李 帥 趙秋棱 彭 陽(yáng) 徐 熠 李加納 倪 郁
西南大學(xué)農(nóng)學(xué)與生物科技學(xué)院, 重慶 400715
SA、MeJA和ACC處理對(duì)甘藍(lán)型油菜葉角質(zhì)層蠟質(zhì)組分、結(jié)構(gòu)及滲透性的影響
李 帥 趙秋棱 彭 陽(yáng) 徐 熠 李加納 倪 郁*
西南大學(xué)農(nóng)學(xué)與生物科技學(xué)院, 重慶 400715
角質(zhì)層蠟質(zhì)與植物適應(yīng)逆境脅迫有關(guān)。本研究以甘藍(lán)型油菜中雙11為試材, 在五葉期分別對(duì)其進(jìn)行200 μmol L-1水楊酸(SA)溶液、1-氨基環(huán)丙烷-1-羧酸(ACC)溶液以及100 μmol L-1茉莉酸甲酯(MeJA)溶液澆灌處理, 分析油菜葉角質(zhì)層蠟質(zhì)組分含量、結(jié)構(gòu)以及角質(zhì)層滲透性的變化。結(jié)果表明, MeJA處理7 d后, 烷類、二級(jí)醇類、酮類、醛類含量以及蠟質(zhì)總量與對(duì)照相比均顯著增加, 而處理14 d后, 所有蠟質(zhì)組分含量及蠟質(zhì)總量與對(duì)照相比均顯著減少; SA與ACC處理早期對(duì)葉片蠟質(zhì)沉積無(wú)顯著影響(SA處理14 d后, 一級(jí)醇類、醛類及未知組分含量顯著減少)。SA、MeJA和ACC處理21 d后均顯著誘導(dǎo)油菜葉片角質(zhì)層蠟質(zhì)的沉積, 蠟質(zhì)組分中烷類、酮類、醛類顯著增加, 其中C29烷、C29酮、C30醛是被SA、MeJA和ACC誘導(dǎo)的主要蠟質(zhì)組分, 暗示烷類、酮類、醛類可能與這些信號(hào)分子介導(dǎo)的抗(耐)性反應(yīng)密切相關(guān)。掃描電鏡結(jié)果顯示, SA處理減少葉表皮蠟質(zhì)桿狀結(jié)構(gòu), 且部分區(qū)域熔融; MeJA與ACC處理增加油菜葉表皮蠟質(zhì)的晶體結(jié)構(gòu)密度。角質(zhì)層蠟質(zhì)的沉積與結(jié)構(gòu)變化降低角質(zhì)層滲透性, 減緩葉片的水分散失, 其中 C29烷的特異性增加可能是造成葉片失水率降低的主要原因。
甘藍(lán)型油菜; 角質(zhì)層蠟質(zhì); 水楊酸(SA); 茉莉酸甲酯(MeJA); 乙烯(ETH)
植物在發(fā)育過程中經(jīng)常會(huì)遭受各種生物和非生物脅迫, 對(duì)于抵抗和適應(yīng)這些逆境脅迫, 植物進(jìn)化中形成了一套復(fù)雜的防御網(wǎng)絡(luò)。植物激素在這個(gè)防御網(wǎng)絡(luò)中起到了十分重要的作用, 當(dāng)遇到逆境脅迫時(shí), 植物體內(nèi)的激素水平會(huì)發(fā)生變化以啟動(dòng)和調(diào)節(jié)某些與逆境適應(yīng)相關(guān)的生理生化過程來(lái)誘導(dǎo)抗(耐)逆性的形成。植物角質(zhì)層是植物與外界環(huán)境的第一接觸面, 是植物應(yīng)對(duì)生物和非生物逆境的重要屏障,其中的角質(zhì)層蠟質(zhì)是由堆積在角質(zhì)層最外面有獨(dú)特三維結(jié)構(gòu)的表皮蠟質(zhì)和填充于角質(zhì)中的內(nèi)部蠟質(zhì)組成, 具有多種生理和生態(tài)學(xué)功能。環(huán)境因素如水分脅迫、NaCl、紫外線輻射、低溫、病害脅迫等會(huì)導(dǎo)致植物蠟質(zhì)含量和結(jié)構(gòu)的改變[1-4]。角質(zhì)層蠟質(zhì)的沉積也受植物激素的調(diào)控。例如, 乙烯(ETH)能夠誘導(dǎo)柑桔表皮蠟質(zhì)含量的增加及結(jié)構(gòu)變化, 阻止Penicillium digitatum入侵[5]。ETH合成受抑制時(shí), 延遲了蘋果表皮中特定蠟質(zhì)組分的合成[6]。脫落酸(ABA)誘導(dǎo)了獨(dú)行菜葉片中大于 C26的脂肪族物質(zhì)含量的增加, 其耐旱性隨之增強(qiáng)[7]。水分脅迫下, ABA通過上調(diào)轉(zhuǎn)錄因子MYB96的表達(dá)而促進(jìn)擬南芥幾個(gè)蠟質(zhì)合成基因的表達(dá), 最終促進(jìn)了蠟質(zhì)的積累[8]。這些結(jié)果表明, 植物激素作為信號(hào)分子可能通過介導(dǎo)角質(zhì)層蠟質(zhì)的沉積而影響植物對(duì)逆境脅迫的響應(yīng)。
