陳健+宋文達(dá)
【摘要】量化投資基金在2015年中國(guó)股市的大幅波動(dòng)中,以低回撤、穩(wěn)健收益獲得了市場(chǎng)的認(rèn)可,從而帶動(dòng)了我國(guó)量化投資的快速發(fā)展。結(jié)合前人研究,作者提出了量化投資的定義、特點(diǎn),并對(duì)國(guó)內(nèi)外量化投資策略進(jìn)行了分類闡述。隨后,作者總結(jié)了量化投資的金融和數(shù)理理論基礎(chǔ),以及國(guó)內(nèi)外量化投資的實(shí)踐進(jìn)展。
【關(guān)鍵詞】量化投資 ?特點(diǎn) ?策略 ?發(fā)展
一、引言
量化投資在國(guó)外的實(shí)踐已經(jīng)有了40多年的發(fā)展,我國(guó)的量化投資起步較晚,從2004年開始出現(xiàn)量化投資的產(chǎn)品,由于缺乏有效的對(duì)沖手段,直到2010年4月滬深300股指期貨上市之后才能算是真正意義上開始涉足量化投資。[1]
2015年的中國(guó)股市跌宕起伏,杠桿配資引發(fā)了大幅上漲和斷崖式下跌,股市出現(xiàn)罕見的千股漲停、千股跌停、千股停牌的奇觀,眾多機(jī)構(gòu)投資者和散戶蒙受了巨大的損失。但其中少數(shù)量化投資基金在大幅波動(dòng)的市場(chǎng)中卻表現(xiàn)相對(duì)穩(wěn)定。量化投資基金和量化對(duì)沖策略的穩(wěn)健,很快引起了全市場(chǎng)的關(guān)注,也成為近期銀行、券商、信托等機(jī)構(gòu)追捧的新的產(chǎn)品模式。
在此背景下,作者在本文中對(duì)于量化投資的概念、特點(diǎn)、策略、理論基礎(chǔ)和發(fā)展做一個(gè)總結(jié),希望為量化投資研究和實(shí)踐做一些參考。
二、量化投資解讀
(一)量化投資的定義
量化投資在學(xué)術(shù)界并沒有嚴(yán)格統(tǒng)一的定義,現(xiàn)有的定義對(duì)于量化投資的定義的側(cè)重點(diǎn)各有不同。本文對(duì)于量化投資的定義為:
量化投資是指將投資者的投資思想或理念轉(zhuǎn)化為數(shù)學(xué)模型,或者利用模型對(duì)于真實(shí)世界的情況進(jìn)行模擬進(jìn)而判斷市場(chǎng)行為或趨勢(shì),并交由計(jì)算機(jī)進(jìn)行具體的投資決策和實(shí)施的過(guò)程。
(二)量化投資的特點(diǎn)
1.投資決策中能夠客觀理性,克服人類心理對(duì)投資決策的影響。傳統(tǒng)投資的分析決策,大多數(shù)方面都由人工完成,而人并非能做到完全理性,在進(jìn)行投資決策時(shí),很難不受市場(chǎng)情緒的影響。[2]量化投資運(yùn)用模型對(duì)歷史和當(dāng)時(shí)市場(chǎng)上的數(shù)據(jù)進(jìn)行分析檢測(cè),模型一經(jīng)檢驗(yàn)合格投入正式運(yùn)行后,投資決策將交由計(jì)算機(jī)處理,一般情況下拒絕人為的干預(yù),這樣在進(jìn)行投資決策時(shí)受人的情緒化的影響將很小,投資過(guò)程可以做到理性客觀。
2.能夠通過(guò)海量信息的大數(shù)據(jù)處理,提高投資決策效率。我國(guó)股票市場(chǎng)上有近3000只股票,與上市公司相關(guān)的各種信息紛繁復(fù)雜,包括政策、國(guó)內(nèi)外經(jīng)濟(jì)指標(biāo)、公司公告、研究報(bào)告等,投資者靠自己手工的篩選根本就是力不從心。量化投資的出現(xiàn)為這個(gè)問(wèn)題的解決帶來(lái)了希望。量化投資運(yùn)用計(jì)算機(jī)技術(shù)快速處理大量數(shù)據(jù),對(duì)其進(jìn)行辨別、分析、找出數(shù)據(jù)之間的關(guān)聯(lián)并做出投資決策,大大減少了人工的工作量,提高了投資決策效率。
