占長(zhǎng)林,萬(wàn)的軍,張家泉,韓永明,曹軍驥,劉先利
1. 湖北理工學(xué)院環(huán)境科學(xué)與工程學(xué)院//礦區(qū)環(huán)境污染控制與修復(fù)湖北省重點(diǎn)實(shí)驗(yàn)室,湖北 黃石 435003;2. 中國(guó)科學(xué)院地球環(huán)境研究所//黃土與第四紀(jì)地質(zhì)國(guó)家重點(diǎn)實(shí)驗(yàn)室,陜西 西安 710061;3. 中國(guó)地質(zhì)科學(xué)院水文地質(zhì)環(huán)境地質(zhì)研究所,河北 石家莊 050061;4. 西安交通大學(xué)全球環(huán)境變化研究院,陜西 西安 710049
環(huán)境中黑碳來(lái)源解析方法研究進(jìn)展
占長(zhǎng)林1,2*,萬(wàn)的軍3,張家泉1,韓永明2,4,曹軍驥2,4,劉先利1,2
1. 湖北理工學(xué)院環(huán)境科學(xué)與工程學(xué)院//礦區(qū)環(huán)境污染控制與修復(fù)湖北省重點(diǎn)實(shí)驗(yàn)室,湖北 黃石 435003;2. 中國(guó)科學(xué)院地球環(huán)境研究所//黃土與第四紀(jì)地質(zhì)國(guó)家重點(diǎn)實(shí)驗(yàn)室,陜西 西安 710061;3. 中國(guó)地質(zhì)科學(xué)院水文地質(zhì)環(huán)境地質(zhì)研究所,河北 石家莊 050061;4. 西安交通大學(xué)全球環(huán)境變化研究院,陜西 西安 710049
黑碳是燃料不完全燃燒過(guò)程中形成的一種特殊的非均質(zhì)碳顆粒物質(zhì),因其具有較高的化學(xué)和生物惰性,在全球氣候和環(huán)境系統(tǒng)中具有重要意義,是當(dāng)前國(guó)際地球和環(huán)境科學(xué)領(lǐng)域的焦點(diǎn)問(wèn)題。燃燒條件和燃料來(lái)源的不同,使得黑碳的物理化學(xué)特性表現(xiàn)出高度的變異,其環(huán)境行為及環(huán)境效應(yīng)也具有明顯差異,因此對(duì)黑碳進(jìn)行來(lái)源解析有利于弄清全球黑碳收支平衡,且能更清晰地認(rèn)識(shí)其在不同環(huán)境介質(zhì)中的遷移轉(zhuǎn)化過(guò)程。重點(diǎn)概述了當(dāng)前國(guó)內(nèi)外常用的幾種黑碳來(lái)源解析方法及其應(yīng)用的研究進(jìn)展;同時(shí)提出了未來(lái)黑碳來(lái)源解析方法的發(fā)展方向。穩(wěn)定碳和放射性碳同位素分析是當(dāng)前黑碳源解析中應(yīng)用最多的兩種方法,將這兩種方法結(jié)合不僅能提供更準(zhǔn)確的黑碳來(lái)源信息,而且能定量估算化石源和生物質(zhì)源燃燒對(duì)黑碳的貢獻(xiàn)。多環(huán)芳烴特征標(biāo)志物比值、黑碳/有機(jī)碳比值、苯多羧酸分子標(biāo)志物比值法以及形態(tài)特征分析的方法都只能間接地判斷黑碳的來(lái)源,其方法的應(yīng)用有一定的局限性和不確定性。未來(lái)應(yīng)加強(qiáng)對(duì)不同介質(zhì)中δ13C的分餾機(jī)制及不同排放源樣品黑碳的δ13C和14C值域“特征譜”的研究,進(jìn)一步規(guī)范黑碳的分離和測(cè)定技術(shù);同時(shí)應(yīng)充分發(fā)揮不同分析技術(shù)的優(yōu)勢(shì),聯(lián)合多種方法以獲取更多有關(guān)黑碳來(lái)源、傳輸和轉(zhuǎn)化過(guò)程的信息。
黑碳;來(lái)源解析;碳同位素;比值
黑碳(black carbon,BC)是生物質(zhì)和化石燃料等不完全燃燒(Goldberg,1985;Schmidt et al.,2000)或巖石風(fēng)化(Dickens et al.,2004)產(chǎn)生的含碳物質(zhì)連續(xù)統(tǒng)一體,包括部分炭化的生物質(zhì)、焦炭(char)、木炭(charcoal)、煙炱(soot)和石墨態(tài)黑碳(graphite BC)(Hedges et al.,2000;Masiello,2004)。由于其具有特殊的理化性質(zhì),在不同環(huán)境介質(zhì)中,黑碳的地球化學(xué)行為及環(huán)境效應(yīng)存在一定的差異。土壤環(huán)境中的黑碳可以改良土壤肥力(Atkinson et al.,2010;Laird et al.,2010;Liang et al.,2006),儲(chǔ)存大氣碳素,減緩溫室效應(yīng)(Gurwick et al.,2013;Lehmann,2007;Whitman et al.,2010),同時(shí)可對(duì)土壤中有機(jī)污染物及重金屬的遷移轉(zhuǎn)化產(chǎn)生重要影響(Gomez-Eyles et al.,2011;Lucchini et al.,2014;Yavari et al.,2015)。大氣中的黑碳能大量吸收太陽(yáng)輻射,引起增溫效應(yīng),同時(shí)對(duì)區(qū)域和全球氣候產(chǎn)生較大的影響(Bond et al.,2013;McConnell et al.,2007;Menon et al.,2002;Ramanathan et al.,2008)。冰雪中的黑碳能通過(guò)改變冰雪反照率而影響氣候(Hansen et al.,2004;Ming et al.,2009),進(jìn)而加速冰川消融(Xu et al.,2009)。沉積物中的黑碳可以用來(lái)重建地質(zhì)時(shí)期的火災(zāi)事件和植被演化歷史(Bird et al.,1998;Han et al.,2016a;Lehndorff et al.,2015b;Wang et al.,2013;Wang et al.,2005;Whitlock et al.,2006),也能反映人類活動(dòng)過(guò)程(Bisiaux et al.,2012;Han et al.,2015b;Han et al.,2016b)。黑碳是陸地土壤、海洋沉積物及水體有機(jī)碳(Organic carbon,OC)的重要組成,在全球碳的生物地球化學(xué)循環(huán)中也扮演著重要的角色,因此越來(lái)越受到科學(xué)界的廣泛關(guān)注。
