胡浩茫,葛天舒,代彥軍,王如竹
(上海交通大學(xué)制冷與低溫工程研究所,上海 200240)
熱電制冷技術(shù)最新進展:從材料到應(yīng)用
胡浩茫,葛天舒,代彥軍*,王如竹
(上海交通大學(xué)制冷與低溫工程研究所,上海 200240)
熱電制冷是一種固態(tài)制冷方式,它沒有運動部件和制冷劑。它易與其他器件整合,并且廣泛地應(yīng)用于熱力系統(tǒng)。本文首先介紹熱電制冷的能量轉(zhuǎn)換理論。隨后介紹了近幾年熱電制冷材料和應(yīng)用的最新進展。由IOFFE整理出來的熱電能量轉(zhuǎn)換理論至今仍廣泛用于評價熱電材料和優(yōu)化熱電制冷裝置。熱電制冷所用熱電材料依然以碲化鉍為主,主要通過摻雜和納米化等改善聲子散熱機制提高其優(yōu)質(zhì)系數(shù)(ZT)。熱電制冷裝置主要應(yīng)用于空間冷卻、器件冷卻和精準(zhǔn)控溫,同時主要有3類熱電制冷數(shù)學(xué)模型(熱電制冷解析解、一維熱電制冷數(shù)學(xué)模型和三維熱電制冷數(shù)學(xué)模型)用于分析和改善熱電制冷裝置的性能。。
熱電制冷;碲化鉍;散射機制;熱電制冷裝置
熱電制冷作為固態(tài)主動式制冷方式,具有無運動部件、無噪音、易于集成等特性使得其在熱設(shè)計領(lǐng)域中備受關(guān)注,加之可以直接通過調(diào)節(jié)其輸入電壓、電流來控制其制冷或制熱溫度,使得熱電制冷技術(shù)在涉及到精準(zhǔn)控溫的冷卻對象時顯得尤為重要。目前,熱電制冷技術(shù)主要涉及熱電轉(zhuǎn)換基本理論、熱電材料和熱電制冷的應(yīng)用。由前蘇聯(lián)IOFFE院士[1]于20世紀(jì)50年底整理出的熱電轉(zhuǎn)換基本理論是連接熱電材料和熱電制冷應(yīng)用的基礎(chǔ)。本文從經(jīng)典熱電制冷基本理論出發(fā),推導(dǎo)熱電材料和熱電制冷性能的關(guān)系,接著分析熱電材料的進展,最后分析熱電制冷應(yīng)用的進展。
目前商業(yè)使用的熱電制冷模塊大多是塊狀熱電材料組成的π型模塊,如圖1所示,熱電制冷模塊是由n對P型和N型半導(dǎo)體元件通過電極串聯(lián)而成的熱電偶組件,這些對熱電偶嵌入在兩塊絕緣基板之間。為了方便商業(yè)化加工,P型元件和N型元件的尺寸通常都是一致的。
圖1 商業(yè)用熱電制冷模塊示意圖
前蘇聯(lián)IOFFE教授整理出了經(jīng)典熱電制冷模塊能量轉(zhuǎn)換理論[2],即冷熱端能量守恒方程,這一理論廣泛運用在熱電材料的評價和優(yōu)化熱電制冷應(yīng)用領(lǐng)域中:
式(1)和式(2)的右邊3項分別表示帕爾貼效應(yīng)、傅里葉效應(yīng)和焦耳熱效應(yīng)。此處材料的塞貝克系數(shù)為常物性,因此在熱電轉(zhuǎn)換過程中不存在湯姆遜效應(yīng)。Qc,Qh分別為冷端制冷量和熱端散熱量;Tc和Th分別為冷熱端溫度;N,Lte和Ate分別為熱電模塊中熱電臂的對數(shù),熱電臂的截面積和長度。這3個參數(shù)反應(yīng)了熱電模塊的基本結(jié)構(gòu)尺寸。設(shè)G=Ate/Lte,因此熱電模塊的結(jié)構(gòu)參數(shù)為G因子和熱電偶對數(shù)n。I為輸入電流。ate,λte和ρte為一對熱電偶對應(yīng)的熱電材料的參數(shù),其為:
通過該熱電制冷模塊的電壓降為:
這一電壓降包括由塞貝克效應(yīng)導(dǎo)致的電壓降和由歐姆定律導(dǎo)致的電壓降。
一定電流下,熱電模塊消耗的功率和熱電模塊的制冷效率COP表示為:
可見熱電模塊的COP與熱電臂對數(shù)n無關(guān)。
令式(1)中dQc/dI=0,可以得到Qc極值時的電流為:
相應(yīng)的最大制冷量為:
從式(7)和式(8)中可以清楚地看出,導(dǎo)致最大制冷量的最佳電流值(下稱為最佳電流值)隨制冷溫度的上升而提高,隨熱電元件電阻的降低而提高。同時,熱電模塊的最大制冷量與熱電偶的對數(shù)成正比,隨著熱電元件的截面積與長度的比值(G因子)的升高而增加,也隨著制冷溫度升高而增加。
令式(6)中dCOP/dI=0可以得到達到最佳COP的最優(yōu)電流值Iopt(下稱最優(yōu)電流)。
對應(yīng)的最大COP為:
這里的ZT為熱電材料的優(yōu)值系數(shù):
從式(9)可以看出,熱電模塊的最優(yōu)電流與熱電模塊的電阻成反比,即小電阻熱電模塊往往需要大的最優(yōu)電流。同時,最優(yōu)電流也與冷熱端溫差成正比。式(10)為熱電模塊的最大COP,可以看出最大COP與逆卡諾循環(huán)制冷效率成正比,也隨著熱電材料的優(yōu)值系數(shù)的升高而升高。另外,最大COP與熱電模塊的結(jié)構(gòu)參數(shù)沒有關(guān)系。式(11)為熱電材料的優(yōu)值系數(shù),熱電材料的優(yōu)值系數(shù)與熱電材料的塞貝克系數(shù)的平方成正比,與熱電材料的電阻率和熱導(dǎo)率成反比,也與熱電材料所處的工作溫度有關(guān)。因此,高效的熱電材料往往都是在所處的工作溫度下,有著高的塞貝克系數(shù),低的電阻率和低的熱阻率。從式(8)中可以看出,當(dāng)熱電材料的優(yōu)值系數(shù)提高時,對應(yīng)熱電模塊的最大制冷量也相應(yīng)提高。提高所在溫度下的熱電材料的優(yōu)值系數(shù)為目前熱電轉(zhuǎn)換研究的重點之一。
2.1熱電材料最新進展
從上個世紀(jì)60年代以來,各國學(xué)者合成和制備出適合不同工作溫度的熱電材料。目前,最新的熱電材料性能研究成果如圖2所示。
圖2 主流熱電材料性能[3]
圖2為目前主流熱電材料最新性能圖。這些材料分別為室溫材料:碲化鉍基材料(Bi2Te3:300 K~500 K)[4],中溫區(qū)材料:方古礦基材料[5-6],碲化鉛基材料[7-9]和半赫斯勒[10](PbTe,CoSb,Half Heusler:500 K~800 K)和高溫區(qū)材料:(SiGe:1,000 K~1,200 K)。大多熱電材料優(yōu)值系數(shù)的峰值都在1.5左右。目前商業(yè)化最成熟的材料為碲化鉍基熱電材料[11-14],其已經(jīng)成功運用于半導(dǎo)體制冷芯片和低溫發(fā)電芯片,這也是本文研究的材料。
