,而泌乳初期腸道和骨鈣不能完全滿足對機體鈣的大量需求,奶牛就會出現(xiàn)低血鈣癥[18]。低血鎂造成甲狀旁腺分泌(PTH)減少,影響鈣的代謝。低血鈣奶牛血液BHBA顯著高于對照組,血糖含量顯著低于對照組,表明低血鈣奶牛處于能量負平衡的狀態(tài)。能量負平衡狀態(tài)下由于奶牛攝食的營養(yǎng)物質(zhì)不能滿足泌乳對營養(yǎng)物質(zhì)的需求也是低血鈣發(fā)生主要原因。
圖3 CO2的排放濃度
圖4 CO2的累計排放量
圖5 NH3的排放濃度
圖6 NH3的累計排放量
3.2 亞臨床低血鈣癥奶牛采食量與泌乳量、排糞量的關(guān)系
奶牛低血鈣癥常發(fā)于高產(chǎn)奶牛,本試驗中亞臨床低血鈣癥奶牛的產(chǎn)奶量極顯著高于健康組奶牛(<0.01),亞臨床低血鈣癥奶牛所產(chǎn)能量校正乳也顯著高于健康組奶牛(<0.05),這與HORST等研究結(jié)果一致,他們發(fā)現(xiàn)患低血鈣癥的奶牛在泌乳高峰期的3周內(nèi)產(chǎn)奶量明顯增加[19]。而本試驗中亞臨床低血鈣組的排糞量出現(xiàn)顯著增加(<0.05),排尿量出現(xiàn)上升趨勢,采食1 kg干物質(zhì)的產(chǎn)奶量極顯著增加(<0.01),采食1 kg干物質(zhì)的產(chǎn)糞量也出現(xiàn)顯著增加(<0.05),而采食量并無顯著變化,這可能是由于低血鈣奶牛中的鈣離子含量下降,引起奶牛出現(xiàn)能量負平衡現(xiàn)象,使得奶牛過多的動員體內(nèi)的能量來滿足產(chǎn)奶需求,這種異常的產(chǎn)奶量上升,如果持續(xù)發(fā)展不予以治療,可能會引起更加嚴重的低血鈣癥狀,影響奶牛產(chǎn)奶的持續(xù)力。
3.3 氣體排放情況
溫室氣體排放目前已成為全球關(guān)注的焦點,數(shù)據(jù)顯示農(nóng)業(yè)排放的CO2、CH4、N2O等已成為溫室氣體的主要來源,其中畜牧業(yè)溫室氣體主要來源于畜禽呼吸代謝、反芻動物瘤胃發(fā)酵、畜禽糞便處理過程中直接或間接的排放[20]。奶牛糞便的分解會產(chǎn)生大量的甲烷,奶牛糞便中含有大量的有機物,在厭氧的條件下糞尿中有機物被分解為有機酸、H2和CO2,然后在微生物有機體內(nèi)生成CH4,該過程受環(huán)境溫度、飼料特性、堆積高度覆蓋等因素的影響。動物糞便分解 CH4可分為3個階段:水解,產(chǎn)酸,產(chǎn)甲烷;好氧分解是幾乎不產(chǎn)生CH4。本試驗開始時氧氣充足,隨著試驗時間的進行,糞尿中氧氣的消耗,CH4產(chǎn)生量增加,在試驗的第3天達到排放峰值,但隨著糞尿表面硬殼的產(chǎn)生阻止了氣體的溢出檢出量減少[21]。從圖1、2中可以看出兩組奶牛糞尿混合物所產(chǎn)生的甲烷排放趨勢和排放量基本相同,這說明在飼喂相同飼料的情況下甲烷的產(chǎn)生是無差異的。美國的研究表明,在飼喂相同飼料的情況下,不同品種、年齡和性別的動物甲烷排放量相似[22]。PINARES-PATINO 等報道,給綿羊和羊駝同時飼喂紫花苜蓿時,甲烷產(chǎn)生量沒有顯著差異[23]。所以亞臨床低血鈣癥可能不引起甲烷排放量的變化。