ETH是一種重要的植物激素, 在植物對(duì)生物脅迫和非生物脅迫的耐受性和抗性中發(fā)揮重要作用。水楊酸(SA)與茉莉酸類物質(zhì)(JAs)是廣泛存在于高等植物體內(nèi)的一種新型植物生長(zhǎng)調(diào)節(jié)物質(zhì), 在調(diào)節(jié)植物生長(zhǎng)發(fā)育、光合特性、抗逆反應(yīng)中起著重要的作用。本研究分析了SA、茉莉酸甲酯(MeJA)和乙烯合成促進(jìn)劑 1-氨基環(huán)丙烷-1-羧酸(ACC)處理對(duì)油菜葉角質(zhì)層蠟質(zhì)組分含量、結(jié)構(gòu)以及角質(zhì)層滲透性的影響, 初步揭示了這些信號(hào)分子與植物角質(zhì)層蠟質(zhì)沉積的關(guān)系。
1.1 試驗(yàn)材料
甘藍(lán)型油菜中雙11, 由西南大學(xué)油菜工程中心提供。采用盆栽, 每盆(7 cm × 8 cm)裝土0.2 kg [草炭土與弱酸性黃壤1∶1 (w/w)], 移栽1株幼苗, 于網(wǎng)室種植, 常規(guī)管理, 保證土壤相對(duì)含水量不低于60%。待幼苗長(zhǎng)出5片真葉時(shí)進(jìn)行激素處理。
1.2 激素處理
用1%的MS溶液分別配制濃度為200 μmol L-1的SA溶液、ACC溶液以及100 μmol L-1的MeJA溶液。當(dāng)幼苗長(zhǎng)至 5片真葉時(shí), 分別取上述溶液澆灌于土壤中, 每2 d一次, 每次澆灌20 mL。對(duì)照用1%的MS溶液澆灌。在激素處理的7、14和21 d后分別取其葉片分析蠟質(zhì)組分含量; 在處理21 d后取葉片以掃描電鏡觀察蠟質(zhì)結(jié)構(gòu)及檢測(cè)角質(zhì)層滲透性。
1.3 葉角質(zhì)層蠟質(zhì)的提取與組分分析
采集植株自上而下第 2片展開葉片, 置含 30 mL氯仿的培養(yǎng)皿浸提30 s, 氯仿中預(yù)先加入已知濃度的 C16烷作為內(nèi)標(biāo)。用氮吹儀蒸干浸提液, 再于80℃下用100 μL的BSTFA衍生1 h, 將BSTFA在氮吹儀中蒸干后, 將產(chǎn)物溶于100 μL正己烷中。用氣相色譜儀(福立 9790II, 浙江)分析測(cè)定蠟質(zhì)組分及含量。具體程序及參數(shù)設(shè)置參考倪郁等[2]方法。根據(jù)FID的峰面積對(duì)蠟質(zhì)定量, 同時(shí)利用GC-MS (島津 GC2010MS, 日本)鑒定蠟質(zhì)組分, 參考內(nèi)標(biāo)正十六烷計(jì)算各蠟質(zhì)組分的實(shí)際含量。用單位葉面積的微克數(shù)(μg cm-2)表示蠟質(zhì)含量。利用數(shù)字化掃描儀(EPSON V750)和WinFOLIA葉片專業(yè)圖像分析軟件(Regent Instrument Inc., Canada)測(cè)定并記錄葉面積。每處理4個(gè)重復(fù)。
1.4 葉角質(zhì)層蠟質(zhì)結(jié)構(gòu)的掃描電鏡觀察
采集植株自上而下第 3片展開葉片, 干燥后從距中間葉脈0.1 cm處剪取樣品, 用碳導(dǎo)電膠布固定在載物臺(tái)上, 再將樣品放入金屬離子濺射儀(E1010, Hitachi)內(nèi)噴鍍導(dǎo)電膜, 材料鍍金后于掃描電子顯微鏡(S3000-N, Hitachi)下觀察形態(tài)。每處理4個(gè)重復(fù)。
1.5 角質(zhì)層水分損失的測(cè)定
