劉勇,陳一定*,劉立波
1 中國科學(xué)院地質(zhì)與地球物理研究所中國科學(xué)院地球與行星物理重點實驗室,北京 1000292 中國科學(xué)院地質(zhì)與地球物理研究所北京空間環(huán)境國家野外科學(xué)觀測研究站,北京 1000293 中國科學(xué)院大學(xué),北京 100049
?
電離層春秋分不對稱的地方時依賴
劉勇1,2,3,陳一定1,2,3*,劉立波1,2
1 中國科學(xué)院地質(zhì)與地球物理研究所中國科學(xué)院地球與行星物理重點實驗室,北京 1000292 中國科學(xué)院地質(zhì)與地球物理研究所北京空間環(huán)境國家野外科學(xué)觀測研究站,北京 1000293 中國科學(xué)院大學(xué),北京 100049
利用全球203個電離層測高儀臺站的F2層臨界頻率(foF2)和E層臨界頻率(foE),以及美國噴氣推進(jìn)實驗室(JPL)提供的電離層總電子含量(TEC)地圖數(shù)據(jù)統(tǒng)計分析了電離層春秋分(March Equinox and September Equinox,ME and SE)不對稱的特點.基于電離層參量隨年積日(Day of Year,DoY)和太陽活動指數(shù)F10.7變化的傅里葉級數(shù)模型,對foF2、foE及TEC數(shù)據(jù)分別進(jìn)行最小二乘法擬合,將電離層參量歸算到低太陽活動(F10.7=80)、中等太陽活動(F10.7=150)和高太陽活動(F10.7=200)水平.該方法定量分離了實際觀測數(shù)據(jù)中包含的電離層參量隨季節(jié)和太陽活動的變化,因而得到了更為定量、精確的電離層春秋分不對稱性特征.分析了不同地方時(LT)的春秋分不對稱性指數(shù)(Asymmetry Index,AI)和春秋分差值Δ(=ME-SE)的全球分布特征與太陽活動依賴性.結(jié)果表明,foE日出時全球主要表現(xiàn)為9月分點值高于3月分點值,午后春秋分不對稱性幾乎消失,而日落時則反轉(zhuǎn)為3月分點值高于9月分點值;foF2日出時除少數(shù)地區(qū)外也主要表現(xiàn)為9月分點值高于3月分點值,而其他時段則相反;TEC日出時低太陽活動時的全球及中高太陽活動時的低緯地區(qū)表現(xiàn)為9月分點值高于3月分點值,而其他時段則相反.foE春秋分不對稱性受太陽活動影響較弱,而foF2和TEC的春秋分不對稱隨太陽活動有明顯的變化,其3月分點值相對于9月分點值增加.計算了F2層峰高(hmF2)處對應(yīng)的氧氮濃度比([O]/[N2],由大氣模型NRLMSISE-00計算得到)和hmF2的春秋分不對稱性,提取了TEC年變化的幅度及相位信息.氧氮濃度比和hmF2的春秋分不對稱性能夠部分解釋電離層的春秋分不對稱性,而TEC春秋分不對稱的全球分布特征可以用TEC年變化的相位的全球分布解釋.
F2層臨界頻率;E層臨界頻率;GPS TEC;電離層;春秋分不對稱
受太陽輻射、中性大氣等因素變化的影響,電離層表現(xiàn)出從氣候?qū)W到天氣學(xué)多重時間尺度的復(fù)雜變化.就氣候?qū)W變化而言,主要包括太陽活動周變化、季節(jié)變化及周日變化等.對于電離層季節(jié)變化,如年異常(從全球范圍看,NmF2的年度變化12月比6月大)、半年異常(電子含量在兩分點月份附近出現(xiàn)峰值)、冬季異常(中緯度地區(qū)白天NmF2冬季高于夏季)等,其原因可能與中性大氣成分、熱層中性風(fēng)、日地距離的季節(jié)變化等有關(guān)(Richards,2001;Rishbeth et al.,2000;Buonsanto,1986).春秋分不對稱性是電離層季節(jié)變化的一個重要特征(Balan et al.,1998;Chen et al.,2012).太陽天頂角在春分點與秋分點(本文所討論春分點與秋分點分別指3月分點與9月分點)大致相當(dāng),但即使在太陽活動水平一致時,電離層參量有時在這二分點表現(xiàn)出較強(qiáng)的差異(Liu et al.,2010),即電離層的春秋分不對稱性.這種特征可能由中性大氣的季節(jié)變化以及電離層動力學(xué)過程的春秋分差異引起(Kawamura et al.,2002;Aruliah et al.,1996).然而現(xiàn)有的一些電離層經(jīng)驗?zāi)J?,如國際參考電離層(International Reference Ionosphere)(Bilitza et al.,2014)、Fejer的電場模型(Fejer and Scherliess,1997),都沒有考慮電離層的春秋分不對稱性的影響.研究該特征對認(rèn)識、理解電離層季節(jié)變化以及對電離層經(jīng)驗建模都具有重要意義.