當環(huán)境處于好氧條件下CO2的產(chǎn)生,通常要經(jīng)過升溫、高溫、降溫和腐熟微保溫4個階段,糞尿中的有機成分轉(zhuǎn)化為CO2、熱量、生物量和腐殖質(zhì)。好氧微生物將糞尿轉(zhuǎn)化和分解成為可降解有機物同時產(chǎn)生CO2、水及熱量的過程,糞尿堆置材料碳素物質(zhì)主要是為微生物活動提供能源和碳源[24]。厭氧情況下甲烷產(chǎn)生量增加,不利于CO2的產(chǎn)生[25]。本試驗前期氧氣相對充分,CO2排放濃度較高,但亞臨床低血鈣癥組CO2排放峰值出現(xiàn)早于健康組。這是可能是由于兩組試驗?zāi)膛5募S尿混合比例不同造成的,當糞便中水分含量高時趨于厭氧環(huán)境,不利于CO2的產(chǎn)生,而亞臨床低血鈣癥組奶牛糞便中水分含量較大,過早地消耗盡了氧氣,并且CH4和CO2的排放此消彼長、相互制約,隨著氧氣消耗殆盡甲烷的產(chǎn)生抑制了CO2的生產(chǎn),所以亞臨床低血鈣癥組奶牛的CO2排放量低于健康組。
N2O的生成機理在不同環(huán)境中有多種途徑,但硝化和反硝化作用被認為是生成N2O的基本機理。在通氣條件下,氨和氨鹽通過硝化細菌的作用,被氧化成硝酸鹽和亞硝酸鹽的過程稱為硝化作用,此過程產(chǎn)生N2O[26]。一般說來,硝化作用包括兩個步驟,即氨氧化為亞硝酸和亞硝酸氧化為硝酸,分別由氨氧化菌和亞硝酸氧化菌完成。首先由氨氧化成亞硝酸,然后亞硝酸再氧化成硝酸,期間生成N2O。上述反應(yīng)中,有些過程不甚完全了解,但N2O作為中間產(chǎn)物則是肯定的,而且在某些條件下N2O釋放量很大[27]。反硝化作用是在通氣不好的條件下,在反硝化細菌或化學還原劑作用下 NO3、NO2、N2還原生成NO、N2O、N2的過程。Sommer等發(fā)現(xiàn),當沒有表面覆蓋時,N2O的排放凡乎為零,然而當形成自然表面外殼時,N2O的排放增加[28]。表面覆蓋層為硝化反應(yīng)和反硝化反應(yīng)提供合適的地方,導致N2O的產(chǎn)生增加,但是在實際條件下(農(nóng)場糞坑覆蓋稻草后)N2O和CH4的排放也很低[29],NH3的產(chǎn)生也會抑制N2O的排放,本試驗檢測到的N2O的排放濃度也很低,這與前人研究結(jié)果相似。
錢承梁等[30]研究表明,牛糞氨的揮發(fā)過程快而猛,揮發(fā)高峰天數(shù)在1—2 d,本試驗中健康組奶牛的NH3排放結(jié)果顯示,24 h內(nèi)NH3濃度迅速上升,隨后下降,45 h有上升,之后逐漸降低。這一結(jié)果與錢承梁等研究結(jié)果相符。而亞臨床低血鈣組奶牛NH3排放低于健康組,且趨勢相對平穩(wěn),原因與CO2相似。
奶牛亞臨床低血鈣初期,泌乳量增加明顯,生產(chǎn)性能的增加調(diào)動了機體的能量動員,機體能量負平衡的出現(xiàn)和腸道的消化吸收率增加共同用于滿足亞臨床低血鈣癥奶牛泌乳能量增加的需求。同時,亞臨床低血鈣癥奶牛糞尿混和物中CO2和NH3的排放量減少。但亞臨床低血鈣癥不會影響甲烷的排放。
[1] 佚名. 中國奶業(yè)的發(fā)展現(xiàn)狀與趨勢. 當代畜禽養(yǎng)殖業(yè), 2013(5): 62-63.