3.能夠?qū)崿F(xiàn)精準(zhǔn)投資。傳統(tǒng)的投資方法中認(rèn)為投資是一門藝術(shù),投資決策需要的是投資者的經(jīng)驗(yàn)和技術(shù),投資者的主觀評(píng)價(jià)起到?jīng)Q定作用。而量化投資有所不同,尤其是在套利策略中,它能做到精準(zhǔn)投資。例如在股指期貨套利的過(guò)程中,現(xiàn)貨與股指期貨如果存在較大的差異時(shí)就能進(jìn)行套利,量化投資策略和交易技術(shù)會(huì)抓住精確的捕捉機(jī)會(huì),進(jìn)行套利交易來(lái)獲利。另外,在控制頭寸規(guī)模方面,傳統(tǒng)的投資方法只能憑感覺,并沒有具體的測(cè)算和界定,而量化投資必須要設(shè)定嚴(yán)格精確的標(biāo)準(zhǔn)。[3]
4.能夠快速反應(yīng)和決策,把握市場(chǎng)稍縱即逝的機(jī)會(huì)。量化投資往往利用高速計(jì)算機(jī)進(jìn)行程序化交易,與人腦相比它能夠迅速發(fā)現(xiàn)市場(chǎng)存在的信息并進(jìn)行相應(yīng)的處理,具有反應(yīng)快速、把握市場(chǎng)稍縱即逝的機(jī)會(huì)的特點(diǎn)。量化投資在速度上最出色的運(yùn)用就是高頻交易,與低頻交易相對(duì),高頻交易是通過(guò)高速計(jì)算機(jī),在極短的時(shí)間內(nèi)對(duì)市場(chǎng)的變化做出迅速的反應(yīng)并完成交易。[4]
5.能夠有效地控制風(fēng)險(xiǎn),獲取較為穩(wěn)定的收益。與傳統(tǒng)投資方式不同的是,量化投資在獲得較高超額收益的同時(shí)能夠更好地控制風(fēng)險(xiǎn),業(yè)績(jī)也更為穩(wěn)定。相關(guān)研究顯示,1996年至2005年期間,量化投資基金與以所有傳統(tǒng)主動(dòng)型投資基金和偏重于風(fēng)險(xiǎn)控制的傳統(tǒng)主動(dòng)型投資基金的信息比率對(duì)比情況中,量化投資基金的信息比率都是最高,說(shuō)明量化投資相對(duì)于傳統(tǒng)投資,能夠在獲得更高的超額收益的同時(shí),有效地控制風(fēng)險(xiǎn)。
三、量化投資的策略
一般的量化投資的策略指的是用來(lái)實(shí)現(xiàn)投資理念或模擬市場(chǎng)行為判斷趨勢(shì)從而獲取收益的模型。量化投資需要權(quán)衡收益、風(fēng)險(xiǎn)、交易成本、具體的執(zhí)行等各個(gè)方面,一般情況下這些方面會(huì)形成相對(duì)獨(dú)立的模塊。有時(shí)候量化投資策略模型也會(huì)將風(fēng)險(xiǎn)、成本等方面融合在模型中。
(一)國(guó)外量化投資策略的分類
國(guó)外習(xí)慣上將量化投資的策略分成兩大類,一類是阿爾法導(dǎo)向的策略,另一類是貝塔導(dǎo)向的策略。阿爾法策略(alpha strategy)是通過(guò)量化擇時(shí)和調(diào)整投資組合中不同資產(chǎn)的頭寸大小來(lái)獲取收益的策略;貝塔策略(beta strategy)是通過(guò)量化的手段復(fù)制指數(shù)或者稍微的超出指數(shù)收益的策略。[6]相比而言,量化指數(shù)的貝塔策略相對(duì)更容易,所以一般情況下所說(shuō)的量化投資的策略指的是阿爾法策略(alpha strategy)。
阿爾法策略主要有兩種類型,分別為理論驅(qū)動(dòng)模型和數(shù)據(jù)驅(qū)動(dòng)模型。
理論驅(qū)動(dòng)模型是比較常見的類型,這些策略是運(yùn)用已經(jīng)存在的經(jīng)濟(jì)、金融學(xué)的理論,構(gòu)建策略模型,進(jìn)行投資決策。理論驅(qū)動(dòng)模型根據(jù)輸入的數(shù)據(jù)的不同可以進(jìn)一步分類,主要有基于價(jià)格相關(guān)數(shù)據(jù)的策略和基于基本面數(shù)據(jù)的策略。