下面就著重討論和總結(jié)室溫?zé)犭姴牧希诨G基熱電材料)的發(fā)展情況。
2.2室溫?zé)犭姴牧希诨G基熱電材料)
從式(11)可以看出,性能好的熱電材料必然要求在其工作溫度區(qū)間內(nèi)有著高的塞貝克系數(shù)、高的電導(dǎo)率和低的熱導(dǎo)率。一般而言,自然界中的絕大部分的物質(zhì)不具備這種性能。金屬雖然有著很高的電導(dǎo)率同時也擁有這很高的熱導(dǎo)率;而玻璃則剛好相反,雖然有著很低的熱導(dǎo)率但是其電導(dǎo)率也是很低的。因此,需要尋求一種物質(zhì),其導(dǎo)電性能要如金屬一般,而導(dǎo)熱性能要如玻璃一般,稱之為“聲子玻璃,電子晶體”[15]。
進一步分析式(11),可以發(fā)現(xiàn)材料的熱導(dǎo)率包括由載流子(電子或空穴)導(dǎo)致的電子熱導(dǎo)率(λe)和由聲子振動導(dǎo)致的聲子熱導(dǎo)率(λl)[16]:
式(13)為維德曼–夫蘭茲定理(Wiedemann–Franz law),由載流子導(dǎo)致的電子熱導(dǎo)率與電子的電導(dǎo)率成正比。這也是高電導(dǎo)率的物質(zhì)通常熱導(dǎo)率也高的原因。聲子熱導(dǎo)率是由于晶格振動而產(chǎn)生的熱導(dǎo)率,其與物質(zhì)的電特性無關(guān)[16]。因此需要降低材料的聲子熱導(dǎo)率。
目前主要是通過引入聲子散射機制來降低材料的聲子熱導(dǎo)率進而達到降低材料的熱導(dǎo)率的目的[17-18]。主要是通過兩種方式:通過點缺陷(point defects)的方式引入晶格內(nèi)部的聲子散射(短程無序)[16]和通過納米化(nanostructured materials)的方式引入晶格界面的聲子散射(長程無序)[14,19-21]。第一種方式通常采用填隙、缺位,合金和摻雜等方法,即通過添加原料或者原料配比來實現(xiàn)。第二種方式通常采用不同形式的加工、制備工藝來實現(xiàn)材料的納米化。
MINNICH等[22]指出合金半導(dǎo)體不僅可以引入短程無序,同時合金半導(dǎo)體具有較高的載流子濃度,可以有效地提高其電學(xué)性能。通常會使用低聲速重金屬元素,如鉍,碲等。通常商業(yè)熱電材料為Bi2Te3添加Bi2Se3和Sb2Te3形成固溶體合金。YAMASHITA等[23]采用Bridgman晶體生長技術(shù)制備了(Bi0.25Sb0.75)2Te3+8wt%的p型熱電材料以及Bi2(Te0.94Se0.06)3+0.068 wt% I和0.017 wt% Te的n型熱電材料,并且測試了它們的性能。同時,他們分別分析退火工藝對材料性能的影響。研究發(fā)現(xiàn)帶有退火工藝的n型樣品和未有退火工藝的p型樣品有著較高的ZT值,其ZT峰值分別為1.13和1.19。
1993年,由HICKS和DRESSELHAUS[24]提出通過納米化引入晶格界面的散射。他們指出低維熱電材料由于量子限制效應(yīng)可以有效地提高熱電材料的電學(xué)性能。后來研究者預(yù)測,發(fā)現(xiàn)納米熱電材料可以有效地降低材料的聲子熱導(dǎo)率[25]。受這些理論預(yù)測結(jié)果的啟發(fā),研究者們相繼制備各種類型的納米熱電材料,如二維的超晶格熱電材料[26-27],一維納米線熱電材料[28-29]和0維的量子點熱電材料[30-31]。在制備這些納米化熱電材料中,研究者大都也采用了合金或者摻雜的方法,確保熱電材料內(nèi)部的晶格長波散射和短波散射。其中,VENKATASUBRAMANIAN等[32]制備出p型二維超晶格薄膜Bi2Te3/Sb2Te3和n二維超晶格薄膜Bi2Te3/ Bi2Te2.83Se0.17,并且測試發(fā)現(xiàn)其ZT在300 K時分別高達2.4和1.4。后來,CHOWDHURY等[33]使用氣相外延技術(shù),將熱電材料生長在砷化鎵基板上,制備成薄膜型熱電制冷模塊,并且封裝在電子器件內(nèi)部,測試在極高的熱流密度(1,250 W/m2)和在未有熱電模塊和有熱電模塊情況下,器件溫度升高了近15℃。然而,這些納米材料由于是通過原子沉積的方法來制備,無法實現(xiàn)量產(chǎn)[22]。CHEN和REN研究團隊[4]制備出由高速球磨傳統(tǒng)塊狀p型BiSbTe合金材料后經(jīng)過熱壓形成的納米復(fù)合材料,并且經(jīng)過實驗測試發(fā)現(xiàn)該納米復(fù)合材料在室溫范圍內(nèi)ZT峰值為1.4,這一成果于2008年發(fā)表在Science中。而傳統(tǒng)塊狀BiSbTe熱電材料在室溫范圍內(nèi)ZT峰值為1.0。這表明該納米復(fù)合材料ZT提高了40%。進一步表明通過加工、制備工藝來實現(xiàn)納米熱電材料性能提高的可能性以及納米熱電材料量產(chǎn)的可能性。不同的研究人員通過不同的加工工藝來制備各種納米熱電材料,具體如表1所示。
從表1可以看出,實現(xiàn)納米化材料的途徑主要包括兩個步驟:實現(xiàn)納米顆粒和將這些納米顆粒制備成成塊狀納米復(fù)合物。第一個步驟通常有化學(xué)合成、水熱法、熔融紡絲和球磨法。目的是制備成粒徑為納米尺寸的顆粒,其中球磨法為高效的自上而下的制備方式。第二個步驟通常有放電等離子燒結(jié)、冷壓、熱壓、燒結(jié)和擠壓等,其目的是將步驟一中制備的納米復(fù)合物制備成塊狀熱電材料。其中冷壓制備的材料,其機械性能較低。從量產(chǎn)和低成本商業(yè)化的角度來考慮,球磨法+熱壓法是一種很受歡迎的制備方式。
表1 碲化鉍基納米復(fù)合熱電材料物性
通過引入納米顆粒也是材料納米化的有效方式之一[40]。FAN等[41-42]分別通過在p型納米復(fù)合材料Bi0.4Sb1.6Te3和n型納米復(fù)合材料Bi2Te3中引入不同比例的這些物質(zhì)的納米顆粒。熱壓成型后測試發(fā)現(xiàn)p型材料的ZT由未添加納米顆粒的1.2提高到引入40%wt納米顆粒的1.8;n型材料由1.05提高到1.18(引入10%wt納米顆粒)。SATYALA等[43]通過在Bi2Te3中添加5%wt的納米Ge顆粒,發(fā)現(xiàn)其功率因子可以有效地提高。