近年來(lái),隨著工業(yè)化和城市化進(jìn)程的加快,來(lái)自工業(yè)、交通、農(nóng)業(yè)等領(lǐng)域的化石燃料燃燒、垃圾和秸稈焚燒等人為活動(dòng)已經(jīng)顯著地改變了全球碳循環(huán),最直接的表現(xiàn)是溫室氣體和黑碳顆粒物的大量排放(Kuhlbusch,1998)。因燃燒溫度不同,不同燃料燃燒生成的黑碳理化性質(zhì)也存在較大的差異,因此它們?cè)诃h(huán)境中的存留時(shí)間也不盡相同(Masiello,2004)202-203。例如,機(jī)動(dòng)車和化石燃料高溫燃燒排放的黑碳顆粒物進(jìn)入大氣中形成碳?xì)馊苣z,不僅影響大氣組成和大氣化學(xué)過(guò)程,還能影響云的形成和區(qū)域氣候(Bond et al.,20135384-5385;Ramanathan et al.,2008221-221),進(jìn)而影響農(nóng)作物的產(chǎn)量(Tie et al.,2016);而且這些黑碳粒子吸附著大量有毒有害物質(zhì),可通過(guò)呼吸作用進(jìn)入人體并可能長(zhǎng)期滯留,嚴(yán)重危害人體健康(Jansen et al.,2005)。而生物質(zhì)燃燒以后的黑碳?xì)埩粑镞M(jìn)入土壤中,成為重要的土壤改良劑,可以提升土壤肥力,減少養(yǎng)分流失,增加作物產(chǎn)量,修復(fù)受污染的土壤環(huán)境;還能減少土壤溫室氣體的排放,對(duì)全球氣候變化和熱輻射平衡具有積極的影響(Beesley et al.,2011;Lehmann et al.,2009;Singh et al.,2012;Sohi,2012)。這些不同來(lái)源黑碳在土壤有機(jī)碳庫(kù)中的比重會(huì)直接影響區(qū)域和全球碳的生物地球化學(xué)循環(huán),而且通過(guò)黑碳來(lái)源解析有利于厘清全球黑碳收支平衡以及更清晰地認(rèn)識(shí)其環(huán)境遷移轉(zhuǎn)化過(guò)程。因此,對(duì)不同來(lái)源黑碳的區(qū)分就顯得尤為重要。
考慮到黑碳的新鮮程度和運(yùn)輸方式,一旦黑碳進(jìn)入土壤,由于氧化過(guò)程和累積過(guò)程可能會(huì)影響黑碳來(lái)源解析的準(zhǔn)確性,因此通過(guò)某種單一方法進(jìn)行黑碳來(lái)源解析,結(jié)果不一定可靠。那么,如何實(shí)現(xiàn)定性和定量地解析黑碳的來(lái)源呢?本文將重點(diǎn)概述目前黑碳來(lái)源解析方法的研究進(jìn)展及應(yīng)用不同方法時(shí)可能存在的問(wèn)題,也指出了未來(lái)環(huán)境中黑碳來(lái)源解析方法的發(fā)展趨勢(shì)。
1.1 穩(wěn)定碳同位素分析
穩(wěn)定碳同位素組成可以用來(lái)追蹤BC來(lái)源的主要依據(jù)是C3和C4植物的δ13C值的變化范圍分別在-20‰~-32‰和-9‰~-17‰之間(Denies,1980)。不同來(lái)源BC的δ13C值存在一定差異(Bird et al.,2012;Kawashima et al.,2012;López-Veneroni,2009;陳穎軍等,2012)(見(jiàn)表1),因此利用δ13C化學(xué)指紋特征可以對(duì)不同來(lái)源的BC進(jìn)行解析。
Cao et al.(2011)對(duì)我國(guó)14個(gè)城市大氣PM2.5中BC和OC的δ13C進(jìn)行了分析,證實(shí)民用燃煤是北方城市冬季大氣中 BC的重要來(lái)源。José et al.(2015)通過(guò)對(duì)伊比利亞半島西南部Guadiana河表層沉積物中BC的δ13C進(jìn)行了分析,結(jié)果表明化石燃料及C3植物燃燒是BC的主要來(lái)源,而巖石風(fēng)化源BC可以忽略不計(jì)。陳衍婷等(2012)對(duì)廈門近海沉積物中BC的δ13C的分析結(jié)果顯示化石燃料燃燒的信息不太明顯,但是SEM觀察到的BC顆粒物形貌特征證實(shí)化石燃料燃燒對(duì)BC也有一定貢獻(xiàn)。研究表明,生物燃料和民用煤燃燒產(chǎn)生的煙塵中的δ13C對(duì)其原始燃料的δ13Cfuel有較好的繼承性,可以較好地區(qū)分其來(lái)源;而機(jī)動(dòng)車尾氣煙塵的δ13C值存在一定的區(qū)域性差異,而且受到機(jī)動(dòng)車功率的影響(陳穎軍等,2012)674-675。考慮到不同燃料類型及燃燒溫度對(duì)碳同位素分餾的影響(Bird et al.,1997;Das et al.,2010;Hall et al.,2008;Krull et al.,2003),在來(lái)源解析時(shí)一定要特別注意多方面因素的影響。例如,Bird et al.(1997)3417-3419研究發(fā)現(xiàn),植物燃料在500 ℃下熱解2 h以后,其δ13C值會(huì)進(jìn)一步貧化,偏負(fù)0‰~ 1.6‰。也有人指出,雖然δ13C方法可以用來(lái)區(qū)分BC的來(lái)源,但是它們之間并沒(méi)有直接的聯(lián)系,而且在大多數(shù)情況下,一定環(huán)境背景下的 δ13CBC值會(huì)使得 C4植物的貢獻(xiàn)被低估(Bird et al.,2015)。由于碳同位素分餾受到多種因素的影響,而且過(guò)程復(fù)雜,因此在一定程度上也限制了該方法在BC來(lái)源解析中的應(yīng)用。
表1 不同排放源樣品的δ13CBC值Table 1 δ13C values of BC in different emissions sources
1.2 放射性碳同位素分析
生物質(zhì)和化石燃料燃燒產(chǎn)生的BC在理化性質(zhì)及放射性碳特性上存在較大的差異,因此可以研究過(guò)去及現(xiàn)在的燃燒活動(dòng)、陸地火災(zāi)歷史及大氣顆粒物的源解析?;剂希?、石油、天然氣等)由于形成時(shí)間遠(yuǎn)大于14C的半衰期(5730年),因此化石燃料燃燒所排放的BC不存在14C(Reddy et al.,2002;曹芳等,2015)。而現(xiàn)代生物質(zhì)通過(guò)與大氣 CO2中的碳元素進(jìn)行交換,因此生物質(zhì)源燃燒排放BC中的14C與現(xiàn)代大氣中的14C含量非常接近(張世春等,2013)。因此,通過(guò)對(duì)環(huán)境介質(zhì)中BC的14C相對(duì)含量的測(cè)定可以進(jìn)一步區(qū)分BC的生物質(zhì)源和化石源。