在電離層季節(jié)變化期間,太陽輻射也在顯著改變(除太陽活動低年),引起電離層變化.從觀測數(shù)據(jù)中通常難以準(zhǔn)確地將這兩種因素導(dǎo)致的電離層變化完全定量分離開,從而得到電離層春秋分不對稱特征的更為定量的信息,有時甚至?xí)鹫`導(dǎo).例如,Unnikrishnan等(Unnikrishnan et al.,2002)分析Palehua地區(qū)TEC的春秋分不對稱特征,得出TEC春秋分不對稱在太陽活動高年與太陽活動低年截然相反(1981太陽活動高年9月份TEC高,而1984太陽活動低年3月份TEC高)的結(jié)論.從太陽輻射變化的角度分析原因,可以發(fā)現(xiàn),1981年9月份附近的太陽輻射水平明顯強(qiáng)于3月份附近的太陽輻射水平,從而導(dǎo)致TEC值在9月份高于3月份.由此可見,對于電離層季節(jié)變化研究,分離出太陽輻射變化的影響十分必要.在本文中,為了得到不同太陽活動條件下的電離層季節(jié)變化,以分析其春秋分不對稱性,我們通過建立電離層參量(foF2、foE、TEC)隨太陽活動指數(shù)F10.7和年積日DoY變化的模型,剝離觀測到的電離層季節(jié)變化中的太陽輻射變化的影響;利用該模型計算低太陽活動(F10.7=80)、中等太陽活動(F10.7=150)和高太陽活動(F10.7=200)情況下電離層參量的季節(jié)變化,得到其春秋分不對稱性指數(shù)(AIfoF2、AIfoE、AITEC)和春秋分差值(ΔfoF2、ΔfoE、ΔTEC),從而分析不同地方時的春秋分不對稱指數(shù)和春秋分差值在全球的分布特點及其隨太陽活動的變化特征,最后簡要探討出現(xiàn)這些特征的原因.
所用的全球203個電離層測高儀臺站foF2及foE的每小時值數(shù)據(jù)下載自SPIDR網(wǎng)站(http:∥spidr.ngdc.noaa.gov/spidr).為得到可靠的foF2及foE數(shù)據(jù),選擇經(jīng)手動標(biāo)定及編輯過的數(shù)據(jù)(Pezzopane and Scotto,2007).?dāng)?shù)據(jù)空間分布和時間分布如圖1所示,數(shù)據(jù)時間范圍依不同的臺站而有所不同,大致為1957年至2014年,或其間的若干年.TEC數(shù)據(jù)由美國噴氣推進(jìn)實驗室(JPL)提供(下載自ftp:∥cddis.gsfc.nasa.gov/pub/gps/products/ionex/),時間分辨率為每兩UT時一張全球TEC圖,空間分辨率為2.5°(Latitude)×5°(Longitude).為了研究TEC春秋分不對稱性對地方時的變化規(guī)律,將TEC數(shù)據(jù)按地方時線性插值到地方時網(wǎng)格.太陽活動指數(shù)F10.7由加拿大彭蒂克頓無線電觀測站(Pentictin Radio Observatory)提供,每天一個數(shù)據(jù).大氣模型NRLMSISE-00是一個中性大氣的經(jīng)驗?zāi)P停峁牡乇淼教右輰拥闹行越M分、密度和溫度(Picone et al.,2002),本文中所用到的氧氮濃度比數(shù)據(jù)由該模型計算得到.考慮到地磁活動的影響,同時保留較多的數(shù)據(jù),將Ap>27的數(shù)據(jù)去除.
圖1 測高儀數(shù)據(jù)分布(a)臺站位置分布;(b)數(shù)據(jù)時間覆蓋.Fig.1 Spatial and temporal distributions of ionosonde data(a) Lonosonde locations;(b) Temporal coverage of the data.
眾多研究表明,可以用二次多項式函數(shù)較好地描述foF2隨F10.7的變化關(guān)系(Liu et al.,2004,2006;Chen et al.,2008).因此建立foF2與F10.7的關(guān)系如下:
(1)
其中A,B,C為系數(shù).而foF2的季節(jié)變化成分通常主要包括年變化分量與半年變化分量,可以用傅里葉級數(shù)表示如下(Liu et al.,2009;Yang et al.,2012):
(2)
其中c0為年平均值,DoY為年積日,ε為略去殘差.將年變化分量中的兩項與半年變化分量中的兩項分別合并,得到
(3)
(4)
其中,A1、A2分別為年變化和半年變化的振幅,φ1、φ2分別為年變化和變年變化的相位.
由此,我們對每個站每個地方時的foF2建立如下模型(Liu et al.,2009):
(5)
其中Ai,Bi,Ci,Di,Ei,Fi(i=0,1,2)為系數(shù).基于該模型,對觀測的foF2值進(jìn)行最小二乘擬合,確定模型系數(shù),進(jìn)而通過模型計算不同太陽活動水平(不同F(xiàn)10.7值)條件下foF2隨年積日的變化,分析春秋分不對稱特征.