對于熱電制冷的實際應(yīng)用,研究者注重?zé)犭娭评涞闹评淞?、能效比或者最大制冷溫差等方面,大都?個方面來入手:1)建立理論和數(shù)學(xué)模型優(yōu)化熱電制冷裝置的運行效率;2)實驗測試和優(yōu)化實際熱電制冷裝置或系統(tǒng);3)同時借助實驗和理論優(yōu)化熱電制冷裝置性能。下文主要通過理論分析和實驗案例來詳細(xì)闡述熱電制冷的應(yīng)用。
3.1理論分析
前面已經(jīng)介紹熱電制冷過程一般由4種半導(dǎo)體能量轉(zhuǎn)換和傳遞效應(yīng)組成,因此熱電制冷控制方程亦有這4種效應(yīng)。為了簡化計算,研究者們通常將熱電材料的熱電輸運性能設(shè)定為常物性,同時將三維熱電制冷能量輸運方程簡化成一維數(shù)學(xué)模型,最終得到經(jīng)典的熱電制冷能量轉(zhuǎn)換方程[44],具體過程會在下文申述。從式(5)和式(6)可以看出,經(jīng)典的熱電制冷能量控制方程其實就是在熱電偶冷熱結(jié)點處的能量守恒方程,即為熱電制冷解析解。
總的來說,涉及到熱電制冷的數(shù)學(xué)模型分3類:1)經(jīng)典的熱電制冷能量控制方程(熱電制冷解析解);2)一維熱電制冷數(shù)學(xué)模型;3)三維熱電制冷數(shù)學(xué)模型。
3.1.1經(jīng)典熱電制冷能量轉(zhuǎn)換方程(熱電制冷解析解)
對于經(jīng)典的熱電制冷能量轉(zhuǎn)換方程而言,其最大的優(yōu)點就是簡捷和方便,無須迭代等復(fù)雜的計算方法,因此在熱電制冷裝置的優(yōu)化中應(yīng)用廣泛。ZHOU等[45]通過經(jīng)典的熱電制冷能量控制方法優(yōu)化了應(yīng)用在熱電制冷的冷熱端散熱裝置,確定了最佳的冷熱端散熱的熱阻比例。SIMON等[46]根據(jù)經(jīng)典的熱電制冷能量控制方程和熱電廠商提供的運行參數(shù)(ΔT、Imax、Th),反推出熱電制冷模塊的物性參數(shù)(塞貝克系數(shù),電阻和熱導(dǎo)),這樣根據(jù)已知廠家提供的運行參數(shù)即可預(yù)測熱電制冷模塊的性能。ZHANG等[47-48]根據(jù)SIMON等[46]提出的熱電模塊物性參數(shù),預(yù)測理論并且建立了熱電制冷能量控制方程,分析了不同熱端換熱條件下(水冷和風(fēng)冷)高熱流密度的電子器件冷卻。結(jié)果表明,熱電制冷模塊的加入對單純的風(fēng)冷冷卻有了較大幅度的提高。RUSSEL等[49]利用經(jīng)典熱電制冷能量控制理論分析熱電制冷運用于不同工況下的器件熱設(shè)計中,結(jié)果表明熱電制冷運用在器件的熱設(shè)計中存在著最佳的運行工況區(qū)域。CHEIN等[50-51]利用該經(jīng)典模型分析了熱電制冷模塊運用于電子器件的熱設(shè)計,該熱電制冷采用微通道換熱器進行冷卻。他們發(fā)現(xiàn)存在著一種強迫區(qū)域(熱端溫度低于冷端溫度),這一區(qū)域與冷端溫度和熱端的換熱條件有關(guān)。同時也確定了水冷式微通道換熱的換熱器的熱阻、水箱大小和電流大小之間的關(guān)系。YU等[45,52-54](西安交通大學(xué))通過經(jīng)典熱電轉(zhuǎn)換理論對熱電制冷進行一系列研究。如對電子器件散熱用的熱電制冷裝置熱端散熱的優(yōu)化[53]、對熱電制冷裝置冷熱端散熱裝置比例的優(yōu)化[45]、基于熵增原理的熱電制冷熱端散熱的優(yōu)化[55]、兩級熱電制冷器件優(yōu)化(主要是冷級熱級熱電臂臂長的優(yōu)化)[52]、帶有雙電源的兩級熱電制冷的優(yōu)化(冷熱級電源不一致)[54]。SHEN等[56]采用經(jīng)典熱電轉(zhuǎn)換理論對微型和常規(guī)尺寸的熱電制冷器件進行分析,結(jié)果顯示,尺寸效應(yīng)隨著熱電元件尺寸的降低更加明顯,即達到最低制冷溫度的最佳電壓隨著熱端熱阻的增大而階躍增加,這種階躍效應(yīng)隨著熱電元件尺寸的降低顯得尤為明顯。OPEOLUWA等[57]提出一種波紋型熱電元件結(jié)構(gòu)的熱電制冷器件,并采用經(jīng)典熱電制冷能量轉(zhuǎn)換方程進行性能評估,研究指出這一結(jié)構(gòu)適合于低成本、低熱流密度的場合。SHEN等[58]提出一種基于帕爾貼效應(yīng)的輻射供冷和供暖系統(tǒng)。他們對該系統(tǒng)進行理論分析,顯示系統(tǒng)COP為1.77。然而,文中并未分析該裝置的可行性以及具體實驗。
3.1.2一維熱電制冷數(shù)學(xué)模型
在穩(wěn)態(tài)條件下,由于常物性的一維熱電制冷數(shù)學(xué)模型可以直接推導(dǎo)成經(jīng)典熱電制冷能量控制模型。研究者通常通過一維熱電制冷模型研究變物性材料對性能的變化或者研究瞬態(tài)制冷性能分析。HUANG等[59]建立一維熱電制冷模型來分析湯姆遜效應(yīng)對制冷性能的影響,研究發(fā)現(xiàn),制冷性能不僅受材料的ZT影響,同時材料的湯姆遜效應(yīng)對制冷性能也有提升作用。SHEN等[60-61]通過建立一維瞬態(tài)熱電制冷模型來分析熱電制冷中脈沖過冷效應(yīng)現(xiàn)象和作用。SNARSKII等[62]提出了一種旋轉(zhuǎn)式瞬態(tài)的熱電制冷器件,并且利用一維動態(tài)熱電制冷模型來分析該裝置性能。SEIFERT等[63]根據(jù)一維熱電制冷模型分析了熱電制冷極限制冷量。SNYDER等[64]同樣根據(jù)一維模型來分析湯姆遜效應(yīng)對熱電制冷的作用。分析了湯姆遜效應(yīng)沿元件長度的作用,研究發(fā)現(xiàn)湯姆遜效應(yīng)對熱電制冷具有極大的促進作用。
3.1.3三維熱電制冷數(shù)學(xué)模型