數(shù)據(jù)驅(qū)動(dòng)模型廣泛的被運(yùn)用于股票、期貨和外匯市場(chǎng),因?yàn)椴捎玫臄?shù)學(xué)工具更為復(fù)雜,相對(duì)而言難于理解,目前使用的還不是很多。與理論驅(qū)動(dòng)模型不同,數(shù)據(jù)驅(qū)動(dòng)模型認(rèn)為進(jìn)行投資決策其實(shí)是不需要理論的支持,運(yùn)用數(shù)據(jù)挖掘技術(shù),可以從數(shù)據(jù)(例如交易所的價(jià)格數(shù)據(jù))中識(shí)別出某種行為模式或市場(chǎng)趨勢(shì),進(jìn)而進(jìn)行預(yù)測(cè)或者解釋未來(lái)的模式,從中獲取收益。
(二)我國(guó)量化投資策略的分類
國(guó)內(nèi)比較常見的量化投資策略主要有兩種分類方式,一種是按投資標(biāo)的所在市場(chǎng)分類區(qū)分的量化投資策略,分為現(xiàn)貨市場(chǎng)和衍生品市場(chǎng)量化投資策略?,F(xiàn)貨市場(chǎng)包括股票市場(chǎng)、ETF市場(chǎng)和債券市場(chǎng),衍生品市場(chǎng)包括商品期貨市場(chǎng)、股指期貨市場(chǎng)、國(guó)債期貨市場(chǎng)、外匯市場(chǎng)和期權(quán)與其他衍生品市場(chǎng),國(guó)內(nèi)運(yùn)用較多的是投資于商品期貨和股指期貨等期貨市場(chǎng)。
另一種分類方式是分為兩大類:判斷趨勢(shì)的單邊投機(jī)策略和判斷波動(dòng)率的套利交易策略。[7]單邊投機(jī)策略主要包括量化選股和量化擇時(shí),套利交易策略主要包括股指期貨套利、商品期貨套利、統(tǒng)計(jì)套利、期權(quán)套利、另類套利策略等,目前國(guó)內(nèi)普遍采用的是這種分類方式。
四、量化投資理論的發(fā)展
(一)投資理論的發(fā)展
量化投資的理論基礎(chǔ)最早可以追溯到上個(gè)世紀(jì)50年代,Markowitz(1952)[8]第一次把數(shù)理工具引入到金融研究領(lǐng)域,提出了均值——方差模型和風(fēng)險(xiǎn)報(bào)酬與有效前沿的相關(guān)概念,這是量化投資接受的最早的嚴(yán)肅的學(xué)術(shù)成果。Sharpe(1964)[9]、Litner(1965)[10]、Mossin(1966)[11]在馬克維茨研究的基礎(chǔ)上得出了資本資產(chǎn)定價(jià)模型(CAPM),這是如今度量證券風(fēng)險(xiǎn)的基本的量化模型。
20世紀(jì)60年代,Samuelson(1965)與Fama(1965)[12]提出了有效市場(chǎng)假說(shuō)(Efficient Markets Hypothesis,EMH),這為后來(lái)在新聞量化交易等方面提供了思路和理論支持。20世紀(jì)70年代,金融衍生品不斷涌現(xiàn),對(duì)于衍生品的定價(jià)成為當(dāng)時(shí)研究的重點(diǎn)。Black和Scholes(1973)[13]將數(shù)學(xué)方法引入金融定價(jià),他們建立了期權(quán)定價(jià)模型(B-S模型),為量化投資中對(duì)衍生品的定價(jià)奠定了理論基礎(chǔ)。在該理論之后,Ross(1976)[14]根據(jù)無(wú)套利原則提出了套利定價(jià)理論(APT),該理論是資本資產(chǎn)定價(jià)模型(CAPM)的完善和發(fā)展,為量化投資中的多因素定價(jià)(選股)模型提供了基礎(chǔ),這也是Alpha套利的思想基礎(chǔ)。
20世紀(jì)80年代,期權(quán)定價(jià)理論倒向微分方程求解;“金融工程”概念得以產(chǎn)生,金融工程著力于研究量化投資和量化交易。同期,學(xué)者們從有效市場(chǎng)理論的最基本假設(shè)著手,放寬了假設(shè)條件,形成了金融學(xué)的另一個(gè)重要的分支——行為金融學(xué)。