以日本Akita站(臺站代碼:AK539,位置:39.7°N,140.1°E)地方時14∶00為例,說明本文中的數(shù)據(jù)分析方法.對該臺站地方時為14∶00的foF2數(shù)據(jù)建立式(5)所示模型.將觀測數(shù)據(jù)foF2及其相應(yīng)DoY、F10.7代入模型,通過最小二乘擬合確定模型系數(shù)Ai,Bi,Ci,Di,Ei,Fi(i=0,1,2).?dāng)M合的結(jié)果與觀測值的比較如圖2所示.從圖2中可以看出觀測值和擬合值比較一致,可以清晰地看到AK539站地方時14∶00的半年異常特征.模型值與觀測值的相對誤差(RE)及其期望(μ)、均方根誤差(RMSE)按下式計算:
(6)
(7)
(8)
其中foF2obs為觀測值,foF2mod為模型值,REi為每個觀測點與相應(yīng)模型值的相對誤差,RMSE為RE的標(biāo)準(zhǔn)差.為保證模型擬合的可靠性,我們將均方根誤差控制在30%以下,否則認(rèn)為該組數(shù)據(jù)擬合得不好,將該組數(shù)據(jù)剔除. AK539站地方時14∶00擬合的相對誤差分布如圖3所示,其擬合相對誤差的期望μ為0.0486%,均方根誤差為12.2191%.圖4 為所有臺站各地方時foF2擬合的μ及RMSE分布.去除RMSE>30%的數(shù)據(jù)后,所有數(shù)據(jù)擬合的μ的平均值為0.0207%,RMSE平均值為15.55%.同理,foE和TEC分別去除RMSE>20%和RMSE>35%的數(shù)據(jù)后,所有數(shù)據(jù)擬合的μ的平均值分別為-0.0937%、0.1465%,RMSE平均值分別為6.41%、18.87%.
定義春秋分不對稱性指數(shù)AIfoF2為foF2在3月分點與9月分點的差值與foF29月分點的值之比,再乘以100%,即foF2兩分點值的相對差:
(9)
foF2春秋分絕對差ΔfoF2為
(10)
圖2 AK539站地方時14∶00 foF2的擬合結(jié)果與觀測數(shù)據(jù)的比較(a) 原始數(shù)據(jù)與擬合數(shù)據(jù)的時間序列;(b) 擬合foF2隨DoY與F10.7的變化;(c) 觀測的foF2隨DoY與F10.7的變化.Fig.2 Comparison between fitted and observed foF2 at 14∶00 LT over Akita ionosonde station(a) Temporal series of observed and fitted foF2;(b) Fitted foF2 as a function of DoY and F10.7; (c) Scatter plots of observed foF2 versus DoY and F10.7.
同理,foE、TEC的春秋分不對稱性指數(shù)AIfoE、AITEC及其春秋分絕對差值ΔfoE、ΔTEC分別為
(11)
(12)
(13)
ΔTEC=TECME-TECSE.
(14)
由此,定量得到了Akita站地方時為14∶00在不同太陽活動水平下的春秋分不對稱性特征.由foF2不對稱性指數(shù)的定義可以看出,若AIfoF2的值為正則表示foF23月分點值大于9月分點值,若AIfoF2的值為負(fù)則表示foF23月分點值小于9月分點值,若AIfoF2的值為零,則表示foF23月分點值與9月分點值相等;AIfoF2的絕對值越大,則春秋分不對稱性越強(qiáng).如圖5所示,當(dāng)F10.7分別為80、150、200時,AIfoF2分別為9.13%、8.99%、9.53%,ΔfoF2分別為0.69 MHz、1.04 MHz、1.26 MHz,即Akita站14時的foF2有3月分點值大于9月分點值的春秋分不對稱性.
圖3 AK539站地方時14∶00 foF2擬合的相對誤差分布Fig.3 Error distribution of fitted foF2 with respect to observed foF2 at AK539 at 14∶00 LT
圖4 (a)所有測高儀站foF2擬合相對誤差的期望值;(b) 所有測高儀站foF2擬合的均方根誤差分布Fig.4 (a) Averages of the relative error of fitted foF2 with respect to observed foF2 over all stations; (b) RMSE of fitted foF2 with respect to observed foF2 over all stations
圖5 AK539站14∶00不同太陽活動條件foF2春秋分不對稱性Fig.5 Equinoctial asymmetry of Akita foF2 at 14∶00 LT
3.1 foF2春秋分不對稱性
圖6揭示了不同太陽活動水平,不同地方時foF2春秋分不對稱性指數(shù)AIfoF2及其春秋分差值ΔfoF2的分布情況.圖中三條藍(lán)綠色的線分別代表地磁傾角為20°、0°、-20°,紅色圓點代表該臺站處AIfoF2>0(ΔfoF2>0),即foF23月分點值高于9月分點值;藍(lán)色圓點代表該臺站處AIfoF2<0(ΔfoF2<0),即foF23月分點值低于9月分點值.從圖6中可以看出,日出時全球除少數(shù)臺站外foF2春秋分不對稱主要表現(xiàn)為9月分點值高于3月分點值,且隨著太陽活動增強(qiáng),這種差異變得更弱.低太陽活動(F10.7=80)、中等太陽活動(F10.7=150)和高太陽活動(F10.7=200),AIfoF2平均值分別為-5.02%,-3.53%,-2.54%,表明隨著太陽活動增強(qiáng),日出時段foF2春秋分相對差異有所減弱;而ΔfoF2平均值分別為-0.25 MHz、-0.27 MHz、-0.24 MHz,表明日出時foF2春秋分絕對差受太陽活動影響較?。谖绾?、日落和午夜時,foF2的春秋分不對稱全球主要表現(xiàn)為3月分點值高于9月分點值,且隨著太陽活動增強(qiáng),特別是從低太陽活動到中等太陽活動,foF23月分點值與9月分點值之相對差與絕對差均增大.午后和日落時的AIfoF2高于午夜的AIfoF2,特別是在低太陽活動條件下;同時,午后和日落的ΔfoF2在各太陽活動水平條件下均高于午夜的ΔfoF2.另外,圖6b中的午后時段,在120°E附近的ΔfoF2剖面表明在該經(jīng)度附近低太陽活動時foF2春秋分不對稱主要出現(xiàn)在低緯赤道異常峰地區(qū),而高太陽活動時中緯的foF2春秋分不對稱也很顯著,這與Chen 等人的研究結(jié)果一致(Chen et al.,2012).