參考 Kosma等[1]方法, 將各處理材料于黑暗環(huán)境中培養(yǎng)6 h, 以使氣孔關(guān)閉, 采集植株葉片于蒸餾水中黑暗處理1 h, 稱其重量, 作為葉片飽和重量。然后將葉片放入20℃的培養(yǎng)箱(黑暗), 每15 min取出葉片稱重一次。150 min后將葉片取出放在70℃的烘箱中干燥24 h, 稱其干重。水分損失率 = (飽和重量 - 每個(gè)時(shí)間點(diǎn)的重量)/葉片含水量, 葉片含水量 = 飽和重量 - 干重。每處理8個(gè)重復(fù)。
2.1 甘藍(lán)型油菜葉角質(zhì)層蠟質(zhì)含量
表1表明, SA處理7 d后, 角質(zhì)層各蠟質(zhì)組分含量與蠟質(zhì)總量均與對(duì)照無(wú)顯著差異; 處理 14 d后,一級(jí)醇類、醛類及未知組分含量顯著減少, 其中蠟質(zhì)優(yōu)勢(shì)組分C24酸、C28醛、C30醛含量顯著降低,但蠟質(zhì)總量無(wú)顯著變化; 處理21 d后, 烷類、酮類、醛類含量以及蠟質(zhì)總量均比對(duì)照顯著增加, 其中蠟質(zhì)優(yōu)勢(shì)組分C29烷、C29酮、C24酸、C28醛、C30醛含量增加顯著(圖1)。
MeJA處理7 d后, 烷類、二級(jí)醇類、酮類、醛類含量以及蠟質(zhì)總量均比對(duì)照顯著增加, 其中蠟質(zhì)優(yōu)勢(shì)組分C29烷、C31烷、C29二級(jí)醇、C29酮、C28醛、C30醛含量增加顯著(表 1和圖 1); MeJA處理14 d后, 所有蠟質(zhì)組分含量及蠟質(zhì)總量均比對(duì)照顯著減少; 而在處理 21 d后, 烷類、酮類、酸類、醛類含量以及蠟質(zhì)總量顯著增加, 其中蠟質(zhì)優(yōu)勢(shì)組分C29烷、C29酮、C20酸、C30醛含量增加顯著。
ACC處理7 d、14 d后, 角質(zhì)層各蠟質(zhì)組分與蠟質(zhì)總量與對(duì)照相比均無(wú)顯著變化(表1和圖1); 處理21 d后, 烷類、酮類、醛類以及蠟質(zhì)總量均比對(duì)照顯著增加, 其中蠟質(zhì)優(yōu)勢(shì)組分C29烷、C29酮、C24酸、C28醛、C30醛增加顯著。
2.2 油菜葉表皮蠟質(zhì)結(jié)構(gòu)
甘藍(lán)型油菜中雙11葉表皮蠟質(zhì)結(jié)構(gòu)類型以桿狀、顆粒狀(小型片狀)為主(圖2)。SA處理(21 d)后,葉片表皮蠟質(zhì)桿狀結(jié)構(gòu)減少, 部分區(qū)域熔融, 晶體結(jié)構(gòu)邊界不清晰。MeJA與ACC處理(21 d)后, 葉表皮蠟質(zhì)的晶體結(jié)構(gòu)密度增加, ACC處理后桿狀結(jié)構(gòu)長(zhǎng)度增加(圖2)。
2.3 油菜葉角質(zhì)層滲透性
SA、MeJA和ACC處理21 d后, 取油菜葉片測(cè)定其角質(zhì)層水分損失率。如圖3所示, 與對(duì)照相比, 3種處理均使葉片水分損失速率降低, 在150 min時(shí), SA、MeJA和ACC處理失水率與對(duì)照相比分別減少了33%、30%和35%, 表明3種處理均減緩了甘藍(lán)型油菜葉片的水分散失, 角質(zhì)層滲透性降低。
表1 SA、MeJA和ACC對(duì)油菜葉角質(zhì)層蠟質(zhì)含量的影響Table 1 Effects of SA, MeJA, and ACC treatment on amounts of leaf cuticular wax in Brassica napus (μg cm-2)
圖1 SA、MeJA和ACC處理對(duì)油菜葉角質(zhì)層蠟質(zhì)主要組分含量的影響Fig. 1 Effects of SA, MeJA, and ACC treatments on contents of major individual leaf cuticular wax constituents in B. napus數(shù)據(jù)柱上*表示在P < 0.05水平上差異顯著。Bars with asterisks are significantly different at P < 0.05 according to Student’s t-test.