20世紀(jì)90年代,金融學(xué)家更加注重對(duì)于金融風(fēng)險(xiǎn)的管理,產(chǎn)生了諸多的數(shù)量化模型,其中最為著名的風(fēng)險(xiǎn)管理數(shù)量模型是VaR(Value at Risk)模型,這是量化投資對(duì)于風(fēng)險(xiǎn)控制的重要理論基礎(chǔ)。[15]
20世紀(jì)末,數(shù)理金融對(duì)于數(shù)學(xué)工具的引入更加的迅速,其中最為重大的突破無(wú)疑是非線性科學(xué)在數(shù)理金融上的運(yùn)用,非線性科學(xué)的出現(xiàn)為金融科學(xué)量化手段和方法論的研究提供了強(qiáng)有力的研究工具[16],尤其在混合多種阿爾法模型而建立混合模型時(shí)是非常有效的一種技術(shù)。
(二)量化投資的數(shù)學(xué)和計(jì)算基礎(chǔ)
量化投資策略模型的建立需要運(yùn)用大量的數(shù)學(xué)和計(jì)算機(jī)方面的技術(shù),主要有隨機(jī)過(guò)程、人工智能、分形理論、小波分析、支持向量機(jī)等。[17]隨機(jī)過(guò)程可以用于金融時(shí)序數(shù)列的預(yù)測(cè),在現(xiàn)實(shí)中經(jīng)常用于預(yù)測(cè)股市大盤,在投資組合模型構(gòu)建的過(guò)程中,可以優(yōu)化投資組合;人工智能的很多技術(shù),例如專家系統(tǒng)、機(jī)器學(xué)習(xí)、神經(jīng)網(wǎng)絡(luò)、遺傳算法等,可以運(yùn)用于量化投資;分形理論用于時(shí)間序列進(jìn)行預(yù)測(cè)分析;小波分析主要用于波型的處理,從而預(yù)測(cè)未來(lái)的走勢(shì);數(shù)據(jù)挖掘技術(shù)可以運(yùn)用于數(shù)據(jù)驅(qū)動(dòng)模型,還可以運(yùn)用于設(shè)置模型的細(xì)節(jié);支持向量機(jī)可以分析數(shù)據(jù),識(shí)別模式,用于分類和回歸分析。
五、國(guó)內(nèi)外量化投資實(shí)踐的發(fā)展
(一)國(guó)外量化投資實(shí)踐的發(fā)展
本文認(rèn)為量化投資在國(guó)外的發(fā)展已經(jīng)經(jīng)歷了四個(gè)發(fā)展階段:
1.第一階段從1949年至1968年:對(duì)沖階段。該階段是量化投資的萌芽階段,該階段具體的量化投資實(shí)踐很少,主要是為量化投資提供的理論基礎(chǔ)和技術(shù)準(zhǔn)備,量化投資脫胎于傳統(tǒng)投資,對(duì)抗市場(chǎng)波動(dòng),通過(guò)對(duì)沖穩(wěn)定Alpha收益,但收益率低了。
2.第二階段從1969年至1974年:杠桿階段。在該階段,量化投資從理論走入了實(shí)踐。在投資思路上,因?yàn)樵镜腁lpha策略收益有限,通過(guò)放杠桿擴(kuò)大第一階段的穩(wěn)定收益。實(shí)踐方面,1969年,前美國(guó)麻省理工學(xué)院數(shù)學(xué)系教授愛德華·索普(Ed Thorp)開辦了第一個(gè)量化對(duì)沖基金,進(jìn)行可轉(zhuǎn)債套利,他是最早的量化投資的者使用者。1971年,巴萊克國(guó)際投資公司(BGI)發(fā)行了世界上第一只被動(dòng)量化基金,標(biāo)志著量化投資的真正開始。
3.第三階段從1975年至2000年:多策略階段。在這一階段,雖有一定的挫折,但總體上量化投資得到了平穩(wěn)的發(fā)展。在投資思路上,由于上一階段通過(guò)杠桿放大收益的副作用產(chǎn)生,放大以后的波動(dòng)率又增大,從而轉(zhuǎn)向繼續(xù)追求策略的穩(wěn)定收益,具體的手段是采用多策略穩(wěn)定收益。實(shí)踐方面,1977年,美國(guó)的富國(guó)銀行指數(shù)化跟蹤了紐約交易所的1500只股票,成立了一只指數(shù)化基金,開啟了數(shù)量化投資的新紀(jì)元。[18]1998年,據(jù)統(tǒng)計(jì)共有21只量化投資基金管理著80億美元規(guī)模的資產(chǎn)。[19]