3.2 foE春秋分不對稱性
圖7所示的是foE春秋分不對稱性指數(shù)AIfoE及其春秋分絕對差值ΔfoE的分布情況.由于電離層E層峰夜間基本消失,因此本文不考慮foE夜間的春秋分不對稱性.從圖7a中可以看出,AIfoE與AIfoF2情況類似.日出時,foE春秋分不對稱性主要表現(xiàn)為9月分點值高于3月分點值.在低太陽活動(F10.7=80)、中等太陽活動(F10.7=150)和高太陽活動(F10.7=200)情況下,AIfoE平均值分別為-4.84%、-5.69%、-5.74%,ΔfoE 平均值分別為-0.11 MHz、-0.14 MHz、-0.15 MHz,即日出時foE春秋分不對稱性隨著太陽活動增強(qiáng)而略有增大;E層春秋分絕對差值表現(xiàn)出的不對稱程度弱于F層,但其相對差值表現(xiàn)出的不對稱性卻強(qiáng)于F層.午后和日落時,foE春秋分不對稱性主要表現(xiàn)為3月分點值高于9月分點值,且日落時不對稱性明顯強(qiáng)于午后時不對稱性.圖7b展示了ΔfoE的分布情況,其結(jié)果與AIfoE分布類似.
圖6 foF2春秋分不對稱的分布.每個子圖左下角括號里為AIfoF2或ΔfoF2均值 (a) 春秋分不對稱性指數(shù)AIfoF2的分布;(b) 春秋分差值ΔfoF2的分布Fig.6 Scatter plots of (a) equinoctial asymmetry index and (b) equinoctial difference of foF2 versus geographic coordinates
圖7 foE春秋分不對稱的分布.每個子圖左下角括號里為AIfoE或ΔfoE均值. (a) 春秋分不對稱性指數(shù)AIfoE的分布;(b) 春秋分差值ΔfoE的分布.Fig.7 Scatter plots of (a) equinoctial asymmetry index and (b) equinoctial difference of foE versus geographic coordinates
圖8 foE春秋分不對稱性指數(shù)與foF2春秋分不對稱性指數(shù)的地方時變化圖中實線為各地方時所有臺站的春秋分不對稱指數(shù)的均值,誤差棒為其標(biāo)準(zhǔn)偏差.Fig.8 Local time variations of the equinoctial asymmetry indices of (left) foE and (right) foF2The solid lines are the averages of the equinoctial asymmetry indices of all ionosonde stations at each local time, and the error bars indicate the standard deviations of the indices.
圖9 TEC春秋分不對稱的分布(a) 春秋分不對稱性指數(shù)AITEC的分布;(b) 春秋分差值ΔTEC的分布.Fig.9 Longitudinal and latitudinal variations of (a) Equinoctial asymmetry index,(b) Equinoctial difference of TEC
圖8所示為AIfoE與AIfoF2隨地方時變化,其中實線分別代表各地方時AIfoE、AIfoF2的平均值,誤差棒為所有臺站AIfoE、AIfoF2在各地方時的標(biāo)準(zhǔn)差.從圖中可以看出,就平均值而言,AIfoE日出時為負(fù)值,在午后變得相對較小,到日落時變?yōu)橄鄬^大的正值.即早晨時段foE 9月分點值大于3月分點值,而下午時段則變?yōu)?月分點值大于9月分點值.太陽活動水平對AIfoE的地方時變化特征的影響并不顯著.而AIfoF2隨地方時變化的主要特點是,平均而言,日出時偏負(fù)值(尤其在低太陽活動時),而其余時段主要為正值.也就是說,日出時foF2主要表現(xiàn)為9月分點值高于3月分點值,而其余時段則相反.低太陽活動條件下foF2夜間的春秋分不對稱性弱.隨著太陽活動增強(qiáng),日出時段foF2的春秋分不對稱性有減弱趨勢,而其他地方時段foF2的春秋分不對稱性有增強(qiáng)趨勢.
3.3 TEC春秋分不對稱性
圖9所示為TEC春秋分不對稱性分布.圖中黑色的線代表地磁傾角為0°.從圖9a中可以看出,日出時段,TEC在低太陽活動(F10.7=80)條件下全球主要表現(xiàn)為9月分點值高于3月分點值,這與foF2的春秋分不對稱性及foE的春秋分不對稱性類似,但在高太陽活動下,僅在低緯地區(qū)出現(xiàn)9月分點值高于3月分點值的春秋分不對稱性.而在其他時段,低太陽活動時,在午后和日落時段低緯地區(qū)主要表現(xiàn)為3月分點值高于9月分點值,在午夜時段傾角赤道附近有明顯的3月分點值高于9月分點值的不對稱性;中高太陽活動時,全球都主要表現(xiàn)為3月分點值高于9月分點值,且春秋分不對稱性程度較大(大于foE和foF2的春秋分不對稱性程度).圖9b中ΔTEC展示了與AITEC類似的結(jié)果.Liu等(Liu et al.,2010)研究了GPS TEC在低太陽活動白天午后時春秋分不對稱性的全球分布特征,結(jié)果表明GPS TEC 3月分點值高于9月分點值的春秋分不對稱性主要出現(xiàn)在低緯地區(qū),通過圖9中 F10.7=80,LT=1400的ΔTEC分布與其對比,結(jié)果符合得較好.