3.1 甘藍(lán)型油菜葉角質(zhì)層蠟質(zhì)的組成
甘藍(lán)型油菜葉角質(zhì)層蠟質(zhì)主要由長(zhǎng)鏈脂肪酸(C>18)和由長(zhǎng)鏈脂肪酸衍生而來(lái)的醛、一級(jí)醇、二級(jí)醇、烷、酮、酯等組成, 其中由蠟質(zhì)脫羰途徑生成的C29烷、C29酮與C29二級(jí)醇是主要的蠟質(zhì)組分。這與十字花科擬南芥(A. thaliana)、甘藍(lán)(B. oleracea)等角質(zhì)層蠟質(zhì)組成相似[9]。植物角質(zhì)層蠟質(zhì)的組分、含量等會(huì)隨著植物組織器官及發(fā)育時(shí)期的變化而改變。例如, 瑞士石松(Pinus cembra)的蠟質(zhì)沉積隨著葉片的發(fā)育而減少[10]。本研究中, 雖然蠟質(zhì)總量隨著葉片發(fā)育而減少, 但烷類、二級(jí)醇類、酮類、醛類等在蠟質(zhì)總量中所占的比重隨葉片的發(fā)育而呈增加趨勢(shì)。
3.2 外源SA、MeJA和ACC誘導(dǎo)的蠟質(zhì)組分變化提高了植株的抗(耐)逆性
圖2 SA、MeJA和ACC處理對(duì)油菜葉表皮蠟質(zhì)晶體結(jié)構(gòu)的影響Fig. 2 Effects of SA, MeJA, and ACC treatment on the crystalloid structures of leaf cuticular wax in B. napusA~B: 對(duì)照; C~D: SA處理; E~F: MeJA處理; G~H: ACC處理; A、C、E、G: 標(biāo)尺=100 μm; B、D、F、H: 標(biāo)尺=10 μm。A-B: control; C-D: SA; E-F: MeJA; G-H: ACC; A, C, E, and G:bar=100 μm; B, D, F, and H: bar=10 μm.
圖3 SA、MeJA和ACC處理對(duì)油菜葉角質(zhì)層水分損失的影響Fig. 3 Water loss rates of isolated leaves from B. napus treated by SA, MeJA, and ACC
植物激素作為植物體內(nèi)的痕量信號(hào)分子, 調(diào)節(jié)著植物體對(duì)環(huán)境的應(yīng)答。近年來(lái)發(fā)現(xiàn)SA、JAs和ETH廣泛參與調(diào)控植物防御反應(yīng)與植株形態(tài)發(fā)育相關(guān)的多種生物學(xué)過程, 從而影響著植物應(yīng)對(duì)不良環(huán)境的能力[11-13]。本研究結(jié)果表明, 外源SA、MeJA和ACC處理能夠誘導(dǎo)油菜葉片角質(zhì)層蠟質(zhì)的沉積, 降低角質(zhì)層滲透性, 而蠟質(zhì)組分的變化可能是造成其水分散失減緩的主要原因。SA、MeJA、ACC處理21 d時(shí), 油菜葉角質(zhì)層中烷類、酮類、醛類顯著增加, 其中C29烷、C29酮、C30醛是被SA、MeJA、ACC誘導(dǎo)增加的主要蠟質(zhì)組分, 暗示烷類、酮類、醛類可能與這些信號(hào)分子介導(dǎo)的抗(耐)性反應(yīng)密切相關(guān)。Seo等[8]研究發(fā)現(xiàn), 擬南芥角質(zhì)層蠟質(zhì)中烷類和醛類物質(zhì)的增加提高了植株的抗旱能力。番茄ps突變體果實(shí)表皮蠟質(zhì)中幾乎不含烷類和醛類, 而果實(shí)表面失水率比野生型快5~8倍[14]。乙烯信號(hào)的轉(zhuǎn)導(dǎo)最后以乙烯響應(yīng)因子激活或抑制相關(guān)基因的表達(dá), 參與防衛(wèi)反應(yīng)的誘導(dǎo)[15]。擬南芥乙烯響應(yīng)類型的轉(zhuǎn)錄因子 WIN1/SHN1在轉(zhuǎn)基因植株中超表達(dá)時(shí)誘導(dǎo)蠟質(zhì)脫羰基途徑產(chǎn)物(烷類、二級(jí)醇類、酮類)的特異性增加, 增強(qiáng)植株的耐旱性[16-17]。SA、MeJA和ACC誘導(dǎo)的油菜葉片角質(zhì)層中烷類、醛類的增加也可能與生物脅迫抗性有關(guān)。菌核病菌侵染甘藍(lán)型油菜時(shí),油菜葉表皮蠟質(zhì)中醛類含量顯著增加[18]。Kosma等[19]研究認(rèn)為 C21~C27烷類、醛類、C22和 C24脂肪酸及伯醇是小麥抗黑森癭蚊侵?jǐn)_的重要成分。擬南芥表皮蠟質(zhì)缺失突變體cer6和cer2中, SA信號(hào)途徑標(biāo)志基因——病程相關(guān)蛋白 PR基因的表達(dá)顯著降低[20], 暗示植物抗性基因的轉(zhuǎn)錄水平與蠟質(zhì)組分密切相關(guān)。
本研究中, 油菜葉片蠟質(zhì)含量在 MeJA處理 7 d、21 d時(shí)均顯著增加, 而在處理中期(14 d)顯著減少,這可能與 MeJA對(duì)植物生長(zhǎng)發(fā)育的復(fù)雜調(diào)控有關(guān)。茉莉酸類能夠調(diào)節(jié)植物生長(zhǎng)發(fā)育的很多方面, 包括抑制幼苗葉片與主根的生長(zhǎng)[21]、促進(jìn)側(cè)根和根毛的產(chǎn)生[22]、誘導(dǎo)表皮毛的形成等[23]。葉片蠟質(zhì)的沉積變化應(yīng)該是一個(gè)受茉莉酸類調(diào)控的綜合效應(yīng), 可能與MeJA處理時(shí)間、濃度、植物發(fā)育階段等有關(guān)。
3.3 C29烷積累對(duì)植株抗(耐)旱性的貢獻(xiàn)