4.第四階段從2000年至今:量化投資階段。這一階段,量化投資得到了迅猛的發(fā)展,并且發(fā)展的速度越來(lái)越快。投資思路上,運(yùn)用量化工具,策略模型化,注重風(fēng)險(xiǎn)管理。在實(shí)踐方面,在2008年全球金融危機(jī)以前,全球?qū)_基金的規(guī)模由2000年的3350億美元在短短的7年時(shí)間內(nèi)上升至危機(jī)發(fā)生前的1.95萬(wàn)億美元,受美國(guó)次貸危機(jī)的影響全球?qū)_基金規(guī)模有較大的回落,直到2008年之后,在全球經(jīng)濟(jì)復(fù)蘇的大背景下對(duì)沖基金規(guī)模才開始反彈。
(二)我國(guó)量化投資的發(fā)展
本文認(rèn)為,到目前為止,我國(guó)量化投資的發(fā)展的主要經(jīng)歷了三個(gè)階段:
1.第一階段從2004年至2010年:起步階段。在這一階段,由于我國(guó)沒有足夠的金融工具,量化投資在我國(guó)發(fā)展緩慢。2004年8月,光大保德信發(fā)行“光大保德信量化股票”,該基金借鑒了外方股東量化投資管理理念,這是我國(guó)最早的涉足量化投資的產(chǎn)品。2010年4月16日,準(zhǔn)備多年的滬深300股指期貨的在中金所的上市,為許多對(duì)沖基金的產(chǎn)品提供了對(duì)沖工具,從此改變了以前我證券市場(chǎng)只能單邊進(jìn)行做多的情況。
2.第二階段從2011年至2013年:成長(zhǎng)階段。2011年,被認(rèn)為是我國(guó)量化對(duì)沖基金元年,[21]而隨著股指期貨、融資融券、ETF和分級(jí)基金的豐富和發(fā)展,券商資管、信托、基金專戶和有限合伙制的量化對(duì)沖產(chǎn)品的發(fā)行不斷出現(xiàn),這個(gè)階段的量化投資真正意義上開始發(fā)展,促使該階段發(fā)展的直接原因就是股指期貨的出現(xiàn)。[20]
3.第三階段從2014年至今:迅猛發(fā)展階段。2014年被認(rèn)為是“值得載入我國(guó)私募基金史冊(cè)的一年”,基金業(yè)協(xié)會(huì)推行私募基金管理人和產(chǎn)品的登記備案制,推動(dòng)了私募基金的全面陽(yáng)光化,加速了私募基金產(chǎn)品的發(fā)行,其中包括量化對(duì)沖型私募產(chǎn)品。2014年稱得上我國(guó)量化對(duì)沖產(chǎn)品增長(zhǎng)最迅速的一年,以私募基金為代表的各類機(jī)構(gòu)在量化對(duì)沖產(chǎn)品上的規(guī)模均有很大的發(fā)展,部分金融機(jī)構(gòu)全年銷售的量化對(duì)沖基金規(guī)模超過(guò)了百億。
2015年,上證50ETF期權(quán)于2月9日正式推出,這對(duì)于對(duì)我國(guó)的量化投資有著極大的促進(jìn)作用。4月16日,上證50與中證500兩只股指期貨新品種的上市給量化投資帶來(lái)更多的策略的運(yùn)用,金融衍生品的不斷豐富和發(fā)展,為量化投資提供更多的豐富對(duì)沖手段,也提供了更多的套利機(jī)會(huì)。
六、總結(jié)
量化投資的技術(shù)、策略、硬件設(shè)施條件都在飛速的發(fā)展,與傳統(tǒng)的投資方式相比,量化投資有著自身的特點(diǎn)和優(yōu)勢(shì)。尤其是量化對(duì)沖產(chǎn)品,以其長(zhǎng)期穩(wěn)健的收益特征,成為目前“資產(chǎn)荒”下對(duì)信托、理財(cái)產(chǎn)品和固定收益產(chǎn)品良好的替代產(chǎn)品。未來(lái)隨著我國(guó)股指期貨、融資融券、國(guó)債期貨、期權(quán)等金融產(chǎn)品的不斷創(chuàng)新,以及股指期貨市場(chǎng)未來(lái)逐步恢復(fù)正常,量化投資發(fā)展前景不可限量。
參考文獻(xiàn)
[1]徐莉莉.量化投資在中國(guó)的發(fā)展現(xiàn)狀[R].渤海證券研究所:金融工程專題研究報(bào)告,2012.