熱層成分及電離層動力學(xué)過程的春秋分差異可能是引起電離層春秋分不對稱的重要原因.Balan等(Balan et al.,1998)通過分析非相干散射雷達(dá)的數(shù)據(jù)表明,日本Shigaraki(34.85°N,136.10°E)地區(qū)300 km高度白天向極風(fēng)的速度春分日比秋分日低了20 m·s-1.因此,電離層在春分日相較秋分日有所抬升,春分日電離層有較低的復(fù)合損失率,秋分日電離層有較高的復(fù)合損失率.但由于缺少全球的中性風(fēng)觀測數(shù)據(jù),而中性風(fēng)影響峰高的分布,因此本文嘗試分析氧氮濃度比及hmF2的春秋分不對稱性.foE春秋分不對稱性的原因需要進(jìn)一步研究.
對電離層F2層而言,電子產(chǎn)生率與氧原子濃度有關(guān),而損失率與分子成分(氮分子與氧分子,二者對F2層復(fù)合損失的貢獻(xiàn)基本相當(dāng))的濃度有關(guān).因此,[O]/[N2]是衡量F2層峰區(qū)光化平衡電子密度的重要指標(biāo).由于原子成分與分子成分標(biāo)高的差異,靜壓平衡狀態(tài)下熱層[O]/[N2]隨高度增加而顯著減?。蚨?,在太陽輻射與熱層狀態(tài)不變的情況下,F(xiàn)2層峰高h(yuǎn)mF2越大對應(yīng)的foF2就越高.有研究表明,hmF2與foF2有較好的正相關(guān)性(Danilov and Konstantinova,2013).由于熱層中性風(fēng)等因素在兩個分點季節(jié)可能不一致(Balan et al.,1998),全球F2層峰高可能也有春秋分不對稱性,從而影響到F2
層電子密度的春秋分不對稱性.因此,考察hmF2在兩分點的值.根據(jù)求取峰高的經(jīng)驗公式(Dudeney,1983;Marin et al.,2001;McNamara,2008):
hmF2=-176+1490
(15)
求得各臺站的hmF2數(shù)據(jù),根據(jù)上述方法對hmF2的春秋分不對稱性進(jìn)行分析.如圖10所示,從統(tǒng)計上平均而言,hmF2除低太陽活動時的早晨與日落時段有3月分點值略低于9月分點值的情況之外,其他條件下AIhmF2平均值為正(AIhmF2代表hmF2春秋分不對稱性指數(shù)),即hmF23月分點值高于9月分點值.即hmF2的春秋分不對稱性與白天foF23月分點值高于9月分點值的不對稱性基本一致,但日出時段hmF2的春秋分不對稱性與foF2的春秋分不對稱性不一致.
熱層成分的季節(jié)變化是導(dǎo)致電離層一些季節(jié)變化特征的重要原因.研究表明,電離層季節(jié)變化中的半年異常和冬季異常就與氧氮濃度比[O]/[N2]的季節(jié)變化有關(guān)(Rishbeth et al.,2000;Yu et al.,2004).在其他條件不變情況下,高的[O]/[N2]對應(yīng)F2層高的電子密度.熱層成分的季節(jié)變化也可能是引起電離層電子密度春秋分不對稱的原因.同時考慮F2層峰高的變化和熱層成分的變化,對hmF2處對應(yīng)的氧氮濃度比[O]/[N2]的春秋分不對稱性進(jìn)行分析.其中,氧原子濃度[O] 和氮氣分子濃度[N2]的數(shù)據(jù)由NRLMSISE-00模型(Picone et al.,2002)計算得到.如圖10所示,從統(tǒng)計上看,幾乎在低、中、高各太陽活動水平條件下從日出到日落的所有地方時段(低太陽活動時的日落除外),AIrON2平均值均大于零(其中AIrON2代表氧氮濃度比[O]/[N2]春秋分不對稱性指數(shù)),即F2層峰高度的氧氮濃度比[O]/[N2]表現(xiàn)為3月分點值高于9月分點值.因此,可以部分解釋除日出時段外的foF2春秋分不對稱性(3月分點值高于9月分點值).但對于日出時段foF2為什么會出現(xiàn)9月分點值高于3月分點值,還需要進(jìn)一步的研究.