對于三維熱電制冷數(shù)學(xué)模型來說,研究者主要考慮到周圍空氣與熱電元件換熱,變物性和p型以及n型熱電材料物性的影響。CHENG等[65]建立了三維瞬態(tài)熱電制冷數(shù)學(xué)模型,該模型考慮到熱電元件與周圍環(huán)境傳熱的影響,并指出周圍環(huán)境傳熱降低了熱電模塊的COP。 WANG等[66-69](華北電力大學(xué))建立了三維熱電制冷數(shù)學(xué)模型,并分析了一系列熱電制冷過程,如穩(wěn)態(tài)熱電制冷、瞬態(tài)熱電制冷和兩級熱電制冷等,這些模型主要考慮到變物性和周圍環(huán)境對熱電元件的影響。研究指出,周圍環(huán)境對熱電制冷有促進作用,同時提出了提高瞬態(tài)制冷的最佳的截面形狀和兩級熱電制冷熱電元件的排布等。他們[70-71]也根據(jù)該三維模型延伸至溫差發(fā)電器件并且分析其性能。CHEN等[72]對溫差發(fā)電驅(qū)動熱電制冷的系統(tǒng)進行三維建模分析,模型中考慮到熱電元件與電極間的接觸電阻和熱電元件對周圍環(huán)境的熱交換因素,并得出了給定條件下的最佳熱電元件長度。他們也建立了三維數(shù)學(xué)模型,并分析了湯姆遜效應(yīng)對熱電制冷的影響[73]。研究發(fā)現(xiàn)湯姆遜效應(yīng)可以將熱電制冷性能提高5%~7%。同時,CHEN課題組亦采用該模型分析了溫差發(fā)電系統(tǒng)[74-76],研究了如何對雙級溫差發(fā)電裝置進行散熱裝置優(yōu)化[74]、如何對溫差發(fā)電裝置進行熱力學(xué)分析[75]和如何對聚熱型太陽能-溫差發(fā)電裝置進行建模和仿真[76]。HU等[77]提出對熱電制冷模塊中熱電元件進行局部熱封裝,可以在有效地將熱電元件中高溫端廢熱散出的同時保證低溫端絕熱,提高系統(tǒng)的制冷量和COP。
總而言之,經(jīng)典熱電制冷能量轉(zhuǎn)換理論(熱電制冷解析解)由于具有簡捷、方便等優(yōu)勢廣泛運用在熱電制冷裝置的優(yōu)化中,進而分析最佳的冷熱端散熱情況和最佳的運行工況。一維和三維熱電制冷數(shù)學(xué)模型尤其是三維熱電制冷數(shù)學(xué)模型由于其涉及到更多的因素(變物性、周圍空氣換熱等)多用于熱電制冷模塊本身性能分析,并不涉及冷熱端換熱等外在因素。因此,建立一種修正的熱電制冷能量守恒方程不僅可以運用于熱電制冷裝置的優(yōu)化中,又可以對熱電模塊本身進行分析和研究,對熱電制冷應(yīng)用至關(guān)重要。
3.2實驗案例
熱電制冷由于其無制冷劑、無運動部件、便于集成等優(yōu)勢廣泛運用于注重系統(tǒng)的便攜性和穩(wěn)定性的領(lǐng)域[44]。
3.2.1空間冷卻
YILDIRIM等[78]實驗測試了一種基于熱電制冷的便攜式除濕裝置。他們通過熱電制冷冷端溫度降低至露點溫度以下進行除濕,測試得到日最大除濕量為143.6 g、COP為0.78。COSNIER等[79]提出一種基于熱電效應(yīng)的空氣加熱冷卻裝置。實驗測試顯示對于冷熱端溫差在5℃~10℃范圍,制冷和加熱工況的COP分別為1.5和2.0。ZHAO等[80]提出一種基于熱電制冷的空間冷卻系統(tǒng),并且采用相變對熱電制冷熱端進行冷卻。實驗測試顯示空間溫度在7℃左右,制冷量可以達到210 W,COP峰值為1.22。DAI等[81]開發(fā)出一種便攜式太陽能驅(qū)動的半導(dǎo)體制冷冰箱并且取得了專利授權(quán)[82],實驗測試發(fā)現(xiàn)半導(dǎo)體制冷冰箱可以維持在5℃~10℃并且COP可以達到0.3,同時發(fā)現(xiàn)太陽能輻射與半導(dǎo)體制冷具有很好的匹配性,即輻照量越高的時候越是制冷量需要高的時候,這時候太陽能產(chǎn)生的電流也是最大的時候。隨后,很多研究人員將這一裝置推廣到太陽能驅(qū)動的熱電空調(diào)上。LIU等[83-84]分別開發(fā)出帶有冷凝熱回收的太陽能熱電空調(diào)和帶有置換通風(fēng)系統(tǒng)的太陽能熱電輻射吊頂空調(diào)。冷凝熱回收系統(tǒng)就是將熱電制冷模塊熱端來加熱生活熱水。實驗測試顯示,帶有冷凝熱回收系統(tǒng)的太陽能熱電空調(diào)的COP高達4.51。帶有置換通風(fēng)系統(tǒng)的太陽能熱電輻射吊頂空調(diào)在制冷工況下COP高達0.9,而在供暖工況下的COP高達1.9。HE等[85]開發(fā)出PV/T驅(qū)動的熱電空調(diào)系統(tǒng)。其中,生活熱水同時吸收太陽能光伏背板的熱量和熱電模塊熱端的熱量。實驗測試其制冷COP為0.45,最低的室內(nèi)溫度可以達到17℃。
綜上所述,可以發(fā)現(xiàn)熱電空調(diào)一般與太陽能電池結(jié)合研究,主要是因為太陽能電池與熱電空調(diào)有著很好的匹配性:1)都是直流電,無須電的轉(zhuǎn)換;2)輻照量與制冷量的匹配性好。同時,熱電制冷更加廣泛運用在元器件的熱設(shè)計[77,86]和生物醫(yī)藥的溫度控制領(lǐng)域[87],主要是因為在這些領(lǐng)域系統(tǒng)的穩(wěn)定和易集成性往往處于第一位。
3.2.2器件(芯片)冷卻
CHEN等研究了用于器件熱設(shè)計的熱電制冷模塊,該熱電制冷模塊熱端分別用風(fēng)冷[88]和水冷[89]方式進行冷卻。根據(jù)經(jīng)典熱電制冷控制方程建立熱網(wǎng)絡(luò)模型并且經(jīng)過實驗驗證,最后使用該熱網(wǎng)絡(luò)模型確定熱電制冷的最佳運行工況(適用的熱量和運行的電流)。NAPHON等[90]實驗測試了帶有和無熱電制冷模塊的水冷式微翅片冷卻裝置,該裝置用于冷卻中央處理器(CPU)。實驗測試結(jié)果顯示,在無負(fù)載的CPU工況下,有和無熱電模塊的CPU溫度分別為10℃和31℃;當(dāng)CPU處于滿負(fù)載工況下,其溫度都在40℃左右。HU等[86]建立水冷式熱電制冷裝置,主要用于冷卻惡劣環(huán)境工況下的CPU。他們提出了一種帶有自冷卻效應(yīng)的熱電制冷溫度控制策略,防止了由CPU動態(tài)工作下導(dǎo)致溫度過低產(chǎn)生的結(jié)露問題,并且申請了專利[91]。LI等[92]將熱電制冷模塊運用于LED的熱設(shè)計中,實驗測試結(jié)果表明使用熱電模塊比未使用熱電模塊情況下,LED結(jié)點溫度降低了17℃。WANG等[93]實驗研究了采用熱電制冷模塊的大功率車頭熱設(shè)計裝置,該熱電制冷模塊的熱端分別采用翅片式風(fēng)冷和水冷來冷卻。測試結(jié)果表明采用風(fēng)冷和水冷的最佳電流分別為3 A和5 A。同時,在極端環(huán)境下(環(huán)境溫度為65℃),采用風(fēng)冷熱電模塊時LED結(jié)點溫度為85.6℃;而采用水冷熱電模塊時LED結(jié)點溫度為59.5℃。KAYA等[94]采用熱電制冷裝置來對大功率LED進行強化散熱,同樣采用翅片式被動冷卻裝置和熱管冷卻裝置進行對比,發(fā)現(xiàn)熱電制冷裝置可以使得30 W的LED降溫至15℃左右,而采用被動式冷卻僅將LED維持在28℃左右。