王金華,向紅軍(湘南學(xué)院數(shù)學(xué)與金融學(xué)院,湖南郴州423000)
一類(lèi)分?jǐn)?shù)階差分方程邊值問(wèn)題多重正解的存在性
王金華,向紅軍
(湘南學(xué)院數(shù)學(xué)與金融學(xué)院,湖南郴州423000)
考慮一類(lèi)高階分?jǐn)?shù)階差分方程邊值問(wèn)題.構(gòu)造相關(guān)的格林函數(shù),利用不等式技巧,分析格林函數(shù)的特征性質(zhì).運(yùn)用不動(dòng)點(diǎn)指數(shù)理論,獲得了該分?jǐn)?shù)階差分方程邊值問(wèn)題存在多重正解的充分條件,舉例說(shuō)明了所獲理論的有效性.
多重正解;邊值問(wèn)題;分?jǐn)?shù)階差分方程;存在性
分?jǐn)?shù)階微積分是整數(shù)階微積分的擴(kuò)展,且比整數(shù)階微積分能更好地描述現(xiàn)實(shí)中的某些現(xiàn)象.因此,近十年來(lái)得到了較好的發(fā)展,涌現(xiàn)了大量的研究文獻(xiàn).特別是分?jǐn)?shù)階微分方程邊值問(wèn)題理論得到了較大豐富,見(jiàn)參考文獻(xiàn)[1-3]及所引參考文獻(xiàn).而離散分?jǐn)?shù)階微積分研究較少,主要是研究相對(duì)困難,因而發(fā)展較為緩慢.近年來(lái),分?jǐn)?shù)階差分方程的相關(guān)研究也取得了一些非??上驳拈_(kāi)拓和發(fā)展.一些先行者如國(guó)內(nèi)學(xué)者程金發(fā)和國(guó)外學(xué)者Atici F M,Eloe P W等取得很多系統(tǒng)的研究成果,介紹了分?jǐn)?shù)階差分方程理論及研究方法,參見(jiàn)文獻(xiàn)[4-7].由此,分?jǐn)?shù)階差分方程邊值問(wèn)題的研究受到國(guó)內(nèi)外學(xué)者的關(guān)注,并逐漸成為熱點(diǎn),目前仍是一個(gè)很新的研究領(lǐng)域,見(jiàn)文獻(xiàn)[8-15].目前大多數(shù)文獻(xiàn)研究的階數(shù)不超過(guò)2,所用方法比較多見(jiàn)的主要是壓縮映射原理,Schaefer’s不動(dòng)點(diǎn)定理,K rasnosel’skii不動(dòng)點(diǎn)定理等.如文獻(xiàn)[11]用K rasnosel’skii不動(dòng)點(diǎn)定理討論了分?jǐn)?shù)階差分(邊值問(wèn)題:
分別獲得了該問(wèn)題正解存在性及唯一性的充分條件.
文獻(xiàn)[12]描述了分?jǐn)?shù)階差分與整數(shù)階差分方程邊值問(wèn)題的不同之處,研究了分?jǐn)?shù)階差分邊值問(wèn)題:
作者用偏序空間中的不動(dòng)點(diǎn)理論得到了該方程正解存在唯一的充分條件.
本文考慮更高階的分?jǐn)?shù)差分方程邊值問(wèn)題:
先給出本文后面要用到的一些定義和引理.
定義2.1[8,12]定義對(duì)任意t和v右邊有定義.如果t+1-v是Gamma函數(shù)的極點(diǎn),而t+1不是Gamm a函數(shù)的極點(diǎn),則tv=0.
定義2.2[8,12]對(duì)v>0,函數(shù)f的v階分?jǐn)?shù)和定義為
定義
α為實(shí)數(shù),a,b為整數(shù).
對(duì)v>0,f的v階分?jǐn)?shù)差分定義為Δvf(t):=ΔNΔv-Nf(t),t∈Na+N-v且N∈N滿足0≤N-1<v≤N.