YI M. The present situation and trend of the development of Chinese dairy industry.2013(5): 62-63. (in Chinese)
[2] 李婷, 劉武兵. 市場開放條件下的中國乳制品產(chǎn)業(yè)發(fā)展. 世界農(nóng)業(yè), 2012(11): 122-125.
LI T, LIU W B. Development of dairy industry in China under the condition of market opening.2012(11): 122-125. (in Chinese)
[3] FAO. Greenhouse gas emissions from the dairy sector: a life cycle assessment. http://www. environmentportal. in/node/303591/, 01. 04. 2010.
[4] 王寶杰, 蔡蘭芬. 圍產(chǎn)期奶牛低血鈣癥的發(fā)生及預(yù)防措施研究. 北京農(nóng)業(yè), 2014(24). DOI:10. 3969/j. issn. 1000-6966. 2014. 24. 106.
WANG B J, CAI L F. Occurrence and prevention of hypocalcemia in periparturient dairy cows.2014(24). DOI: 10. 3969/j. issn. 1000-6966. 2014. 24. 106. (in Chinese)
[5] OETZEL G R, MILLER B E. Effect of oral calcium bolus supplementation on early-lactation health and milk yield in commercial dairy herds.2012, 95(12):7051-7065.
[6] GOFF J P, LIESEGANG A, HORST R L. Diet-induced pseudohypoparathyroidism: A hypocalcemia and milk fever risk factor.2014, 97(3):1520-1528.
[7] 桑松柏, 夏成, 張洪友, 徐闖, 楊柳. 奶牛圍產(chǎn)期低血鈣發(fā)生狀況及其調(diào)節(jié)作用. 中國奶牛, 2009(3):38-40.
Sang S B, Xia C, Zhang H Y, Xu C, Yang L. the incidence and regulation of dairy cow hypocalcemia in perinatal period.2009(3): 38-40. (in Chinese)
[8] OETZEL G R, OLSON J D, CURTIS C R, FETTMAN M J. Ammonium chloride and ammonium sulfate for prevention of parturient paresis in dairy cows. J1988, 71(12):3302-3309.
[9] PATRA A K, LALHRIATPUII M. Development of statistical models for prediction of enteric methane emission from goats using nutrient composition and intake variables.2015, 215:89-99.
[10] GERBER P J, HENDERSON B, MAKKAR H P S. Mitigation of greenhouse gas emissions in livestock production. A review of technical options for non-CO2emissions., 2013.
[11] GERBER P, VELLINGA T, OPIO C, STEINFELD H. Productivity gains and greenhouse gas emissions intensity in dairy systems.2011, 139(s 1/2):100-108.
[12] MASTRANDREA M D, MACH K J, PLATTNER G K, EDENHOFER O, STOCKER T F. The IPCC AR5 guidance note on consistent treatment of uncertainties: a common approach across the working groups., 2011, 108(4):675-691.
[13] REIST M, ERDIN D, VON EUW D, TSCHUEMPERLIN K, LEUENBERGER H, CHILLIARD Y, HAMMON H M, MOREL C, PHILIPONA C, ZBINDEN Y, KUENZI N, BLUM J W. Estimation of energy balance at the individual and herd level using blood and milk traits in high-yielding dairy cows., 2002, 85(12):3314-3327.
[14] BELL M J, WALL E, RUSSELL G, SIMM G, STOTT A W. The effect of improving cow productivity, fertility, and longevity on the global warming potential of dairy systems.2011, 94(7):3662-3678.
[15] LEE C, HRISTOV A N, DELL C J, FEYEREISEN G W, KAYE J, BEEGLE D. Effect of dietary protein concentration on ammonia and greenhouse gas emitting potential of dairy manure., 2012, 95(4):1930-1941.
[16] CHRIS K, RODNEY V, JOHAN S, ADVIENTO-BORBEM A, LINQUISTB, VAN GROENIGENK J. Climate, duration, and N placement determine N2O emissions in reduced tillage systems: a meta-analysis., 2013, 19(1):33-44.