目前,已經(jīng)有大量研究利用放射性14C解析大氣氣溶膠中元素碳(EC,也稱黑碳)的來(lái)源(Budhavant et al.,2015;Chen et al.,2013;Gustafsson et al.,2009;Zhang et al.,2014)。例如,Zhang et al.(2014)2655-2656通過(guò)對(duì)海南尖峰嶺大氣PM2.5持續(xù)1年的觀測(cè),碳?xì)馊苣z14C解析結(jié)果表明化石源對(duì)EC的平均貢獻(xiàn)率為(38%±11%)。Budhavant et al.(2015)4-5分別對(duì)馬爾代夫大氣觀測(cè)站(MCOH)和印度熱帶氣象研究所監(jiān)測(cè)站(SINH)黑碳?xì)馊苣z14C進(jìn)行分析,結(jié)果發(fā)現(xiàn)大氣污染嚴(yán)重的冬季,在MCOH和SINH站點(diǎn)生物質(zhì)燃燒對(duì)EC的貢獻(xiàn)率分別為(53%±5%)和(56%±3%);而在其他季節(jié),兩個(gè)不同站點(diǎn)生物質(zhì)燃燒對(duì) EC的貢獻(xiàn)率分別為(53%±11%)和(48%±8%)。Liu et al.(2013)結(jié)合左旋葡聚糖以及14C測(cè)定結(jié)果,報(bào)道了2009年7月—2010年3月期間寧波大氣PM2.5中化石燃料燃燒源對(duì)EC的貢獻(xiàn)率為78%。
一些研究也將14C技術(shù)用于雪冰(Jenk et al.,2006)、沉積物(Chang et al.,2008)和土壤(Lehndorff et al.,2015a)中BC的源解析。例如,Chang et al.(2008)利用加速器質(zhì)譜技術(shù)分析了韓國(guó) 3個(gè)巖溶洞中洞穴沉積物表面上BC的14C,結(jié)果顯示BC主要來(lái)源于化石燃料和生物質(zhì)燃燒,且兩者的貢獻(xiàn)基本相同。Lehndorff et al.(2015a)通過(guò)對(duì)德國(guó)哈雷市耕地土壤中分子標(biāo)志物BPCAs組分進(jìn)行14C分析,結(jié)果顯示化石燃料燃燒排放BC對(duì)土壤中全部BC及OC的貢獻(xiàn)分別為75%和15%。
還有一些研究將14C與13C同位素相結(jié)合對(duì)黑碳?xì)馊苣z進(jìn)行來(lái)源定量解析,該方法能提供更準(zhǔn)確和更完善的來(lái)源信息,并進(jìn)一步減小BC源解析的不確定性。Gustafsson et al.(2009)研究發(fā)現(xiàn),14C與13C雙同位素分析比單純用14C技術(shù)更能證明生物源(生物質(zhì)、生物燃料等)對(duì)元素碳排放的較大貢獻(xiàn),并且表明除其他C3植物及木材以外,C4植物(如玉米秸稈)也是BC的重要排放源。Winiger et al.(2015)采用14C與13C同位素法對(duì)挪威斯瓦爾巴得群島地區(qū)2009年1—3月期間14次大氣重污染事件進(jìn)行研究,結(jié)果顯示其中 12次污染事件生物質(zhì)對(duì)元素碳的平均貢獻(xiàn)為(52%±15%),其余2次污染事件生物質(zhì)燃燒對(duì)元素碳貢獻(xiàn)達(dá)到(57%±21%)。Ceburnis et al.(2011)采用14C與13C聯(lián)合分析方法研究了大西洋東北部海洋氣溶膠的來(lái)源貢獻(xiàn),發(fā)現(xiàn)海洋生物源氣溶膠對(duì)細(xì)顆粒物(D50<1.5 μm)的貢獻(xiàn)達(dá)到80%,剩余的碳?xì)馊苣z來(lái)源于陸地;從歐洲傳輸?shù)綎|北大西洋地區(qū)的污染大氣的來(lái)源包括海洋生物源(30%)、化石燃料燃燒源(40%)和陸地非化石燃料燃燒源(30%)。
要想將14C分析技術(shù)應(yīng)用于不同環(huán)境介質(zhì)中BC的來(lái)源解析,關(guān)鍵問(wèn)題是如何實(shí)現(xiàn)碳的分離及制樣。由于14C方法對(duì)樣品需求量大且測(cè)試費(fèi)用高,目前國(guó)內(nèi)對(duì)這一方面的研究還相對(duì)較少。
1.3 PAHs特征標(biāo)志物比值分析
燃料燃燒過(guò)程中會(huì)同時(shí)產(chǎn)生 BC與多環(huán)芳烴(PAHs),再加上BC對(duì)同源PAHs有很強(qiáng)的吸附性,因此PAHs來(lái)源解析的結(jié)果也可以用來(lái)分析BC的來(lái)源(Shrestha et al.,2010;汪青,2012),特別是高濃縮黑碳的來(lái)源分析(Han et al.,2015a)。Mitra et al.(2002)根據(jù)密西西比河懸浮泥沙中高分子量PAHs異構(gòu)體之間的比值(B[a]A/Chry、B[b]F/B[k]F、B[a]P/B[e]P)來(lái)估算進(jìn)入海洋的燃燒源BC的貢獻(xiàn),分析得出密西西比河排放的BC中約27%來(lái)自化石燃料(煤及冶煉)燃燒。Wang et al.(2014)根據(jù)幾種 PAHs異構(gòu)體比值(Fl/Py、B[a]A/Chry和InP/B[ghi]P)結(jié)合主成分分析法得知上海市土壤中的BC主要有兩大來(lái)源:生物質(zhì)和煤燃燒以及機(jī)動(dòng)車排放(油類燃燒及輪胎磨損)。表2所示是不同燃燒排放源中高分子量PAHs同分異構(gòu)體的比值。通過(guò)這些比值可以進(jìn)一步深入地研究與BC排放、沉積及氣候變化有關(guān)的燃燒事件及人為活動(dòng)對(duì)環(huán)境的影響(Han et al.,2016b)3-5。然而在實(shí)際應(yīng)用中,可能還得考慮到燃料產(chǎn)地、燃燒溫度、燃燒設(shè)備、燃燒效率等差異對(duì)PAHs同分異構(gòu)體比值的影響。
表2 不同燃燒排放源中高分子量PAHs同分異構(gòu)體比值(Mitra et al., 20022300-2302;Muri et al.,2002;Wang et al.,201441-42)Table 2 High molecular weight polycyclic aromatic hydrocarbons isomer ratios in different combustion sources
1.4 黑碳/有機(jī)碳比值