引理2.1[8,12]假設(shè)N∈N,0≤N-1<v≤N,則
引理2.2[14]設(shè)a∈R,v>0.則Δ(t-a)v=v(t-a)v-1,對(duì)任意t兩邊有定義.此外,對(duì)n-1<v≤n,n∈N1及μ∈R(-N1),
注1由引理2.2和Gamm a函數(shù)的基本性質(zhì),易得:
引理2.3[13]設(shè)Y是一個(gè)Banach空間,K?Y是Y內(nèi)的一個(gè)錐.對(duì)q>0,定義Kq={x∈K;‖x‖≤q}.若Q:Kq→K是一個(gè)緊映射,使得當(dāng)x∈?Kq={x∈K,‖x‖=q}時(shí),有Qx/=x,那么(1)當(dāng)x∈?Kq時(shí),若‖x‖≤‖Qx‖,則i(Q,Kq,K)=0;(2)當(dāng)x∈?Kq時(shí),若‖x‖≥‖Qx‖,則i(Q,Kq,K)=1.
為了簡(jiǎn)化主要結(jié)果的證明,先討論與方程(1.1)相關(guān)的格林函數(shù),并證明所得的格林函數(shù)的一些重要性質(zhì).
引理3.2 Green函數(shù)G(t,s)有如下性質(zhì):
當(dāng)t=v+b時(shí),
證由引理3.2的(2)-(4)可知:
本節(jié)用不動(dòng)點(diǎn)指數(shù)理論證明分?jǐn)?shù)階差分邊值問(wèn)題(1.1)多重正解的存在性.
由引理3.1知,y(t)為邊值問(wèn)題(1.1)的解當(dāng)且僅當(dāng)滿足y=Ty,y∈Y.
下面給出證明本節(jié)結(jié)論所需要的條件:
引理4.1 T是完全連續(xù)映射,且T(K)?K.
顯然,由(H1)知T是完全連續(xù)映射.下面證明T(K)?K.
由引理3.3,對(duì)任意y∈K有,
即Ty∈K.
定理4.1設(shè)函數(shù)f(t,y)滿足(H1)-(H3),則邊值問(wèn)題(1.1)至少存在兩個(gè)正解y1,y2滿足
證取一個(gè)正數(shù)ξ>0,使
由(H3)存在正數(shù)μ1,0<μ1<r1,使得f(t,y)≥ξy,對(duì)任意的0≤y≤μ1,t∈Nv+bv-3成立,因此,對(duì)y∈?Kμ,有
即當(dāng)y∈?Kμ1時(shí),‖Ty‖>‖y‖.由引理2.3,有
即當(dāng)y∈?K時(shí),‖Ty‖>‖y‖.因此
另一方面,由(H2),對(duì)任意y∈?Kr1有,
因此,當(dāng)y∈?Kr1時(shí),‖Ty‖<‖y‖.顯然,當(dāng)y∈?Kr1時(shí),Ty/=y,所以
綜合(4.1)-(4.3),可得:
所以,T有兩個(gè)不動(dòng)點(diǎn)y1,y2,分別屬于即邊值問(wèn)題(1.1)有兩個(gè)正解y1,y2滿足
定理4.2設(shè)函數(shù)f(t,y)滿足(H1),(H4),(H5),則邊值問(wèn)題(1.1)至少存在兩個(gè)正解y3,y4,滿足:0<‖y3‖<r2<‖y4‖.
類(lèi)似地,對(duì)0<μ2<r2,有i(T,Kμ2,K)=1.
另一方面,對(duì)任意y∈?Kr2,有且由(H5)可得:
因此,當(dāng)y∈?Kr2時(shí),有‖Ty‖>‖y‖.顯然,當(dāng)y∈?Kr2時(shí),Ty/=y,所以
因此類(lèi)似于定理4.1的證明,可得分?jǐn)?shù)階差分邊值問(wèn)題(1.1)至少有兩個(gè)正解y3及y4,滿足:
例1考慮分?jǐn)?shù)階差分方程:
取b=10,令
A是一個(gè)常數(shù),則
(1)顯然(H)成立.
(2)
即(H3)成立.