LIU等[95]開發(fā)出基于熱電制冷效應(yīng)的CPU熱設(shè)計裝置,熱電制冷的熱端采用熱虹吸來冷卻。測試結(jié)果表明在環(huán)境溫度為12℃,CPU的發(fā)熱量分別為35 W和65 W時,CPU的溫度分別為40℃和50℃。HAO等[96]開發(fā)出一種基于熱電制冷和微通道換熱的芯片內(nèi)部冷卻方案,他們首先根據(jù)經(jīng)典的熱電制冷能量轉(zhuǎn)換方程建立數(shù)學(xué)模型,然后搭建實驗平臺測試芯片內(nèi)部冷卻性能,實驗測試發(fā)現(xiàn)該冷卻裝置可以冷卻直徑為0.5 mm的區(qū)域,熱流密度在600 W/cm2左右。ZEBARJADI[97]采用另外一種熱電效應(yīng)對電子器件進行冷卻,即通過冷卻熱電元件的方式對電子器件進行冷卻,這種方法與HU等[77]提出的局部氣凝膠封裝熱電器件類似。MARTíNEZ等[98-100]提出利用熱電效應(yīng)對功率器件進行自冷卻(selfcooling),主要是通過功率器件的熱量驅(qū)動熱電發(fā)電器件從而驅(qū)動風(fēng)扇對功率器件進行自冷卻,這種自冷卻方式適用于耐高溫的發(fā)熱源,這里的熱電器件以Seebeck效應(yīng)的形式(熱電發(fā)電)存在。MARTíNEZ等[101]將該概念運用在太陽能集熱器的防過熱中。后來,KIFLEMARIAM等[102-103]分別對于電子器件冷卻采用自冷卻裝置進行理論和實驗研究。實驗結(jié)果顯示,如果器件發(fā)熱量為50 W時,器件和環(huán)境的溫差為60℃。HU等[104]開發(fā)出一種投影儀燈泡的自冷卻裝置,成功解決了傳統(tǒng)投影儀燈泡散熱裝置產(chǎn)生的燈泡溫度熱點問題,同時該自冷卻裝置解決了傳統(tǒng)散熱裝置存在的投影儀關(guān)機熱沖擊現(xiàn)象。
3.2.3精準(zhǔn)控溫的熱設(shè)計(如等電聚焦電泳熱設(shè)計)
QIU等[105]采用熱電制冷模塊對PCR(聚合酶鏈?zhǔn)椒磻?yīng))進行精準(zhǔn)溫度控制。GE公司和美國的Bio-Rad公司均開發(fā)出基于帕爾貼制冷溫控的等電聚焦電泳儀,其電泳溫度在15℃~25℃左右[106]。HU等[105]采用雙級熱電制冷模塊對IEF等電聚焦電泳進行溫度控制并獲得了一項專利授權(quán)[107],測試發(fā)現(xiàn)電泳溫度可以達到10℃~30℃,在常規(guī)的工況下系統(tǒng)的COP高達2.0,具有一定的節(jié)能性。同時,他們采用了熱管與常規(guī)鋁板集成的方法解決了熱電模塊的制冷量與電泳產(chǎn)生的熱流量不匹配的問題,使用兩塊商業(yè)熱電模塊就可以維持冷卻板溫度均勻性(溫度偏差小于1.0℃)。將傳統(tǒng)翅片散熱裝置加入擋板結(jié)構(gòu)可以有效地提高熱端換熱的性能。
熱電制冷是以帕爾貼效應(yīng)為基礎(chǔ)的固體制冷技術(shù),提高熱電制冷性能的方法主要分為兩部分:提高熱電材料的性能和降低除熱電材料外的不可逆過程(如優(yōu)化冷熱端換熱裝置)。
除了上述對熱電材料和熱電裝置的研究外,目前還需要建立一個完整的熱電制冷能量轉(zhuǎn)換理論(解析解),不僅可以用于分析熱電制冷裝置性能,更加主要的是可以對熱電制冷模塊進行性能分析。另外,目前對熱電制冷與冷熱端耦合規(guī)律研究尚未清晰。因此還需要確定在特定的冷熱端散熱裝置、被冷卻對象和環(huán)境條件下選擇特定的熱電模塊。
[1] ROWE D M. Thermoelectrics handbook: macro to nano[M]. Boca Raton: CRC press,2005.
[2] IOFFE A F. Semiconductor thermoelements,and Thermoelectric cooling[M]. Russian: Infosearch ltd.,1957.
[3] ZEBARJADI M,ESFARJANI K,DRESSELHAUS M S. et al. Perspectives on thermoelectrics: from fundamentals to device applications[J]. Energy and Environmental Science,2012,5(1): 5147.
[4] POUDEL B,HAO Q,MA Y,et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys[J]. Science,2008,320 (5876): 634-638.
[5] ALLENO E,LAMQUEMBE N,CARDOSO-GIL R,et al. A thermoelectric generator based on an n-type clathrate and a p-type skutterudite unicouple[J]. Physica Status Solidi (a),2014,211 (6): 1293-1300.
[6] GUO J Q,GENG H Y,QCHI T,et al. Development of Skutterudite Thermoelectric Materials and Modules[J]. Journal of Electronic Materials,2012,41(6): 1036-1042.
[7] HU X,JOOD P,OHTA M,et al. Power generation from nanostructured PbTe-based thermoelectrics: comprehensive development from materials to modules[J]. Energy Enviromental and Science,2016,9 (1): 517-529.
[8] WANG H,HWANG J,SNEDAKER M L,et al. High thermoelectric performance of a heterogeneous PbTe nanocomposite[J]. Chemistry of Materials,2015,27(3): 944-949.