C29烷是甘藍(lán)型油菜含量最高的蠟質(zhì)組分[24]。本研究中, SA、MeJA和ACC處理21 d后, C29烷含量與對(duì)照相比分別增加30%、50%和39%, 而葉片失水率在150 min時(shí)與對(duì)照相比分別減少33%、30%和35%, 說明C29烷的積累在SA、MeJA和ETH介導(dǎo)的植株抗旱性中可能承擔(dān)著重要作用。Weng等[25]發(fā)現(xiàn), C29烷嚴(yán)重缺失的擬南芥lacs1、lacs2雙缺失突變體與野生型相比, 角質(zhì)層滲透性高, 失水率快,對(duì)干旱更為敏感。負(fù)責(zé)烷類物質(zhì)合成的 CER1在擬南芥中超表達(dá)促進(jìn)了 C29烷的積累, 角質(zhì)層滲透性降低, 增強(qiáng)了植株對(duì)干旱的耐受力[26]。蒺藜苜蓿乙烯響應(yīng)類型轉(zhuǎn)錄因子 WXP1在擬南芥中超表達(dá)時(shí),促進(jìn)C29、C31和C33烷類的合成, WXP轉(zhuǎn)基因植株表現(xiàn)出耐旱性增強(qiáng)[27]。
3.4 角質(zhì)層蠟質(zhì)結(jié)構(gòu)
Oliveira等[28]認(rèn)為角質(zhì)層結(jié)構(gòu)和蠟質(zhì)組成是決定植物抗逆性的關(guān)鍵因素。ETH誘導(dǎo)的柑桔表皮蠟質(zhì)結(jié)構(gòu)的變化, 阻止了Penicillium digitatum入侵[5]。本研究掃描電鏡結(jié)果顯示, 甘藍(lán)型油菜中雙11葉表皮蠟質(zhì)結(jié)構(gòu)類型以桿狀、顆粒狀(小型片狀)為主。SA、MeJA和ACC處理不同程度地改變了油菜葉表皮蠟質(zhì)結(jié)構(gòu)。MeJA與ACC處理使油菜葉表皮蠟質(zhì)的晶體結(jié)構(gòu)密度增加, 這與蠟質(zhì)含量分析的結(jié)果相一致。表皮蠟質(zhì)層厚度的增加可降低植株失水率,提高其對(duì)干旱的耐受力[29]。SA處理后, 葉表皮蠟質(zhì)桿狀結(jié)構(gòu)減少, 且部分區(qū)域熔融(圖2)。植物角質(zhì)層蠟質(zhì)包含角質(zhì)層內(nèi)部蠟質(zhì)與表皮蠟質(zhì), SA所誘導(dǎo)的葉片蠟質(zhì)含量的增加可能主要是來(lái)自角質(zhì)層內(nèi)部蠟質(zhì)的沉積。在對(duì)番茄蠟質(zhì)研究中發(fā)現(xiàn), 蠟質(zhì)組成特別是內(nèi)表皮蠟質(zhì)起著主要的蒸騰屏障作用[30]。SA與MeJA、ACC所誘導(dǎo)的表皮蠟質(zhì)結(jié)構(gòu)的差異也可能與它們介導(dǎo)的不同抗逆信號(hào)途徑有關(guān)。一般而言, 在抗病反應(yīng)中, 依賴于 SA的防衛(wèi)反應(yīng)主要針對(duì)活體營(yíng)養(yǎng)型病原菌, 依賴于JA和ETH的防衛(wèi)反應(yīng)主要針對(duì)腐生營(yíng)養(yǎng)型病原菌[31-32]。
外源SA、MeJA及ACC處理能夠誘導(dǎo)甘藍(lán)型油菜中雙11葉片角質(zhì)層蠟質(zhì)的沉積, 降低角質(zhì)層滲透性, 減緩葉片的水分散失, 其中 C29烷的特異性增加是造成葉片失水率降低的主要原因。蠟質(zhì)組分中烷類、酮類以及醛類可能與SA、JA和ETH所介導(dǎo)的抗(耐)性反應(yīng)密切相關(guān)。
[1] Kosma D K, Bourdenx B, Bernard A, Parsons E P, Lü S, Joubès J, Jenks M A. The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiol, 2009, 151: 1918-1929
[2] Ni Y, Xia R E, Li J N. Changes of epicuticular wax induced by enhanced UV-B radiation impact on gas exchange in Brassica napus. Acta Physiol Plant, 2014, 36: 2481-2490
[3] 倪郁, 宋超, 王小清. 低溫脅迫下擬南芥表皮蠟質(zhì)的響應(yīng)機(jī)制.中國(guó)農(nóng)業(yè)科學(xué), 2014, 47: 252-261
Ni Y, Song C, Wang X Q. Investigation on response mechanism of epicuticular wax on Arabidopsis thaliana under cold stress. Sci Agric Sin, 2014, 47: 252-261 (in Chinese with English abstract)
[4] 倪郁, 宋超, 王小清. 核盤菌侵染對(duì)擬南芥表皮蠟質(zhì)結(jié)構(gòu)及化學(xué)組成的影響. 生態(tài)學(xué)報(bào), 2014, 34: 4160-4166
Ni Y, Song C, Wang X Q. Effects of Sclerotinia sclerotiorum on the morphology and chemical constituents of epicuticular wax in Arabidopsis thaliana stems. Acta Ecol Sin, 2014, 34: 4160-4166 (in Chinese with English abstract)
[5] Cajustea J F, González-Candelasa L, Veyrat A, García-Breijo F J, Reig-Arminana J, Lafuente M T. Epicuticular wax content and morphology as related to ethylene and storage performance of‘Navelate’ orange fruit. Postharvest Biol Tec, 2010, 55: 29-35