BC是有機(jī)碳的重要組成部分,因此有學(xué)者認(rèn)為BC/OC比值可以反映人為活動(dòng)的影響及污染程度(Gustafsson et al.,1998;Muri et al.,20021230-1231;Novakov et al.,2000)。根據(jù)大氣氣溶膠研究結(jié)果,如果BC/OC比值為0.11±0.03,說(shuō)明黑碳主要來(lái)源于生物質(zhì)燃燒;如果為0.5±0.05,則說(shuō)明黑碳主要來(lái)源于化石燃料燃燒(Novakov et al.,2000)4062-4064。何躍等(2006,2007)將上述 BC/OC比值應(yīng)用于南京城區(qū)土壤中黑碳的來(lái)源分析。隨后,又有一些學(xué)者通過(guò)BC/OC比值對(duì)諸如北京(Liu et al.,2011)、上海(Wang et al.,2014;徐福銀等,2014)等城市,杉木林(尹云鋒等,2009)土壤中黑碳的來(lái)源進(jìn)行了分析。這些結(jié)果顯示BC/OC比值可以在一定程度上判斷黑碳的主要來(lái)源。然而,Schmidt et al.(1999)研究發(fā)現(xiàn),德國(guó)黑鈣土中BC/OC比值高達(dá)0.45以上,如此高含量的黑碳被認(rèn)為主要來(lái)源于天然火,而并非來(lái)源于化石燃料的燃燒。BC碳同位素分析結(jié)果也證實(shí)了上述結(jié)論(Schmidt et al.,2002)。由此可見(jiàn),通過(guò)BC/OC比值法得到的關(guān)于土壤黑碳來(lái)源的結(jié)論并不一定可靠。因?yàn)锽C/OC比值的大小與燃料種類和燃燒條件等因素有關(guān),而且OC在自然環(huán)境中還要經(jīng)歷化學(xué)及生物反應(yīng),這使得該方法的應(yīng)用有一定局限性。因此,在實(shí)際應(yīng)用中最好能結(jié)合其它源解析方法進(jìn)行綜合對(duì)比分析。
1.5 焦炭/煙炱比值
2007年,Han et al.(2007)通過(guò)多種不同標(biāo)準(zhǔn)樣品的對(duì)比實(shí)驗(yàn)研究,首次提出熱光反射法可以將BC中的焦炭和煙炱信號(hào)進(jìn)行分離,并對(duì)兩種不同類型的BC進(jìn)行測(cè)量。該方法的提出也為研究BC化學(xué)特征和行為提供了新的視角和思路。有關(guān)焦碳與煙炱區(qū)分方法也被成功應(yīng)用于湖泊沉積物(Cong et al.,2013;Han et al.,2012;Han et al.,2016a;Han et al.,2015b;Han et al.,2016b;Han et al., 2011)、土壤(Zhan et al.,2015)、降塵(Han et al.,2009a;Zhan et al.,2016)和現(xiàn)代氣溶膠(Han et al.,2010;Han et al.,2008;Han et al.,2009b;Kim et al.,2011;Lim et al.,2012)研究中。
由于焦炭與煙炱的生成溫度不同,因此不同燃料在不同燃燒溫度下所產(chǎn)生的char/soot比值存在較大差異。根據(jù)前人的研究,生物質(zhì)燃燒的char/soot比值較高,煤燃燒排放居中,而機(jī)動(dòng)車排放較?。–hen et al.,2007;Chow et al.,2004)。Chow et al.(2004)的研究結(jié)果顯示生物質(zhì)燃燒的 char/soot比值為22.6,明顯大于機(jī)動(dòng)車排放(0.60)。而Cao et al.(2005)在西安地區(qū)的研究發(fā)現(xiàn),char/soot比值為1.9指示煤燃燒,比值為11.6指示生物質(zhì)燃燒。Han et al.(2009a)研究發(fā)現(xiàn),西安市道路塵中char/soot比值為1.66,認(rèn)為BC主要來(lái)源于煤和機(jī)動(dòng)車排放;而較高的char/soot比值(大于2.6)則主要與郊區(qū)農(nóng)田的露天燃燒和居民薪柴燃燒有關(guān)。需要特別注意的是,任何環(huán)境介質(zhì)中化石燃料和生物質(zhì)燃燒排放的char/soot比值是混合在一起的,它們之間并沒(méi)有明顯的界限(Han et al.,2010),這也給BC的來(lái)源解析帶來(lái)一定困難和不確定性。因此,如果要對(duì)BC的來(lái)源進(jìn)行更準(zhǔn)確地區(qū)分,就要借助其他的一些更先進(jìn)的測(cè)試分析手段,例如放射性碳同位素(14C)分析,來(lái)獲取有關(guān)BC來(lái)源的更準(zhǔn)確的信息。
1.6 形態(tài)特征分析
圖1 焦炭(木炭)(Brodowski et al.,2005a)與煙炱(Buseck et al.,2012)的SEM外觀形貌特征Fig. 1 SEM images of char (charcoal) and soot
化石燃料和生物質(zhì)不完全燃燒過(guò)程中,因燃燒溫度不同,產(chǎn)生BC的類型也存在較大的差異。主要包括兩種類型:燃燒殘留物——焦炭/木炭(char或charcoal)和氣-粒轉(zhuǎn)化形成的濃縮態(tài)煙炱(soot)(Han et al.,2010)。焦炭/木炭主要為生物質(zhì)不完全燃燒的產(chǎn)物,保留原始燃料的結(jié)構(gòu)特征(如細(xì)胞和纖維結(jié)構(gòu))(Accardi-Dey,2003),一般呈不規(guī)則的形狀或長(zhǎng)條形,粒徑范圍較大,從幾微米到幾厘米(圖 1a)。而煙炱主要來(lái)源于化石燃料和生物質(zhì)燃燒,芳香程度較高(Masiello,2004)202-203,一般由大量碳質(zhì)小球(粒徑約15~50 nm)聚合而成,有很大的比表面積,形貌上多為團(tuán)簇狀、鏈狀或樹(shù)枝狀結(jié)構(gòu)(圖1b)。焦炭/木炭一般在土壤和沉積物中有較多發(fā)現(xiàn),因?yàn)檫@些顆粒粒徑相對(duì)較大,一般沉降在火源地附近(Whitlock et al.,2002),所以地質(zhì)記錄中常根據(jù)焦炭/木炭的外觀形貌來(lái)推測(cè)過(guò)去的火災(zāi)及植被演化歷史(Sümegi et al.,2001;Scott,2010;Thevenon et al.,2007)。而煙炱一般常見(jiàn)于大氣顆粒物中,因顆粒粒徑小,可以隨大氣環(huán)流進(jìn)行區(qū)域和全球傳輸。例如,Thevenon et al.(2007)2636-2639通過(guò)瑞士中部Lucerne湖泊沉積物中的木炭及飛灰記錄分別重建過(guò)去的火災(zāi)變化及化石燃料燃燒歷史。Wang et al.(2015)通過(guò)掃描電鏡及透射電鏡對(duì)不同燃燒源(機(jī)動(dòng)車尾氣、燃煤、生物質(zhì)燃燒)的BC進(jìn)行了區(qū)分,發(fā)現(xiàn)柴油車燃燒排放的BC顆粒呈球形,團(tuán)聚成長(zhǎng)鏈形,粒徑小于50 nm;汽油車排放BC顆粒的粒徑、形貌與柴油車相似,但聚合更加明顯;燃煤排放BC顆粒一般是多孔的,形狀不都是球形;生物質(zhì)燃燒排放BC顆粒呈塊狀或不規(guī)則形狀,而且保留植物纖維的結(jié)構(gòu)(多孔狀或管狀)。
這種方法的缺陷在于微觀形態(tài)下觀察時(shí),十分容易將顆粒小的絲炭(fusain)誤認(rèn)為是焦炭/木炭(Scott,2000),這可能直接導(dǎo)致BC源解析的結(jié)果出現(xiàn)偏差。