[17] 穆淑琴, 李鵬. 奶牛圍產(chǎn)期低血鈣癥的發(fā)生及營養(yǎng)調(diào)控措施. 中國牛業(yè)科學, 2011(4):41-43.
MU S Q, LI P. Cows hypocalcemia occurred perinatal and nutritional control measures., 2011(4): 41-43. (in Chinese)
[18] GOFF J P, HORST R L. Physiological changes at parturition and their relationship to metabolic disorders., 1997, 80(7):1260-1268.
[19] HORST R L, GOFF J P, REINHARDT T A, BUXTON D R. Strategies for preventing milk fever in dairy cattle., 1997, 80(7):1269-1280.
[20] 汪開英, 黃丹丹, 應(yīng)洪倉. 畜牧業(yè)溫室氣體排放與減排技術(shù). 中國畜牧雜志, 2010, 46(24): 20-22.
WANG K Y, HUANG D D, YING H C. Livestock and greenhouse gas emissions reduction technology., 2010, 46(24): 20-22. (in Chinese)
[21] SZANTO G L, HAMELERS H V M, RULKENS W H, VEEKEN A H M. NH3, N2O and CH4emissions during passively aerated composting of straw-rich pig manure., 2007, 98(14): 2659-2670.
[22] 陸日東. 奶牛糞便溫室氣體排放及影響因子研究[D]. 北京:中國農(nóng)業(yè)科學院, 2007.
LU R D. Emissions of greenhouse gases from dairy manure and influencing factors[D]. Beijing: Chinese Academy of Agricultural Sciences, 2007. (in Chinese)
[23] PINARES-PATI?, O, C S, ULYATT M J, BARRYT N, HOLMESC W. Rumen function and digestion parameters associated with differences between sheep in methane emissions when fed chaffed lucerne hay., 2003, 140(140): 205-214.
[24] 朱海生, 董紅敏, 左福元, 袁豐, 饒駿. 覆蓋及堆積高度對肉牛糞便溫室氣體排放的影響. 農(nóng)業(yè)工程學報, 2014(24):225-231.
ZHU H S, DONG H M, ZUO F Y, YUAN Z, RZO J. Effect of covering on greenhouse gas 24ijing missonsmfrom beef cattle solid manure stored at different stack heights., 2014(24):225-231. (in Chinese)
[25] 周靜, 馬友華, 楊書運, 徐小牛, 蔣旭東. 畜牧業(yè)溫室氣體排放影響因素及其減排研究. 農(nóng)業(yè)環(huán)境與發(fā)展, 2013(4):78-82.
ZHOU J, MA Y H, YANG S Y, XU X N, JIANG X D. Mechanism of greenhouse gases emission from livestock and its reducing measures., 2013(4):78-82. (in Chinese)
[26] MATHOT M, DECRUYENAERE V, LAMBERT R, STILMAT D. CH4, CO2, N2O and NH3emissions from barns and during solid manure storage of Belgian Blue White heifers [C]// 14 èmes Recontres autour des recherches sur les ruminants, Paris, les 5 et 6 Décembre 2007. 2007.
[27] 黃耀, 蔣靜艷, 宗良綱, 周權(quán)鎖. 種植密度和降水對冬小麥田N2O排放的影響. 環(huán)境科學, 2001(6):19-23.
HUANG Y, JIANG J Y, ZONG L G, ZHOU Q S. Influence of planting density and precipitation on N2O emission from a winter wheat field., 2001(6): 19-23. (in Chinese)
[28] Sommer S G, Petersen S O, S?gaard H T. Greenhouse gas emission from stored livestock slurry.2000, 29(3):744-751.
[29] Jungbluth T, Hartung E, Brose G. Greenhouse gas emissions from animal houses and manure stores.2001, 60(1/3):133-145(13).
[30] 錢承梁, 魯如坤. 農(nóng)田養(yǎng)分再循環(huán)研究Ⅲ. 糞肥的氨揮發(fā). 土壤, 1994(4): 169-174.