電離層最主要的季節(jié)變化分量包括年變化與半年變化分量.從數(shù)學(xué)上而言,半年變化分量不論其相位如何,都不會引起電離層的春秋分不對稱性;而年變化分量,只要其幅度較大,其相位的改變會顯著影響到電離層的春秋分不對稱性.因此,本文從數(shù)學(xué)上考察TEC年變化的幅值與相位,以試圖理解TEC春秋分不對稱性的全球分布特點.圖11所展示的是低太陽活動地方時14∶00的TEC年變化幅值與相位分布圖.其中Aannual、φannual分別為年變化的幅值和相位.φannual代表了TEC年分量(即周期為12個月余弦變化)的峰值出現(xiàn)的時間.可以看出,TEC年變化的幅值和相位與圖9中的低太陽活動地方時14∶00的TEC春秋分不對稱性的全球分布特征符合得較好.例如,低太陽活動14∶00時低緯地區(qū)主要表現(xiàn)為3月分點值高于9月分點值,是因為其年變化分量的相位位于1月份,且其振幅在低緯較大.
圖10 hmF2及hmF2高度對應(yīng)的氧氮濃度比[O]/[N2]的春秋分不對稱性的地方時變化Fig.10 Local time variations of the equinoctial asymmetries of (left) hmF2 and (right) the ratio of [O]/[N2] at hmF2
圖11 低太陽活動地方時14∶00 TEC年變化的幅值(Aannual)與相位(φannual)圖Fig.11 Longitudinal and latitudinal variations of the amplitude and phase of TEC annual component under 14∶00 LT,solar minimum conditions
本文通過建立電離層三個參量foF2、foE、TEC隨年積日與太陽活動的變化模型,研究了電離層的春秋分不對稱性.結(jié)果表明,電離層的春秋分不對稱特征有明顯的地方時依賴性.主要結(jié)果如下:
(1) 對于foF2,日出時全球除少數(shù)測高儀臺站外,主要表現(xiàn)為9月分點值高于3月分點值,其他時段則主要表現(xiàn)為3月分點值高于9月分點值,隨著太陽活動增強(qiáng),foF2的春秋分不對稱性指數(shù)增大.
(2) 對于foE的春秋分不對稱性,日出和日落表現(xiàn)出截然相反的特點.日出時主要是9月分點值高于3月分點值,而下午及日落時段則變?yōu)?月分點值高于9月分點值,午后的春秋分不對稱性較弱.foE的春秋分不對稱性受太陽活動的影響較?。?/p>
(3) 對于TEC,日出時低緯地區(qū)主要為9月分點值高于3月分點值,而中高緯地區(qū)在低太活動時表現(xiàn)為9月分點值高于3月分點值,中高太陽活動時3月分點值高于9月分點值;其他時段,除低太陽活動時3月分點值高于9月分點值主要出現(xiàn)在低緯地區(qū)外,中高太陽活動時全球主要為3月分點值高于9月分點值.
hmF2及氧氮濃度比的春秋分差異可以部分解釋F2層的春秋分不對稱的特征.此外,TEC年變化分量的相位和幅值分布可以較好地解釋TEC的春秋分不對稱的分布特征,但其機(jī)制需要更進(jìn)一步的研究.
致謝 測高儀觀測數(shù)據(jù)和TEC數(shù)據(jù)分別由SPIDR(http:∥spidr.ngdc.noaa.gov/)和ftp:∥cddis.gsfc.nasa.gov/pub/gps/products/ionex/網(wǎng)站提供;兩位審稿專家對本文提出建設(shè)性修改意見.在此一并表示感謝.
Aruliah A L,Farmer A D,Rees D,et al.1996.The seasonal behavior of high-latitude thermospheric winds and ion velocities observed over one solar cycle.J.Geophys.Res.,101(A7):15701-15711.
Bailey G J,Su Y Z,Oyama K I.2000.Yearly variations in the low-latitude topside ionosphere.Ann.Geophys.,18(7):789-798,doi:10.1007/s00585-000-0789-0.
Balan N,Otsuka Y,Fukao S.1997.New aspects in the annual variation of the ionosphere observed by the MU radar.Geophys.Res.Lett.,24(18):2287-2290.
Balan N,Otsuka Y,Bailey G J,et al.1998.Equinoctial asymmetries in the ionosphere and thermosphere observed by the MU radar.J.Geophys.Res.,103(A5):9481-9495.
Bardhan A,Aggarwal M,Sharma D K,et al.2014.Equinoctial asymmetry in low latitude ionosphere as observed by SROSS-C2 satellite.J.Atmos.Sol.-Terr.Phys.,117:101-109.
Bilitza D,Altadill D,Zhang Y L,et al.2014.The International Reference Ionosphere 2012—a model of international collaboration.J.Space Weather Space Clim.,4:A07.
Buonsanto M J.1986.Possible effects of the changing Earth-Sun distance on the upper atmosphere.South Pacific J.Nat.Sci.,8:58-65.
Chen Y D,Liu L B,Le H J.2008.Solar activity variations of nighttime ionospheric peak electron density.J.Geophys.Res.,113:A11306,doi:10.1029/2008JA013114.
Chen Y D,Liu L B,Wan W X,et al.2012.Equinoctial asymmetry in solar activity variations of NmF2and TEC.Ann.Geophys.,30:613-622,doi:10.5194/angeo-30-613-2012.
da Rosa A V,Waldman H,Bendito J,et al.1973.Response of the ionospheric electron content to fluctuations in solar activity.J.Atmos.Terr.Phys.,35(8):1429-1442.
Danilov A D,Konstantinova A V.2013.Relation between changes in foF2and hmF2within various time intervals.Geomagn.Aeron.,53(5):629-634,doi:10.1134/S0016793213050058.