1.7 苯多羧酸分子標(biāo)志物比值分析
研究發(fā)現(xiàn),BC經(jīng)硝酸高溫氧化后會(huì)形成一系列含不同數(shù)量羧酸基團(tuán)(-COOH)的苯多羧酸(benzene polycarboxylic acids,BPCAs)化合物(Brodowski et al.,2005b;Glaser et al.,1998;Hammes et al.,2008;Ziolkowski et al.,2010),一般焦炭形成的 BPCAs含有較少的羧酸基團(tuán)(平均值為4.5),而煙炱形成的BPCAs含有更多的幾乎完全替代的羧酸基團(tuán)(平均值為5.5)(Ziolkowski,2009)。Hammes et al.(2007)通過(guò)對(duì)比實(shí)驗(yàn)研究認(rèn)為苯多羧酸分子標(biāo)志物法是分析溶液中BC組分的最合適方法,而且該方法能夠識(shí)別和定量一些 BC標(biāo)志物,這些標(biāo)志物與BC的來(lái)源及形成條件可能存在密切聯(lián)系。Ziolkowski et al.(2009)215-217通過(guò)BPCAs方法分別對(duì)兩種單壁碳納米管、兩種富勒烯和兩種煙炱進(jìn)行了研究,結(jié)果發(fā)現(xiàn)經(jīng)過(guò)高壓和高溫氧化以后,這些物質(zhì)主要生成完全替換的苯六甲酸(B6CA),說(shuō)明這些化合物具有濃縮態(tài)特征。他們同時(shí)指出如果BC經(jīng)氧化后形成的BPCAs是以較少羧酸基團(tuán)的BPCAs(如B3CA、B4CA或B5CA)為主,那么BC來(lái)源物質(zhì)主要是低濃縮芳香環(huán)結(jié)構(gòu)。隨后,Ziolkowski et al.(2010)2-3將該方法應(yīng)用于河流和海洋水溶性有機(jī)碳(Dissolved organic carbon,DOC)中 BC的分析研究,他們發(fā)現(xiàn)Suwannee河水DOC中的BC主要氧化為B5CA和B6CA,而海水DOC中的BC則主要氧化為B3CA和B4CA,說(shuō)明陸源的BC比開(kāi)放式海洋中BC具有更高濃縮態(tài)的芳香環(huán)結(jié)構(gòu)。
需要注意的是,該方法測(cè)量的是高溫氧化過(guò)程中形成的非硝化BPCAs,沒(méi)有考慮到BC氧化產(chǎn)物中其實(shí)也包含了大量硝化的BPCAs,而且硝酸氧化并不能將BC完全轉(zhuǎn)化為BPCAs,因此測(cè)定分析過(guò)程中會(huì)導(dǎo)致一些偏差的產(chǎn)生。最新的研究指出,B3CA和B4CA并不只是來(lái)源于BC,當(dāng)土壤樣品中OC的含量超過(guò)5 mg時(shí),它們也可能來(lái)源于樣品處理過(guò)程中有機(jī)質(zhì)的氧化(Kappenberg et al.,2016)。由此可見(jiàn),使用BPCAs法進(jìn)行BC來(lái)源解析時(shí)需要特別小心。
黑碳作為地球環(huán)境系統(tǒng)中非常重要的一種物質(zhì),因其特殊的理化性質(zhì)所帶來(lái)的環(huán)境、氣候和健康效應(yīng)而成為全球性的熱點(diǎn)問(wèn)題。然而,由于黑碳來(lái)源具有多樣性,不同來(lái)源形成的黑碳理化性質(zhì)也存在較大差異,這將直接影響到黑碳在全球環(huán)境系統(tǒng)中的遷移、轉(zhuǎn)化和生物地球化學(xué)循環(huán)過(guò)程。要系統(tǒng)研究黑碳的環(huán)境行為,除了對(duì)不同環(huán)境介質(zhì)中的黑碳進(jìn)行定量分析來(lái)了解其儲(chǔ)量大小及降解轉(zhuǎn)化的速率以外,還要解析其來(lái)源并計(jì)算不同來(lái)源的貢獻(xiàn)。只有充分掌握黑碳在不同環(huán)境介質(zhì)中的來(lái)源信息,才能準(zhǔn)確地探求黑碳對(duì)全球氣候和環(huán)境的影響,才能為地方、區(qū)域或全球黑碳控制減排提供相應(yīng)的參考依據(jù)。
(1)目前,黑碳來(lái)源解析研究主要集中在大氣氣溶膠,而對(duì)于其它環(huán)境介質(zhì)(如沉積物、土壤、水體、雪冰等)中黑碳的來(lái)源解析研究還較為少見(jiàn)。放射性(14C)和穩(wěn)定性(δ13C)碳同位素技術(shù)被認(rèn)為是黑碳來(lái)源解析研究中最有效和最準(zhǔn)確的兩種方法,雖然它們的應(yīng)用仍局限在較小的范圍,但仍然是未來(lái)發(fā)展的主要方向。應(yīng)著力于研究不同介質(zhì)中δ13C的分餾機(jī)制及不同排放源樣品黑碳的δ13C和14C值域“特征譜”,以期提供更準(zhǔn)確和更完善的來(lái)源信息,并進(jìn)一步減小源解析的不確定性。
(2)雖然人們已經(jīng)建立多種不同的黑碳分離與測(cè)定方法,但是到目前為止,黑碳分離測(cè)定還沒(méi)有統(tǒng)一的標(biāo)準(zhǔn)方法。一些新的方法也需要進(jìn)一步的優(yōu)化、改進(jìn)、完善和評(píng)價(jià)。這給黑碳的來(lái)源解析,特別是估算黑碳的來(lái)源貢獻(xiàn)帶來(lái)較大的困難。因此,需通過(guò)加強(qiáng)國(guó)內(nèi)相關(guān)研究單位與國(guó)外實(shí)驗(yàn)室之間的對(duì)比實(shí)驗(yàn)與合作,盡快規(guī)范樣品黑碳分離和測(cè)定技術(shù)。
(3)在黑碳來(lái)源解析研究中,利用單一的某種方法可能難以獲得準(zhǔn)確的黑碳來(lái)源信息,一定要結(jié)合其他的一些分子標(biāo)志物的測(cè)定或源解析方法。多指標(biāo)聯(lián)合分析方法將有利于黑碳來(lái)源的準(zhǔn)確判斷,同時(shí)也可以從一定程度上對(duì)解析結(jié)果進(jìn)行檢驗(yàn)和印證。
ACCARDI-DEY A. 2003. Black carbon in marine sediments: quantification and implications for the sorption of polycyclic aromatic hydrocarbons [D]. Cambridge, Massachusetts: Massachusetts Institute of Technology. ATKINSON C J, FITZGERALD J D, HIPPS N A. 2010. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review [J]. Plant and Soil, 337(1-2): 1-18.