[9] SU S,LIU T C,WANG J,et al. Evaluation of temperature-dependent thermoelectric performances based on PbTe1-yIy and PbTe: Na/Ag2Te materials[J]. Energy,2014,70: 79-85.
[10] YAN X,JOSHI G,LIU W,et al. Enhanced thermoelectric figure of merit of p-type half-Heuslers[J]. Nano letters,2010,11(2): 556-560.
[11] WANG G,CAGIN T. Electronic structure of the thermoelectric materials Bi2Te3and Sb2Te3from first-principles calculations[J]. Physical Review B,2007,76(7): 1-8.
[12] KONOPKO L A,NIKOLAEVA A A,HUBER T E,et al. Thermoelectric properties of Bi2Te3microwires[J]. Physica Status Solidi (c),2014,11 (7/8): 1377-1381.
[13] YELGEL ? C,SRIVASTAVA G P,Thermoelectric properties of Bi2Se3/Bi2Te3/Bi2Se3and Sb2Te3/ Bi2Te3/Sb2Te3quantum well systems[J]. Philosophical Magazine,2014,94(18): 2072-2099.
[14] PATTAMATTA A,MADNIA C K. Modeling heat transfer in Bi2Te3-Sb2Te3nanostructures[J]. International Journal of Heat and Mass Transfer,2009,52 (3/4): 860-869.
[15] ALAM H,RAMAKRISHNA S. A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials[J]. Nano Energy,2013,2(2): 190-212.
[16] SNYDER G J,TOBERER E S. Complex thermoelectric materials[J]. Nature Material,2008,7 (2): 105-14.
[17] HARMAN T C,TAYLOR P J,WALSH M P,et al. Quantum dot superlattice thermoelectric materials and devices[J]. Science,2002,297(5590): 2229- 2232.
[18] LEE S,ESFARJNAI K,MENDOZA J,et al. Lattice thermal conductivity of Bi,Sb,and Bi-Sb alloy from first principles[J]. Physical Review B,2014,89 (8): 1-8.
[19] LI H,YU Y,LI G. Computational modeling and analysis of thermoelectric properties of nanoporous silicon[J]. Journal of Applied Physics,2014,115 (12): 124316.
[20] BATHULA S,GAHTORI B,JAYASIMHADRI M,et al. Microstructure and mechanical properties of thermoelectric nanostructured n-type silicon- germanium alloys synthesized employing spark plasma sintering[J]. Applied Physics Letters,2014,105 (6): 061902.
[21] LAN Y,MINNICH A J,CHEN G,et al. Enhancement of Thermoelectric Figure-of-Merit by a Bulk Nanostructuring Approach[J]. Advanced Functional Materials,2010,20(3): 357-376.
[22] MINNICH A J,DRESSLHAUS M S,REN Z F,et al. Bulk nanostructured thermoelectric materials: current research and future prospects[J]. Energy and Environmental Science,2009,2(5): 466-479.
[23] YAMASHITA O,SUGIHARA S. High- performance bismuth-telluride compounds with highly stable thermoelectric figure of merit[J]. Journal of Materials Science,2005,40(24): 6439-6444.
[24] HICKS L,DRESSELHAUS M. Effect of quantum-well structures on the thermoelectric figure of merit[J]. Physical Review B,1993,47(19): 12727.
[25] CHEN G. Recent trends in thermoelectric materials research III[J]. Semiconductors and Semimetals,2001,71(1): 203-259.
[26] BOTTNER H,CHEN G,VENKATASUBRA- MANIAN R. Aspects of thin-film superlattice thermoelectric materials,devices,and applications[J]. MRS bulletin,2006,31(3): 211-217.
[27] BULMAN G E,SIIVOLA E,SHEN B,et al. Large external DeltaT and cooling power densities in thin-filmBi2Te3-superlattice thermoelectric cooling devices[J]. Applied physics letters,2006,89(12): 2117.
[28] HOCHBAUM A I,CHEN R,DELGADO R D,et al. Enhanced thermoelectric performance of rough silicon nanowires[J]. Nature,2008,451(7175): 163-167.
[29] BOUKAI A I,BUNIMOVICH Y,TAHIR-KHELI J,et al. Silicon nanowires as efficient thermoelectric materials[J]. Nature,2008,451(7175): 168-171.
[30] MURALIDHARAN B,GRIFONI M. Performance analysis of an interacting quantum dot thermoelectric setup[J]. Physical Review B,2012,85(15): 155423.
[31] BALANDIN A A,LAZARENKOVA O L. Mechanism for thermoelectric figure-of-merit enhancement in regimented quantum dot superlattices[J]. Applied Physics Letters,2003,82 (3): 415-417.
[32] VENKATASUBRAMANIAN R,SIIVOLA E,COLPITTS T,et al. Thin-film thermoelectric devices with high room-temperature figures of merit[J]. Nature,2001,413(6856): 597-602.
[33] CHOWDHURY I,RASHER R,LOFGREEN K,et al. On-chip cooling by superlattice-based thin-film thermoelectrics[J]. Nature Nanotechnoly,2009,4(4): 235-238.
[34] XIE W,HE J,KANG H J,et al. Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi,Sb)2Te3nanocomposites[J]. Nano Letters,2010,10(9): 3283-3289.
[35] TTANG X,XIE W,LI H,et al. Preparation and thermoelectric transport properties of high-performance p-type Bi2Te3with layered nanostructure[J]. Applied Physics Letters,2007,90(1): 12102.
[36] CHEN Z,XU G,CHEN S,et al. Hydrothermal synthesized nanostructure Bi-Sb-Te thermoelectric materials[J]. Journal of Alloys and Compounds,2014,588(1): 384-387.
[37] CAO Y,ZHAO X,ZHU T,et al. Syntheses and thermoelectric properties of Bi2Te3/Sb2Te3bulk nanocomposites with laminated nanostructure[J]. Applied Physics Letters,2008,92 (14): 143106.
[38] MEHTA R J,ZHANG Y,KARTHIK C,et al. A new class of doped nanobulk high-figure-of-merit thermoelectrics by scalable bottom-up assembly[J]. Nature Materials,2012,11(3): 233-240.
[39] YAN X,BOUDELB,MA Y,et al. Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3[J]. Nano Letters,2010,10(9): 3373-3378.
[40] KIM W,ZIDE J,GOSSARD A,et al. Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors[J]. Physical Review Letters,2006,96(4): 1-4.
[41] FAN S,ZHAO J,YAN Q,et al. Influence of nanoinclusions on thermoelectric properties of n-type Bi2Te3nanocomposites[J]. Journal of Electronic Materials,2011,40(5): 1018-1023.
[42] FAN S,ZHAO J,GUO J,et al. p-type Bi0.4Sb1.6Te3nanocomposites with enhanced figure of merit[J]. Applied Physics Letters,2010,96(18): 182104.
[43] SATYALA N,TAHMASBI RAD A,ZAMANIPOUR Z,et al. Influence of germanium nano-inclusions on the thermoelectric power factor of bulk bismuth telluride alloy[J]. Journal of Applied Physics,2014,115(20): 204308.