Dudeney J R.1983.The accuracy of simple methods for determining the height of the maximum electron concentration of the F2-layer from scaled ionospheric characteristics.J.Atmos.Terr.Phys.,45(8-9):629-640.
Fejer B G,Scherliess L.1997.Empirical models of storm time equatorial zonal electric fields.J.Geophys.Res.,102(A11):24047-24056.
French A G.1966.Seasonal variation of some F-region parameters at sun-spot minimum.J.Atmos.Terr.Phys.,28(1):9-16.
Fukao S,Sato T,Kimura I,et al.1979.Seasonal mean structure of the night-time F2region over Arecibo.J.Atmos.Terr.Phys.,41(12):1205-1221,doi:10.1016/0021-9169(79)90024-2.
Fukao S,Oliver W L,Onishi Y,et al.1991.F-region seasonal behavior as measured by the MU radar.J.Atmos.Terr.Phys.,53(6-7):599-618.
Ganesh K S.1965.Solar cycle and seasonal variations in the equatorial ionospheric F-region.J.Atmos.Terr.Phys.,27(5):645-655,doi:10.1016/0021-9169(65)90132-7.
Jakowski N,Bettac H D,Lazo B,et al.1981.Seasonal variations of the columnar electron content of the ionosphere observed in Havana from July 1974 to April 1975.J.Atmos.Terr.Phys.,43(1):7-11.
Kawamura S,Balan N,Otsuka Y,et al.2002.Annual and semiannual variations of the midlatitude ionosphere under low solar activity.J.Geophys.Res.,107:SIA 8-1-SIA 8-10,doi:10.1029/2001JA000267.
Liu H X,Lühr H,Watanabe S.2007.Climatology of the equatorial thermospheric mass density anomaly.J.Geophys.Res.,112:A05305,doi:10.1029/2006JA012199.
Liu L B,Wan W X,Ning B Q.2004.Statistical modeling of ionospheric foF2over Wuhan.Radio Sci.,39:RS2013,doi:10.1029/2003RS003005.
Liu L B,Wan W X,Ning B Q,et al.2006.Solar activity variations of the ionospheric peak electron density.J.Geophys.Res.,111:A08304,doi:10.1029/2006JA011598.
Liu L B,Zhao B Q,Wan W X,et al.2009.Seasonal variations of the ionospheric electron densities retrieved from Constellation Observing System for Meteorology,Ionosphere,and Climate mission radio occultation measurements.J.Geophys.Res.,114:A02302,doi:10.1029/2008JA013819.
Liu L B,He M S,Yue X A,et al.2010.Ionosphere around equinoxes during low solar activity.J.Geophys.Res.,115:A09307,doi:10.1029/2010JA015318.
Ma R P,Xu J Y,Liao H Z.2003.The features and a possible mechanism of semiannual variation in the peak electron density of the low latitude F2 layer.J.Atmos.Sol.Terr.Phys.,65(1):47-57.
Marin D,Mikhailov A V,de la Morena B A,et al.2001.Long-term hmF2trends in the Eurasian longitudinal sector from the ground-based ionosonde observations.Ann.Geophys.,19(7):761-772.
McNamara L F.2008.Accuracy of models of hmF2used for long-term trend analyses.Radio Sci.,43:RS2002,doi:10.1029/2007RS003740.
Millward G H,Rishbeth H,Fuller-Rowell T J,et al.1996.Ionospheric F2layer seasonal and semiannual variations.J.Geophys.Res.,101(A3):5149-5156.
Natali M P,Meza A.2010.Annual and semiannual VTEC effects at low solar activity based on GPS observations at different geomagnetic latitudes.J.Geophys.Res.,115:D18106,doi:10.1029/2010JD014267.
Pavlov A V,Pavlova N M.2013.Variations in statistical parameters of the NmF2equinoctial asymmetry with latitude and solar activity near noon.Adv.Space Res.,51(11):2018-2034.
Pezzopane M,Scotto C.2007.Automatic scaling of critical frequency foF2and MUF(3000)F2:A comparison between Autoscala and ARTIST 4.5 on Rome data.Radio Sci.,42:RS4003,doi:10.1029/2006RS003581.
Picone J M,Hedin A E,Drob D P,et al.2002.NRLMSISE-00 empirical model of the atmosphere:Statistical comparisons and scientific issues.J.Geophys.Res.,107(A12):SIA 15-1-SIA 15-16,doi:10.1029/2002JA009430.
Rao P V S R,Ram P S,Jayachandran P T,et al.1996.Seasonal variation in ionospheric electron content and irregularities over Waltair—A comparison with SLIM model.Adv.Space Res.,18(6):259-262.
Richards P G.2001.Seasonal and solar cycle variations of the ionospheric peak electron density:Comparison of measurement and models.J.Geophys.Res.,106(A7):12803-12819.
Rishbeth H,Müller-Wodarg I C F,Zou L,et al.2000.Annual and semiannual variations in the ionospheric F2-layer:II.Physical discussion.Ann.Geophys.,18(8):945-956,doi:10.1007/s00585-000-0945-6.
Roble R G,Salah J E,Emery B A.1977.The seasonal variation of the diurnal thermospheric winds over Millstone Hill during solar cycle maximum.J.Atmos.Terr.Phys.,39(4):503-511.