BEESLEY L, MORENO-JIMéNEZ E, GOMEZ-EYLES J L, et al. 2011. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils [J]. Environmental Pollution, 159(12): 3269-3282.
BIRD M I, ASCOUGH P L. 2012. Isotopes in pyrogenic carbon: a review [J]. Organic Geochemistry, 42(12): 1529-1539.
BIRD M I, CALI J A. 1998. A million-year record of fire in sub-Saharan Africa [J]. Nature, 394(6695): 767-769.
BIRD M I, GR?CKE D R. 1997. Determination of the abundance and carbon isotope composition of elemental carbon in sediments [J]. Geochimica et Cosmochimica Acta, 61(16): 3413-3423.
BIRD M I, WYNN J G, SAIZ G, et al. 2015. The Pyrogenic Carbon Cycle [J]. Annual Review of Earth and Planetary Sciences, 43(1): 273-298.
BISIAUX M, EDWARDS R, MCCONNELL J, et al. 2012. Variability of black carbon deposition to the East Antarctic Plateau, 1800—2000 AD [J]. Atmospheric Chemistry and Physics, 12(8): 3799-3808.
BOND TC, DOHERTY S J, FAHEY D, et al. 2013. Bounding the role of black carbon in the climate system: A scientific assessment [J]. Journal of Geophysical Research: Atmospheres, 118(11): 5380-5552.
BRODOWSKI S, AMELUNG W, HAUMAIER L, et al. 2005a. Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning electron microscopy and energy-dispersive X-ray spectroscopy [J]. Geoderma, 128(1-2): 116-129.
BRODOWSKI S, RODIONOV A, HAUMAIER L, et al. 2005b. Revised black carbon assessment using benzene polycarboxylic acids [J]. Organic Geochemistry, 36 (9): 1299-1310.
BUDHAVANT K, ANDERSSON A, BOSCH C, et al. 2015. Radiocarbon-based source apportionment of elemental carbon aerosols at two South Asian receptor observatories over a full annual cycle [J]. Environmental Research Letters, 10(6): 064004.
BUSECK P, ADACHI K, GELENCSéR A, et al. 2012. Are black carbon and soot the same? [J]. Atmospheric Chemistry and Physics Discussions, 12(9): 24821-24846.
CAO J J, CHOW J C, LEE S C, et al. 2005. Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi'an, China [J]. Atmospheric Chemistry and Physics, 5(3): 3127-3137.
CAO J J, CHOW J C, TAO J, et al. 2011. Stable carbon isotopes in aerosols from Chinese cities: Influence of fossil fuels [J]. Atmospheric Environment, 45(6): 1359-1363.
CEBURNIS D, GARBARAS A, SZIDAT S, et al. 2011. Quantification of the carbonaceous matter origin in submicron marine aerosol by13C and14C isotope analysis [J]. Atmospheric Chemistry and Physics, 11(16): 8593-8606.
CHANG S, JEONG G, KIM S. 2008. The origin of black carbon on speleothems in tourist caves in South Korea: chemical characterization and source discrimination by radiocarbon measurement [J]. Atmospheric Environment, 42(8): 1790-1800.
CHEN B, ANDERSSON A, LEE M, et al. 2013. Source forensics of black carbon aerosols from China [J]. Environmental Science & Technology, 47(16): 9102-9108.
CHEN L-W A, MOOSMüLLER H, ARNOTT W P, et al. 2007. Emissions from laboratory combustion of wildland fuels: Emission factors and source profiles [J]. Environmental Science & Technology, 41(12): 4317-4325.
CHOW J C, WATSON J G, KUHNS H, et al. 2004. Source profiles for industrial, mobile, and area sources in the Big Bend Regional Aerosol Visibility and Observational study [J]. Chemosphere, 54(2): 185-208.
CONG Z Y, KANG S C, GAO S P, et al. 2013. Historical trends of atmospheric black carbon on Tibetan Plateau as reconstructed from a 150-year lake sediment record [J]. Environmental Science & Technology, 47(6): 2579-2586.
DAS O, WANG Y, HSIEH Y P. 2010. Chemical and carbon isotopic characteristics of ash and smoke derived from burning of C3and C4grasses [J]. Organic Geochemistry, 41(3): 263-269.
DENIES P. 1980. The isotopic composition of reduce organic carbon[M] //FRITZ P, FONTES J C. Handbook of envi-ronmental isotopic geochemistry. The Terrestrial Environment, vol. 1. Amsterdam: Elsevier: 329-406.
DICKENS A F, GELINAS Y, MASIELLO C A, et al. 2004. Reburial of fossil organic carbon in marine sediments [J]. Nature, 427: 336-339.
GLASER B, HAUMAIER L, GUGGENBERGER G, et al. 1998. Black carbon in soils: the use of benzenecarboxylic acids as specific markers [J]. Organic Geochemistry, 29(4): 811-819.
GOLDBERG E D. 1985. Black carbon in the environment [M]. New York: John Wiley and Sons.
GOMEZ-EYLES J L, SIZMUR T, COLLINS C D, et al. 2011. Effects of biochar and the earthworm Eisenia fetida on the bioavailability of polycyclic aromatic hydrocarbons and potentially toxic elements [J]. Environmental Pollution, 159(2): 616-622.
GURWICK N P, MOORE L A, KELLY C, et al. 2013. A systematic review of biochar research, with a focus on its stability in situ and its promise as a climate mitigation strategy [J]. Plos One, 8(9): e75932.
GUSTAFSSON ?, GSCHWEND P. 1998. The flux of black carbon to surface sediments on the New England continental shelf [J]. Geochimica et Cosmochimica Acta, 62(3): 465-472.
GUSTAFSSON ?, KRUSA M, ZENCAK Z, et al. 2009. Brown clouds over South Asia: biomass or fossil fuel combustion? [J]. Science, 323(5913): 495-498.