[6] Curry E. Effects of 1-MCP applied postharvest on epicuticular wax of apples (Malus domestica Borkh.) during storage. J Sci Food Agric, 2008, 88: 996-1006
[7] Macková J, Va?ková M, Macek P, Hronková M, Schreiber L, ?antr??ek J. Plant response to drought stress simulated by ABA application: changes in chemical composition of cuticular waxes. Environ Exp Bot, 2013, 86: 70-75
[8] Seo P J, Lee S B, Suh M C, Park M J, Go Y S, Park C M. The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. Plant Cell, 2011, 23:1138-1152
[9] Baker E A. The influence of environment on leaf wax development in Brassica oleracea var. gemmifera. New Phytol, 1974, 73:955-966
[10] Grant R H, Heisler G M, Gao W, Jenks M. Ultraviolet leaf reflectance of common urban trees and the prediction of reflectance from leaf surface characteristics. Agric For Meteorol, 2003, 120:127-139
[11] Khan M I, Fatma M, Per T S. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front Plant Sci, 2015, 6: 462-478
[12] Cheong J J, Yang D C. Methyl jasmonate as a vital substance in plants. Trends Genet, 2003, 19: 409-413
[13] Morgan P W, Drew M C. Ethylene and plant responses to stress. Physiol Plant, 1997, 100: 620-630
[14] Leide J, Hildebrandt U, Vogg G, Riederer M. The positional sterile (ps) mutation affects cuticular transpiration and wax biosynthesis of tomato fruits. J Plant Physiol, 2011, 168: 871-877
[15] Singh K, Foley R C, Onate-Sanchez L. Transcription factors in plant defense and stress responses. Curr Opins Plant Biol, 2002, 5: 430-436
[16] Broun P, Poindexter P, Osborne E, Jiang C Z, Riechmann J L. WIN1, a transcriptional activator of epidermal wax accumulation in Arabidopsis. Proc Natl Acad Sci USA, 2004, 101: 4706-4711
[17] Aharoni A, Dixit S, Jetter R, Thoenes E, van Arkel G, Pereira A. The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell, 2004, 16: 2463-2480
[18] Ni Y, Guo Y J, Wang J, Xia R E, Wang X Q, Ash G, Li J N. Responses of physiological indexes and leaf epicuticular waxes of Brassica napus to Sclerotinia sclerotiorum infection. Plant Pathol, 2014, 63: 174-184
[19] Kosma D K, Nemacheck J A, Jenks M A, Williams C E. Changes in properties of wheat leaf cuticle during interactions with Hessian fly. Plant J, 2010, 63: 31-43
[20] Garbay B, Tautu M T, Costaglioli P. Low level of pathogene-sis-related protein 1 mRNA expression in 15-day-old Arabidopsis cer6-2 and cer2 eceriferum mutants. Plant Sci, 2007, 172:299-305
[21] Staswick P E, Su W, Howell S H. Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proc Natl Acad Sci USA, 1992, 89:6837-6840
[22] 李延安, 祁林林, 孫加強(qiáng), 劉宏宇, 李傳友. 茉莉酸誘導(dǎo)側(cè)根形成缺陷突變體asa1-1抑制子(soa)的鑒定與遺傳分析. 遺傳, 2011, 33: 1003-1010