Schmelovsky K H.1963.Diurnal and seasonal variations of electron density distribution in the upper F-region.J.Atmos.Terr.Phys.,25(5):241-247,doi:10.1016/0021-9169(63)90020-5.
Titheridge J E.1973.The electron content of the southern mid-latitude ionosphere,1965-1971.J.Atmos.Terr.Phys.,35(5):981-1001,doi:10.1016/0021-9169(73)90077-9.
Tsai H F,Liu Y J,Tsai W H,et al.2001.Seasonal variations of the ionospheric total electron content in Asian equatorial anomaly regions.J.Geophys.Res.,106(A12):30363-30369.
Unnikrishnan K,Nair R B,Venugopal C.2002.Harmonic analysis and an empirical model for TEC over Palehua.J.Atmos.Sol.-Terr.Phys.,64(17):1833-1840,doi:10.1016/S1364-6826(02)00187-6.
Yang J,Liu L B,Chen Y D,et al.2012.Does the equatorial ionospheric peak electron density really record the lowest during the recent deep solar minimum?.Chinese J.Geophys.,55(5):457-465.
Yu T,Wan W X,Liu L B,et al.2004.Global scale annual and semi-annual variations of daytime NmF2in the high solar activity years.J.Atmos.Sol.Terr.Phys.,66(18):1691-1701,doi:10.1016/j.jastp.2003.09.018.
Zhang S R,Holt J M.2007.Ionospheric climatology and variability from long-term and multiple incoherent scatter radar observations:Climatology in eastern American sector.J.Geophys.Res.,112:A06328,doi:10.1029/2006JA012206.
(本文編輯 胡素芳)
Local time dependence of ionospheric equinoctial asymmetry
LIU Yong1,2,3,CHEN Yi-Ding1,2,3*,LIU Li-Bo1,2
1 Key Laboratory of Earth and Planetary Physics,Institute of Geology and Geophysics, Chinese Academy of Sciences,Beijing 100029,China2 Beijing National Observatory of Space Environment,Institute of Geology and Geophysics, Chinese Academy of Sciences,Beijing 100029,China3 University of the Chinese Academy of Sciences,Beijing 100049,China
In this paper,the critical frequency of the F2-layer (foF2) and the critical frequency over the E-layer (foE) of global 203 ionosonde stations and Jet Propulsion Laboratory (JPL) total electron content (TEC) map data were used to investigate the characteristics of ionospheric equinoctial (March Equinox and September Equinox,ME and SE) asymmetry.By fitting the three parameters foF2,foE and TEC in terms of a function of Day of Year (DoY) and the solar activity index F10.7,the three parameters were normalized to the low solar activity level of F10.7=80,the moderate solar activity level of F10.7=150,and the high solar activity level of F10.7=200.Thus,by this method,the actually observed seasonal and solar activity variations of ionospheric parameters,which are interlaced with each other,can be quantitatively separated to acquire more accurate characteristics of ionospheric equinoctial asymmetry.The equinoctial asymmetry index (AI) and the equinoctial difference (Δ=ME-SE) of the three ionospheric parameters at different local times were analyzed to get the global features and the solar activity dependence of equinoctial asymmetry.In general,foE is mainly higher at SE than at ME over the global ionosonde stations at sunrise,and the equinoctial asymmetry of foE almost disappears in the afternoon,while foE is higher at ME than at SE at sunset.foF2is higher at SE than at ME over the most of the global ionosonde stations at sunrise,while it is higher at ME than at SE at other local times.With respect to TEC,the equinoctial asymmetry of higher TEC at SE than at ME exists over the global at low solar activity level but mainly occurs at low latitudes at moderate and high solar activity levels at sunrise,while TEC is mainly higher at ME than at SE at other local times.The dependence of the equinoctial asymmetry of foE is weak,while for foF2and TEC,solar activity dependence of the equinoctial asymmetry is evident.The equinoctial asymmetries of the oxygen-nitrogen ratio ([O]/[N2],computed from the atmospheric model NRLMSISE-00) at the peak height of the F2-layer (hmF2) and hmF2were investigated;they can be used to partially explain the equinoctial asymmetry of foF2.The amplitude and the phase of TEC annual variation were calculated.The phase of TEC annual variation can be used to account for the global distribution of TEC equinoctial asymmetry.
foF2;foE;GPS TEC;Ionosphere;Equinoctial asymmetry
劉勇,陳一定,劉立波.2016.電離層春秋分不對稱的地方時依賴.地球物理學(xué)報,59(11):3941-3954,
10.6038/cjg20161101.
Liu Y,Chen Y D,Liu L B.2016.Local time dependence of ionospheric equinoctial asymmetry.Chinese J.Geophys.(in Chinese),59(11):3941-3954,doi:10.6038/cjg20161101.
國家自然科學(xué)基金(41274161,41231065,41321003)和973項目課題(2012CB825604)共同資助.
劉勇,男,1989年生,漢族,四川內(nèi)江人,碩士生在讀,主要研究方向為電離層物理.E-mail:455509433@qq.com
*通迅作者 陳一定,男,1981年生,漢族,安徽懷寧人,博士,副研究員,主要從事電離層物理研究.E-mail:chenyd@mail.iggcas.ac.cn
10.6038/cjg20161101
P352
2015-12-17,2016-04-24收修定稿