HALL G, WOODBORNE S, SCHOLES M. 2008. Stable carbon isotope ratios from archaeological charcoal as palaeoenvironmental indicators [J]. Chemical Geology, 247(3-4): 384-400.
HAMMES K, SCHMIDT M W I, SMERNIK R J, et al. 2007. Comparison of quantification methods to measure fire-derived (black/elemental) carbon in soils and sediments using reference materials from soil, water,sediment and the atmosphere [J]. Global Biogeochemical Cycles, DOI: 3010.1029/2006GB002914.
HAMMES K, TORN M S, LAPENAS A G, et al. 2008. Centennial black carbon turnover observed in a Russian steppe soil [J]. Biogeosciences, 5(5): 1339-1350.
HAN Y M, BANDOWE B, WEI C, et al. 2015a. Stronger association of polycyclic aromatic hydrocarbons with soot than with char in soils and sediments [J]. Chemosphere, 119: 1335-1345.
HAN Y M, CAO J J, CHOW J C, et al. 2007. Evaluation of the thermal/optical reflectance method for discrimination between char-and soot-EC [J]. Chemosphere, 69(4): 569-574.
HAN Y M, CAO J J, CHOW J C, et al. 2009a. Elemental carbon in urban soils and road dusts in Xi'an, China and its implication for air pollution [J]. Atmospheric Environment, 43(15): 2464-2470.
HAN Y M, CAO J J, LEE S C, et al. 2010. Different characteristics of char and soot in the atmosphere and their ratio as an indicator for source identification in Xi'an, China [J]. Atmospheric Chemistry and Physics, 10(2): 595-607.
HAN Y M, CAO J J, YAN B Z, et al. 2011. Comparison of elemental carbon in lake sediments measured by three different methods and 150-year pollution history in eastern China [J]. Environmental Science & Technology, 45(12): 5287-5293.
HAN Y M, HAN Z W, CAO J J, et al. 2008. Distribution and origin of carbonaceous aerosol over a rural high-mountain lake area, Northern China and its transport significance [J]. Atmospheric Environment, 42(10): 2405-2414.
HAN Y M, LEE S C, CAO J J, et al. 2009b. Spatial distribution and seasonal variation of char-EC and soot-EC in the atmosphere over China [J]. Atmospheric Environment, 43(38): 6066-6073.
HAN Y M, MARLON J, CAO J J, et al. 2012. Holocene linkages between char, soot, biomass burning and climate from lake Daihai, China [J]. Global Biogeochemical Cycles, DOI: 4010.1029/2011GB004197.
HAN Y M, PETEET D, ARIMOTO R, et al. 2016a. Climate and fuel controls on North American Paleofires: smoldering to flaming in the Late-glacial-Holocene transition [J]. Scientific Reports, DOI: 20710.21038/srep20719.
HAN Y M, WEI C, BANDOWE B A, et al. 2015b. Elemental carbon and polycyclic aromatic compounds in a 150-yr sediment core from lake Qinghai, Tibetan plateau, China: influence of regional and local sources and transport pathways [J]. Environmental Science & Technology, 49(7): 4176-4183.
HAN Y M, WEI C, HUANG R J, et al. 2016b. Reconstruction of atmospheric soot history in inland regions from lake sediments over the past 150 years [J]. Scientific Reports, DOI: 19110.11038/srep19151.
HANSEN J, NAZARENKO L. 2004. Soot climate forcing via snow and ice albedos [J]. Proceedings of the National Academy of Sciences, 101(2): 423-428.
HEDGES J I, EGLINTON G, HATCHER P G, et al. 2000. The molecularly-uncharacterized component of nonliving organic matter in natural environments [J]. Organic Geochemistry, 31(10): 945-958.
JANSEN K L, LARSON T V, KOEING J Q, et al. 2005. Associations between health effects and particulate matter and black carbon in subjects with respiratory disease [J]. Environmental Health Perspectives, 113(1): 1741-1746.
JENK T M, SZIDAT S, SCHWIKOWSKI M, et al. 2006. Radiocarbon analysis in an Alpine ice core: record of anthropogenic and biogenic contributions to carbonaceous aerosols in the past (1650—1940) [J]. Atmospheric Chemistry and Physics, 6(12): 5381-5390.
JOSé M, MARTINS J M, SOARES A M, et al. 2015. Assessment of distribution and sources of pyrogenic carbon in the lower course of the Guadiana River (SW Iberian Peninsula) [J]. Journal of Soils and Sediments, 15(4): 759-768.
KAPPENBERG A, BL?SING M, LEHNDORFFff E, et al. 2016. Black carbon assessment using benzene polycarboxylic acids: Limitations for organic-rich matrices [J]. Organic Geochemistry, 94: 47-51.
KAWASHIMA H, HANEISHI Y. 2012. Effects of combustion emissions from the Eurasian continent in winter on seasonal δ13C of elemental carbon in aerosols in Japan [J]. Atmospheric Environment, 46: 568-579.
KIM K H, SEKIGUCHI K, KUDO S, et al. 2011. Characteristics of atmospheric elemental carbon (char and soot) in ultrafine and fine particles in a roadside environment, Japan [J]. Aerosol and Air Quality Resarch, 11: 1-12.
KRULL E S, SKJEMSTAD J O, GRAETZ D, et al. 2003.13C-depleted charcoal from C4grasses and the role of occluded carbon in phytoliths [J]. Organic Geochemistry, 34(9): 1337-1352.
KUHLBUSCH T A J. 1998. Black carbon and carbon cycle [J]. Science, 280(5371): 1903-1904.
LAIRD D A, FLEMING P, DAVIS D D, et al. 2010. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil [J]. Geoderma, 158(3-4): 443-449.
LEHMANN J, JOSEPH S. 2009. Biochar for environmental management: an introduction[M] //LEHMANN J, JOSEPH S. Biochar for environmental management science and technology. London: Earthscan: 1-12.
LEHMANN J. 2007. Bio-energy in the black [J]. Frontiers in Ecology and the Environment, 5(7): 381-387.
LEHNDORFF E, BRODOWSKI S, SCHMIDT L, et al. 2015a. Industrial carbon input to arable soil since 1958 [J]. Organic Geochemistry, 80: 46-52.
LEHNDORFF E, WOLF M, LITT T, et al. 2015b. 15000 years of black carbon deposition-a post-glacial fire record from maar lake sediments (Germany) [J]. Quaternary Science Reviews, 110: 15-22.
LIANG B, LEHMANN J, SOLOMON D, et al. 2006. Black carbon increases cation exchange capacity in soils [J]. Soil Science Society of America Journal, 70(5): 1719-1730.