Qian C L, Lu R K. Farmland Nutrients recycling study Ⅲ., 1994(4): 169-174. (in Chinese)
(責任編輯 林鑒非)
A Study on the Effect of Subclinical Hypocalcemia in Dairy Cows on Productivity and Manure Emission Characters
ZHANG Zi-yang, SHEN Tai-yu, YU Hong-jiang, GAO San-si, ZHU Kui-ling, HUANG Bao-yin, XU Chuang, YANG wei
(College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agriculture University, Daqing 163319, Heilongjiang)
【Objective】The objective of this paper is to study the feed intake, lactation, manure emissions of subclinical hypocalcaemia cows and sewage generated gas pollution emission characteristics. 【Method】 This study was carried out in a Heilongjiang intensive dairy farm. Twelve dairy cows which were similar in postnatal 7-14 days of age, body conditions and parity were selected and divided into subclinical hypocalcaemia group and healthy group, each group had 6 cows, each cow was individually housed, and they were continuously fed for 4 days. Blood samples were taken for measurement of blood Ca, BHBA, NEFA, CLU, P, Mg content indicators every day. Daily milk yield, feed intake, feces and urine of each cow were recorded. Simple dynamic chamber method was used to mix cow manure in the laboratory and NH3, CO2and CH4emissions in the mixture were detected and analyzed. 【Result】Cows serum Ca, P and Mg contents in subclinical hypocalcemia symptom group were significantly lower than healthy group (<0.01), CLU was significantly lower than that of healthy group (<0.05) and BHBA concentration was significantly higher than that of healthy group (<0.05) and NEFA concentration was significantly higher than that of healthy cows in healthy group (<0.01); milk yield in subclinical hypocalcaemia group was significantly higher than that in healthy group (<0.01), 4% energy corrected milk (ECM) was significantly higher than that of healthy cows (<0.01) in healthy group, fecal excretion was significantly higher than that of healthy group (<0.05); dry matter digestibility and urine volume had no significant difference but a rising trend. Milk yield of cows which were fed 1 kg dry matter was increased significantly (<0.01), feces of cows which were fed 1 kg dry matter amount were significantly higher (<0.05) in subclinical hypocalcemia calcium group. CH4emission curve in healthy group and subclinical hypocalcemia symptom group cows had no significant difference, two groups of gas production trend was basically the same, peak of gas production was on the 52 h, then falling. CO2emissions had no significant changes in the trend, no obvious rules, emission peak was appeared in the healthy group and subclinical hypocalcemia symptoms group, respectively, at 36 h and 48 h, the peak in subclinical hypocalcaemia group was appeared earlier than healthy group, and then decreased immediately without regularity and floated up and down. Subclinical hypocalcaemia group of CO2cumulative emissions with the passage of time was lower than that of the healthy group; The peak of cows NH3emission concentration in healthy group was at 24 hours, then decreased, peaked again at 45 h, emission concentration decreased gradually. The peak of cows NH3emission concentration in subclinical hypocalcemia group was appeared at 21 h, then the emission concentration decreased, two groups the test line trend of the two groups were basically the same, all trend were that the peak concentration decreased and floated up and down. The cumulative emissions of NH3in subclinical hypocalcemia group were lower than healthy group. 【Conclusion】 During the subclinical hypocalcemia in dairy cows with syndrome of disease due to the feed intake of nutrients can not satisfy the lactation demand in the state of energy and calcium negative balance. At the same time digestive tract absorption rate increased to satisfy the demand of energy lactation; under the same quality of mixed excrements of detection of subclinical hypocalcaemia would not impact on CH4emissions, but NH3and carbon CO2emissions in subclinical hypocalcemia cows manure were lower than that of healthy cows. However, whether reducing greenhouse gas emissions caused the increase of intestinal absorption rate promoted the feed energy uptake still needs to be further studied.
hypocalcemia; performance; greenhouse gases; faeces; urine; dairy cow
2015-12-01;接受日期:2016-09-02
國家科技支撐計劃(2013BAD21B01)
聯(lián)系方式:張子揚,Tel:18553225756;E-mail:465717953@qq.com。通信作者徐闖,Tel:13936967175;E-mail:xuchuang7175@163.com。通信作者楊威,Tel:15164564227;E-mail:yangwei416@126.com