[2]廖佳.揭開量化基金的神秘面紗[J].金融博覽(財(cái)富),2014,(11):66-68.
[3]王力弘.淺議量化投資發(fā)展趨勢(shì)及其對(duì)中國(guó)的啟示[J].中國(guó)投資,2013,(02):202.
[4]Durbin,M. All About High-Frequency Trading: The Easy Way To Get Started[M]. McGraw-Hill Press,2010.
[5]蔣瑛現(xiàn),楊結(jié),吳天宇,等.海外機(jī)構(gòu)數(shù)量化投資的發(fā)展[R].國(guó)泰君安證券研究所:數(shù)量化系列研究報(bào)告,2008.
[6]Rishi K. Narang. Inside the Black Box: The Simple Truth about Quantitative Trading[M]. Wiley Press,2012.
[7]丁鵬.量化投資——策略與技術(shù)[M].北京:電子工業(yè)出版社,2014.
[8]Markowitz,H.M.. Portfolio Selection[J].Journal of Finance,1952,2:77-91.
[9]Sharpe,W.F. Capital asset prices: A theory of market equilibrium under conditions of risk[J]. Journal of Finance,1964,19(3):425-442.
[10]Lintner. The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets[J].Review of Economics and Statistics,1965,47(1):13-37.
[11]Mossin.Equilibrium in a Capital Asset Market[J]. Econometrica,1966,Vol.34(4):768-783.
[12]Fama,Jensen,and Roll. Investor sentiment and Stock Returns[J]. Journal of Political Economy,1969,(12)34-36.
[13]Black Fischer,and Myron Scholes,1973.The Pricing of Options and Corporate Liabilities[J].Journal of Political Economy,1973,81(3):637-654.
[14]Ross.The arbitrage theory of capital asset pricing[J].Journal of Economic Theory,1976,13(3):341-360.
[15]Jorion,Philippe.Value at Risk:The New Benchmark for Managing Financial Risk (3rd ed.)[M]. McGraw-Hill Press,2006.
[16]戴軍,葛新元.數(shù)量化投資技術(shù)綜述[R].國(guó)信數(shù)量化投資技術(shù)系列報(bào)告,2008.
[17]丁鵬.量化投資與對(duì)沖基金入門[M].北京:電子工業(yè)出版社,2014.
[18]郭喜才.量化投資的發(fā)展及其監(jiān)管[J].江西社會(huì)科學(xué),2014,(03):58-62.
[19]Ludwig B.,Chincarini. The Crisis of Crowding: Quant Copycats,Ugly Models,and the New Crash Normal[M]. Wiley Press,2013.
[20]曾業(yè).2014年中國(guó)量化對(duì)沖私募基金年度報(bào)告[R].華寶證券:對(duì)沖基金專題報(bào)告,2015.
[21]嚴(yán)高劍.對(duì)沖基金與對(duì)沖策略起源、原理與A股市場(chǎng)實(shí)證分析[J].商業(yè)時(shí)代,2013,(12):81-83.
基金資助:本文由國(guó)家社會(huì)科學(xué)基金項(xiàng)目《企業(yè)集團(tuán)與下屬上市公司之間內(nèi)部并購(gòu)和治理機(jī)制研究》(13BGL054)資助。
作者簡(jiǎn)介:陳?。?974-),男,漢,西安工業(yè)大學(xué)經(jīng)濟(jì)管理學(xué)院教授,金融研究所所長(zhǎng),曾獲西安交通大學(xué)管理學(xué)院工商管理博士,深圳證券交易所金融學(xué)博士后,主要研究方向?yàn)榻鹑谑袌?chǎng)、資產(chǎn)估值、公司治理、知識(shí)產(chǎn)權(quán)融資、企業(yè)并購(gòu)等;宋文達(dá)(1989-),男,漢,安徽,西安工業(yè)大學(xué)經(jīng)濟(jì)管理學(xué)院經(jīng)濟(jì)學(xué)碩士研究生,主要研究方向?yàn)榻鹑趯W(xué)。