從而由定理4.1可得:分?jǐn)?shù)階差分邊值問(wèn)題(5.1)至少存在兩個(gè)正解y1,y2,滿足:
例2考慮分?jǐn)?shù)階差分方程:
取b=10,令
B是一個(gè)正的常數(shù),則
(1)顯然(H1)成立.
即(H4)成立.
從而由定理4.2可得:分?jǐn)?shù)階差分邊值問(wèn)題(5.2)至少存在兩個(gè)正解y3,y4,滿足:
[1]Ferreira R A C.Positive solutions for a class of boundary value prob lem s w ith fractional q-differences[J].Comm put M ath App l,2011,61:367-373.
[2]Benchohra M,Ham ani S,N touyas S K.Boundary value p rob lem s for d ifferential equations w ith fractional order and non local conditions[J].Nonlinear Anal,2009,71:2391-2396.
[3]Atici F M,Eloe P W.Two-point boundary value p rob lem s for finite fractional difference equations[J].J Differ Equ App l,2011,17(4):445-456.
[4]A tici F M,Sengu l S.M odeling w ith fractional difference equations[J].J M ath Anal App l,2010,369(1):1-9.
[5]Atici F M,Eloe P W.Two-point boundary value p rob lem s for finite fractional difference equations[J].J Differ Equ App l,2011,17(4):445-456.
[6]A tici F M,Uyanik M.Analysis of discrete fractional operators[J].A pp l Anal Discrete M ath,2015,9(1):139-149.
[7]程金發(fā).分?jǐn)?shù)階差分方程理論[M].廈門(mén):廈門(mén)大學(xué)出版社,2011.
[8]Good rich C S.On discrete sequential fractional boundary value p rob lem s[J].J Math Anal Appl,2012,385(1):111-124.
[9]Good rich C S.Systems of discrete fractional boundary value prob lem s w ith non linearities satisfying no grow th conditions[J].JDiffer Equ App l,2015,21(5):437-453.
[10]Lv Weidong.Existenceand uniqueness of solutions for a discrete fractionalm ixed type sumdifference equation boundary value p rob lem[J].Discrete Dyn Nature Soc,2015,A rticle ID 376261,10 pages.
[11]Luo Xiannan,Guo Shancui.Existence and uniqueness of solutions for fractional boundary value p rob lem w ith fractional boundary value conditions[J].Qual Theory Dyn Syst,2014,(13):1-17.
[12]Chen Y i,Tang Xianhua.The difference between a class of discrete fractional and integer order boundary value p roblem s[J].Comm Nonlinear SciNum er Simu l,2014,(19):4057-4067.
[13]Lv Zhanm ei,Gong Yanping,Chen Y i,et al.M u ltip licity and uniqueness for a class of discrete fractional boundary value p rob lem s[J].App l Math,2014,59(6):673-695.
[14]Holm M.Sum and difference com position in discrete fractional calcu lus[J].CUBO M ath J,2011,13(3):153-184.
[15]王金華,向紅軍,趙育林.一類(lèi)非線性分?jǐn)?shù)階差分方程邊值問(wèn)題解的存在性及U lam穩(wěn)定性[J].中山大學(xué)學(xué)報(bào),2016,55(2):1-13.
M R Su b jec t C lassifica tion:26A 33;39A 10;39A 12
Ex istence ofm u ltip le p ositive solu tions for a boundary value p rob lem of fractional d ifference equation
WANG Jin-hua,X IANG Hong-jun
(College of M athematics and Finance,Xiangnan University,Chenzhou 423000,China)
By constructing the corresponding Green’s function and analysing the key properties with inequality technique,a high order fractionaldifference equation w ith boundary value conditions is studied in this paper.The existence ofmu ltip le positive solutions is obtained by using the fixed point index theory.Additionally,two exam ples are illustrated to guarantee themain resu lts.
multip le positive solution;boundary value p rob lem;fractional difference equation;existence
O 175.7
A
1000-4424(2016)02-0167-09
2015-11-21
2016-05-06
向紅軍,Em ail:hunxh jxh j67@126.com
國(guó)家自然科學(xué)基金(11471278);湖南省自然科學(xué)基金(2016JJ6139)