[44] ROWE D M. CRC handbook of thermoelectrics[M]. Boca Raton: CRC press,1995.
[45] ZHOU Y,YU J. Design optimization of thermoelectric cooling systems for applications in electronic devices[J]. International Journal of Refrigeration,2012,35(4): 1139-1144.
[46] LINEYKIN S,BEN-YAAKOV S. Analysis of thermoelectric coolers by a spice-compatible equivalent-circuit model[J]. Power Electronics Letters,IEEE,2005,3(2): 63-66.
[47] ZHANG H Y,MUI Y C,TARIN M. Analysis of thermoelectric cooler performance for high power electronic packages[J]. Applied Thermal Engineering,2010,30(6/7): 561-568.
[48] ZHANG H Y. A general approach in evaluating and optimizing thermoelectric coolers[J]. International Journal of Refrigeration,2010,33(6): 1187-1196.
[49] RUSSEL M K,EWING D,CHING C. Y. Characterization of a thermoelectric cooler based thermal management system under different operating conditions[J]. Applied Thermal Engineering,2013,50(1): 652-659.
[50] CHEIN R,HUANG G. Thermoelectric cooler application in electronic cooling[J]. Applied Thermal Engineering,2004,24(14/15): 2207-2217.
[51] CHEIN R,CHEN Y. Performances of thermoelectric cooler integrated with microchannel heat sinks[J]. International Journal of Refrigeration,2005,28(6): 828-839.
[52] MA M,YU J. An analysis on a two-stage cascade thermoelectric cooler for electronics cooling applications[J]. International Journal of Refrigeration,2014,38: 352-357.
[53] ZHU L,TAN H,YU J. Analysis on optimal heat exchanger size of thermoelectric cooler for electronic cooling applications[J]. Energy Conversion and Management,2013,76(30): 685-690.
[54] CHEN J,YU J,MA M. Theoretical study on an integrated two-stage cascaded thermoelectric module operating with dual power sources[J]. Energy Conversion and Management,2015,98: 28-33.
[55] WANG X,YU J,MA M. Optimization of heat sink configuration for thermoelectric cooling system based on entropy generation analysis[J]. International Journal ofHeat and Mass Transfer,2013,63(5): 361-365.
[56] SHEN L,CHEN H,XIAO F,et al. The practical performance forecast and analysis of thermoelectric module from macro to micro[J]. Energy Conversion and Management,2015,100(1): 23-29.
[57] OWOYELE O,FERGUSON S,O’CONNOR B T. Performance analysis of a thermoelectric cooler with a corrugated architecture[J]. Applied Energy,2015,147: 184-191.
[58] SHEN L,XIAO F,CHEN H,et al. Investigation of a novel thermoelectric radiant air-conditioning system[J]. Energy and Buildings,2013,59(4): 123-132.
[59] HUANG M J,YEN R H,WANG A B. The influence of the Thomson effect on the performance of a thermoelectric cooler[J]. International Journal of Heat and Mass Transfer,2005,48(2): 413-418.
[60] SHEN L M,XIAO F,CHEN H X,et al. Numerical and experimental analysis of transient supercooling effect of voltage pulse on thermoelectric element[J]. International Journal of Refrigeration,2012,35(4): 1156-1165.
[61] SHEN L,CHEN H,XIAO F,et al. The step-change cooling performance of miniature thermoelectric module for pulse laser[J]. Energy Conversion and Management,2014,80(4): 39-45.
[62] SNARSKII A A,BEZSUDNOV I V. Rotating thermoelectric device in periodic steady state[J]. Energy Conversion and Management,2015,94: 103-111.
[63] SEIFERT W,LUSCHKE V,HINSCHE N F,Thermoelectric cooler concepts and the limit for maximum cooling[J]. Journal of Physics: Condensed Matter,2014,26(25): 255803.
[64] SNYDER G J,TOBERER E S,KHANNA R,et al. Improved thermoelectric cooling based on the Thomson effect[J]. Physical Review B Condensed Matter,2011,86(4): 41-48.
[65] CHENG C H,HUANG S Y,CHENG T C,A threedimensional theoretical model for predicting transient thermal behavior of thermoelectric coolers[J]. International Journal of Heat and Mass Transfer,2010,53 (9/10): 2001-2011.
[66] LV H,WANG X D,WANG T H,et al. Improvement of transient supercooling of thermoelectric coolers through variable semiconductor cross-section[J]. Applied Energy,2016,164: 501-508.
[67] WANG X D,WANG Q H,XU J L. Performance analysis of two-stage TECs (thermoelectric coolers) using a three-dimensional heat-electricity coupled model[J]. Energy,2014(65): 419-429.
[68] WANG X D,HUANG Y X,CHENG C H,et al. A three-dimensional numerical modeling of thermoelectric device with consideration of coupling of temperature field and electric potential field[J]. Energy,2012,47(1): 488-497.
[69] MENG J H,WANG X D,ZHANG X X,Transient modeling and dynamic characteristics of thermoelectric cooler[J]. Applied Energy,2013,108(5): 340-348.
[70] MENG J H,ZHANG X X,WANG X D. Characteristics analysis and parametric study of a thermoelectric generator by considering variable material properties and heat losses[J]. International Journal of Heat and Mass Transfer,2015,80(80): 227-235.
[71] MENG J H,ZHANG X X,WANG X D. Dynamic response characteristics of thermoelectric generator predicted by a three-dimensional heat-electricity coupled model[J]. Journal of Power Sources,2014,245(1): 262-269.
[72] CHEN W H,WANG C C,HUNG C I. Geometric effect on cooling power and performance of an integrated thermoelectric generation-cooling system[J]. Energy Conversion and Management,2014,87(87): 566-575.
[73] CHEN W H,LIAO C Y,HUNG C I. A numerical study on the performance of miniature thermoelectric cooler affected by Thomson effect[J]. Applied Energy,2012,89(1): 464-473.
[74] WANG C C,HUNG C I,CHEN W H,Design of heat sink for improving the performance of thermoelectric generator using two-stage optimization[J]. Energy,2012,39(1): 236-245.
[75] WANG C C,HUNG C I. Effect of irreversibilities on the performance of thermoelectric generator investigated using exergy analysis[J]. Journal of Thermal Science and Technology,2013,8(1): 1-14.
[76] CHEN W H,WANG C C,HUNG C I,et al. Modeling and simulation for the design of thermal-concentrated solar thermoelectric generator[J]. Energy,2014,64(1): 287-297.
[77] HU H M,GE T S,DAI Y J,et al. Analysis on Bi2Te3thermoelectric cooler with silica aerogel encapsulation[J]. Energy Conversion and Management,2015,103: 981-990.
[78] YLDRM C,SOYLU S K,ATMACA ?,et al. Experimental investigation of a portable desalination unit configured by a thermoelectric cooler[J]. Energy Conversion and Management,2014,85(85): 140-145.
[79] COSNIER M,FRAISSE G,LUO L. An experimental and numerical study of a thermoelectric air-cooling and air-heating system[J]. International Journal of Refrigeration,2008,31(6): 1051-1062.