Li Y A, Qi L L, Sun J Q, Liu H Y, Li C Y. Genetic screening and analysis of suppressors of asa1-1 (soa) defective in jasmonate-mediated lateral root formation in Arabidopsis. Hereditas, 2011, 33: 1003-1010 (in Chinese with English abstract)
[23] Boughton A J, Hoover K, Felton G W. Methyl jasmonate application induces increased densities of glandular trichomes on tomato, Lycopersicon esculentum. J Chem Ecol, 2005, 31: 2211-2216
[24] Holloway P J, Brown G A, Baker E A, Macey M J K. Chemical composition and ultrastructure of the epicuticular wax in three lines of Brassica napus (L). Chem Phys Lipids, 1977, 19: 114-127
[25] Weng H, Molina I, Shockey J, Browse J. Organ fusion and defective cuticle function in a lacs1 lacs2 double mutant of Arabidopsis. Planta, 2010, 231: 1089-1100
[26] Bourdenx B, Bernard A, Domergue F, Pascal S, Leger A, Roby D, Pervent M, Vile D, Haslam R P, Napier J A, Lessire R, Joubes J. Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses. Plant Physiol, 2011, 156: 29-45
[27] Zhang J Y, Broeckling C D, Sumner L W, Wang Z Y. Heterologous expression of two Medicago truncatula putative ERF transcription factor genes, WXP1 and WXP2, in Arabidopsis led to increased leaf wax accumulation and improved drought tolerance, but differential response in freezing tolerance. Plant Mol Biol, 2007, 64: 265-278
[28] Oliveira A F M, Meirelles S T, Salatino A. Epicuticular waxes from caatinga and cerrado species and their efficiency against water loss. An Acad Bras Cienc, 2003, 75: 431-439
[29] Yang M, Yang Q Y, Fu T D, Zhou Y M. Overexpression of the Brassica napus BnLAS gene in Arabidopsis affects plant development and increases drought tolerance. Plant Cell Rep, 2011, 30: 373-388
[30] Vogg G, Fischer S, Leide J, Emmanuel E, Jetter R, Levy A A, Riederer M. Tomato fruit cuticular waxes and their effects on transpiration barrier properties: functional characterization of a mutant deficient in a very-long-chain fatty acid beta-ketoacyl-CoA synthase. J Exp Bot, 2004, 55: 1401-1410
[31] Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol, 2005, 43: 205-227
[32] Thomma B P H J, Eggermont K, Penninckx I A M A, Mauch-Mani B, Vogelsang R, Cammue B P A, Broeckaert W. Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci USA, 1998, 95: 15107-15111
Effects of SA, MeJA, and ACC on Leaf Cuticular Wax Constituents, Structure and Permeability in Brassica napus
LI Shuai, ZHAO Qiu-Ling, PENG Yang, XU Yi, LI Jia-Na, and NI Yu*
College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