[80] ZHAO D,TAN G. Experimental evaluation of a prototype thermoelectric system integrated with PCM (phase change material) for space cooling[J]. Energy,2014,68(4): 658-666.
[81] DAI Y J,WANG R Z,NI L. Experimental investigation and analysis on a thermoelectric refrigerator driven by solar cells[J]. Solar Energy Materials and Solar Cells,2003,77(4): 377-391.
[82] 王如竹,代彥軍. 太陽能半導(dǎo)體冰箱: CN2505782[P]. 2001-04-30.
[83] LIU Z B,ZHANG L,GONG G,et al. Experimental study and performance analysis of a solar thermoelectric air conditioner with hot water supply[J]. Energy and Buildings,2015,86: 619-625.
[84] LIU Z,ZHANG L,GONG G. Experimental evaluation of a solar thermoelectric cooled ceiling combined with displacement ventilation system[J]. Energy Conversion and Management,2014,87: 559-565.
[85] HE W,ZHOU J,HOU J,et al. Theoretical and experimental investigation on a thermoelectric cooling and heating system driven by solar[J]. Applied Energy,2013,107(3): 89-97.
[86] HU H,GE T,DAI Y,et al. Experimental study on water-cooled thermoelectric cooler for CPU under severe environment[J]. International Journal of Refrigeration,2016,62(6): 30-38.
[87] HU H,GE T,DAI Y,et al. Experimental investigation on two-stage thermoelectric cooling system adopted in isoelectric focusing[J]. International Journal of Refrigeration,2015,53: 1-12.
[88] CHANG Y W,CHANG C C,KE M T,et al. Thermoelectric air-cooling module for electronic devices[J]. Applied Thermal Engineering,2009,29(13): 2731-2737.
[89] HUANG H S,WENG Y C,CHANG Y W,et al. Thermoelectric water-cooling device applied to electronic equipment[J]. International Communications in Heat and Mass Transfer,2010,37(2): 140-146.
[90] NAPHON P,WIRIYASART S. Liquid cooling in the mini-rectangular fin heat sink with and without thermoelectric for CPU[J]. International Communications in Heat and Mass Transfer,2009,36(2): 166-171.
[91] 代彥軍,張布衣,胡浩茫,等. 惡劣工況下電子器件主動式熱電冷卻系統(tǒng): CN105188317A[P]. 2015-12-23.
[92] LI J,MA B,WANG R,et al. Study on a cooling system based on thermoelectric cooler for thermal management of high-power LEDs[J]. Microelectronics Reliability,2011,51(12): 2210-2215.
[93] WANG J,ZHAO X J,CAI Y X,et al. Experimental study on the thermal management of high-power LED headlight cooling device integrated with thermoelectric cooler package[J]. Energy Conversion and Management,2015,101: 532-540.
[94] KAYA M. Experimental study on active cooling systems used for thermal management of high-power multichip light-emitting diodes[J]. Scientific World Journal,2014: 563805.
[95] PUTRA N,YANUAR,ISKANDAR F N. Application of nanofluids to a heat pipe liquid-block and the thermoelectric cooling of electronic equipment[J]. Experimental Thermal and Fluid Science,2011,35(7): 1274-1281.
[96] HAO X,ENG,B,XIE G,et al. Efficient on-chip hotspot removal combined solution of thermoelectric cooler and mini-channel heat sink[J]. Applied Thermal Engineering,2016,100: 170-178.
[97] ZEBARJADI M. Electronic cooling using thermoelectric devices[J]. Applied Physics Letters,2015,106(20): 203506.
[98] MARTíNEZ A,ASTRAIN D,RODRíGUEZ A. Dynamic model for simulation of thermoelectric self cooling applications[J]. Energy,2013,55(1): 1114-1126.
[99] MARTíNEZ A,ASTRAIN D,RODRíGUEZ A. Experimental and analytical study on thermoelectric self cooling of devices[J]. Energy,2011,36(8): 5250-5260.
[100] MARTINEZ A,ASTRAIN D,ARANGUREN P. Thermoelectric self-cooling for power electronics: Increasing the cooling power[J]. Energy,2016,112: 1-7.
[101] MARTINEZ A,ASTRAIN D,RODRIGUEZ A. Zero-power-consumption thermoelectric system to prevent overheating in solar collectors[J]. Applied Thermal Engineering,2014,73(1): 1103-1112.
[102] KIFLEMARIAM R,LIN C X. Experimental investigation on heat driven self-cooling application based on thermoelectric system[J]. International Journal of Thermal Sciences,2016,109: 309-322.
[103] KIFLEMARIAM R,LIN C X. Numerical simulation of integrated liquid cooling and thermoelectric generation for self-cooling of electronic devices[J]. International Journal of Thermal Sciences,2015,94: 193-203.
[104] HU H,LI B,DAI Y,et al. Experimental study on self-cooling of lamp in projector using thermoelectric generator[C]// 5th Annual International Conference on Thermoelectrics (ICT 2016),Wuhan,2016.
[105] QIU X,YUAN J. Temperature control for PCR thermocyclers based on Peltier-effect thermoelectric[C]// 27th Annual International Conference of the Thermoelectric. Shanghai,2006: 7509-7512.
[106] HEALTHCARE G. 2-D electrophoresis: Principles and methods[M]. USA: GE Healthcare Limited,2007.
[107] 趙耀,胡浩茫,代彥軍,等. 生物電泳儀用制冷散熱裝置: CN102722199A[P]. 2012-10-10.
Up to Date Development of Thermoelectric Refrigeration Technology: From Material to Application
HU Hao-mang,GE Tian-shu,DAI Yan-jun*,WANG Ru-zhu
(Institute of Refrigeration and cryogenics,Shanghai 200240,China)
Thermoelectric refrigeration is a solid-state refrigeration,without any moving parts and refrigerant. It can be easily integrated with other devices,and employed popularly in the thermal management system. In this paper,thermoelectric energy conversion is introduced firstly. And then,up to date development of thermoelectric material and application are introduced. Thermoelectric energy conversion proposed by IOFFE is still popularly used today to evaluate thermoelectric material and device. Bi2Te3based thermoelectric material is still used in the thermoelectric refrigeration device. Doping and nano-structure are the two main methods to improve the scattering mechanism to increase ZT value. Thermoelectric refrigeration device is mainly used in some applications such as space cooling,chips cooling and temperature control. Three kinds of mathematical models (analytical solution,one dimensional mathematical model and three dimensional mathematical model) are mainly used to analysis and improve the performance of thermoelectric refrigeration device.
Thermoelectric refrigeration; Bi2Te3; Scattering mechanism; Thermoelectric refrigeration device
10.3969/j.issn.2095-4468.2016.05.201
*代彥軍(1971-),男,教授,博士。研究方向:熱電制冷,太陽能供熱。聯(lián)系地址:上海市東川路800號上海交通大學(xué)中意綠色能源樓,郵編:200240。聯(lián)系電話:021-34204358。E-mail:yjdai@sjtu.edu.cn。
國家重大儀器子課題(No.2011YQ030139)。