Cuticular waxes are related to plant adaptation to environment stress. In the current study, Brassica napus cv. Zhongshuang 11 grown in the soil treated with adding solutions of SA (200 μmol L-1), MeJA (100 μmol L-1), and ACC (200 μmol L-1) wax, were sampled at the five-leaf stage to clarify the effects of SA, MeJA and ETH on adjusting plant cuticular wax deposition. The leaves were used to analyze the amounts of total cuticular wax and wax constituents, wax crystal structure, and cuticular permeability. The amounts of n-alkanes, secondary alcohols, ketones, aldehydes and total cuticular waxes increased significantly when compared with the control at seven days after MeJA treatment, whereas the amounts of all wax constituents and total cuticular waxes significantly decreased at 14 days after MeJA treatment. The application of SA and ACC had no significant influence on cuticular wax deposition at 7 and 14 days after treatments, except for an amount reduction of primary alcohol, aldehyde and unknown constituents for SA treatment at 14 days after treatment. At 21 days after SA, MeJA, and ACC application, the amounts of total cuticular wax, n-alkanes, ketones and aldehyde significantly increased. C29 n-alkane, C29 ketone, and C30 aldehyde were the main cuticular wax constituents induced by SA, MeJA, and ACC application, implying that n-alkane, ketone and aldehyde might be related to the resistance to stresses induced by these signal molecules. Scan electric microscope analysis indicted that the rod-shape structure of cuticular wax in leaf surface reduced and some rods melted under SA treatment. MeJA and ACC application increased the distribution density of wax crystalloids. The cuticular wax deposition and crystal structure altera-tion reduced the cuticular permeability and delayed the leaf water loss. The specific increase of C29 n-alkane might be the main reason for reducing leaf water loss in B. napus.
Brassica napus L; Cuticular wax; Salicylic acid; Methyl jasmonic acid; Ethylene
10.3724/SP.J.1006.2016.01827
本研究由中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)(XDJK2014B037), 重慶市基礎(chǔ)與前沿研究計(jì)劃項(xiàng)目(cstc2016jcyjA0170)和國(guó)家自然科學(xué)基金項(xiàng)目(31000122)資助。
This study was supported by the Fundamental Research Funds for the Central Universities (XDJK2014B037), the Chongqing Basic and Advanced Research Project (cstc2016jcyjA0170), and the National Natural Science Foundation of China (31000122).
*通訊作者(Corresponding author): 倪郁, E-mail: nmniyu@126.com
聯(lián)系方式: E-mail: 1099908163@qq.com
稿日期): 2016-03-29; Accepted(接受日期): 2016-07-11; Published online(
日期): 2016-08-01.
URL: http://www.cnki.net/kcms/detail/11.1809.S.20160801.1037.004.html