LIM S, LEE M, LEE G, et al. 2011. Ionic and carbonaceous compositions of PM10, PM2.5and PM1.0at Gosan ABC Superstation and their ratios as source signature [J]. Atmospheric Chemistry and Physics, 11(7): 20521-20573.
LIU D, LI J, ZHANG Y L, et al. 2013. The use of levoglucosan and radiocarbon for source apportionment of PM2.5carbonaceous aerosols at a background site in East China [J]. Environmental Science & Technology, 47(18): 10454-10461.
LIU S D, XIA X H, ZHAI Y W, et al. 2011. Black carbon (BC) in urban and surrounding rural soils of Beijing, China: Spatial distribution and relationship with polycyclic aromatic hydrocarbons (PAHs) [J]. Chemosphere, 82(2): 223-228.
LóPEZ-VENERONI D. 2009. The stable carbon isotope composition of PM2.5and PM10in Mexico City Metropolitan Area air [J]. Atmospheric Environment, 43(29): 4491-4502.
LUCCHINI P, QUILLIAM R, DELUCA T H, et al. 2014. Does biochar application alter heavy metal dynamics in agricultural soil? [J]. Agriculture, Ecosystems & Environment, 184: 149-157.
MASIELLO C A. 2004. New directions in black carbon organicgeochemistry [J]. Marine Chemistry, 92(1-4): 201-213.
MCCONNELL J, EDWARDS R, KOK G, et al. 2007. 20th-century industrial black carbon emissions altered arctic climate forcing [J]. Science, 317(5843): 1381-1384.
MENON S, HANSEN J, NAZARENKO L, et al. 2002. Climate effects of black carbon aerosols in China and India [J]. Science, 297(5590): 2250-2253.
MING J, XIAO C D, CACHIER H, et al. 2009. Black Carbon (BC) in the snow of glaciers in west China and its potential effects on albedos[J]. Atmospheric Research, 92(1): 114-123.
MITRA S, BIANCHI T, MCKEE B, et al. 2002. Black carbon from the Mississippi river: Quantities, sources, and potential implications for the global carbon cycle [J]. Environmental Science & Technology, 36(11): 2296-2302.
MURI G, CERMELJ B, FAGANELI J, et al. 2002. Black carbon in Slovenian alpine lacustrine sediments [J]. Chemosphere, 46(8): 1225-1234.
NOVAKOV T, ANDREAE M, GABRIEL R, et al. 2000. Origin of carbonaceous aerosols over the tropical Indian ocean: biomass burning or fossil fuels? [J]. Geophysical Research Letters, 27(24): 4061-4064.
RAMANATHAN V, CARMICHAEL G. 2008. Global and regional climate changes due to black carbon [J]. Nature Geoscience, 1(4): 221-227.
REDDY C M, PEARSON A, XU L, et al. 2002. Radiocarbon as a tool to apportion the sources of polycyclic aromatic hydrocarbons and black carbon in environmental samples [J]. Environmental Science & Technology, 36(8): 1774-1782.
SCHMIDT M W I, NOACK A G. 2000. Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges [J]. Global Biogeochemical Cycles, 14 (3): 777-793.
SCHMIDT M W I, SKJEMSTAD J O, GEHRT E, et al. 1999. Charred organic carbon in German chernozemic soils [J]. European Journal of Soil Science, 50(2): 351-365.
SCHMIDT M W I, SKJEMSTAD J O, J?GER C. 2002. Carbon isotope geochemistry and nanomorphology of soil black carbon: Black chernozemic soils in central Europe originate from ancient biomass burning [J]. Global Biogeochemical Cycles, DOI: 10.1029/2002GB001939, 2002.
SCOTT A C. 2000. The Pre-Quaternary history of fire [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 164(1-4): 281-329.
SCOTT A C. 2010. Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 291(1-2): 11-39.
SHRESTHA G, TRAINA S J, SWANSTON C W. 2010. Black carbon’s properties and role in the environment: a comprehensive review [J]. Sustainability, 2(1): 294-320.
SINGH B P, COWIE A L, SMERNIK R J. 2012. Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature [J]. Environmental science & technology, 46(21): 11770-11778.
SOHI S P. 2012. Carbon storage with benefits [J]. Science, 338(6110): 1034-1035
SüMEGI P, RUDNER Z E. 2001. In situ charcoal fragments as remains of natural wild fires in the upper Würm of the Carpathian basin [J]. Quaternary International, 76-77: 165-176.
THEVENON F, ANSELMETTI F S. 2007. Charcoal and fly-ash particles from Lake lucerne sediments (Central Switzerland) characterized by image analysis: anthropologic, stratigraphic and environmental implications [J]. Quaternary Science Reviews, 26(19-21): 2631-2643.
TIE X X, HUANG R J, DAI W, et al. 2016. Effect of heavy haze and aerosol pollution on rice and wheat productions in China [J]. Scientific Reports, DOI: 10.1038/srep29612.
WANG H L, NIE L, LIU D, et al. 2015. Physico-chemical characterization and source tracking of black carbon at a suburban site in Beijing [J]. Journal of Environmental Sciences, 33: 188-194.
WANG Q, LIU M, YU Y P, et al. 2014. Black carbon in soils from different land use areas of Shanghai, China: level, sources and relationship with polycyclic aromatic hydrocarbons [J]. Applied Geochemistry, 47: 36-43.
WANG X, CUI L L, XIAO J L, et al. 2013. Stable carbon isotope of black carbon in lake sediments as an indicator of terrestrial environmental changes: An evaluation on paleorecord from Daihai lake, Inner Mongolia, China [J]. Chemical Geology, 347: 123-134.
WANG X, PENG P A, DING Z L. 2005. Black carbon records in Chinese Loess Plateau over the last two glacial cycles and implications for paleofires [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 223(1-2): 9-19.
WHITLOCK C, BIANCHI M M, BARTLEIN P J, et al. 2006. Postglacial vegetation, climate, and fire history along the east side of the Andes (lat 41-42.5°S), Argentina [J]. Quaternary Research, 66(2): 187-201.
WHITLOCK C, LARSEN C. 2002. Charcoal as a fire proxy [J]. Developments in Paleoenvironmental Research, 3: 75-97.
WHITMAN T, SCHOLZ S M, LEHMANN J. 2010. Biochar projects for mitigating climate change: an investigation of critical methodology issues for carbon accounting [J]. Carbon Management, 1(1): 89-107.
WINIGER P, ANDERSSON A, YTTRI K E, et al. 2015. Isotope-based source apportionment of EC aerosol particles during winter high-pollution events at the Zeppelin Observatory, Svalbard [J]. Environmental Science & Technology, 49(19): 11959-11966.
XU B Q, CAO J J, HANSEN J, et al. 2009. Black soot and the survival of Tibetan glaciers [J]. Proceedings of the National Academy of Sciences, 106(52): 22114-22118.
YAVARI S, MALAKAHMAD A, SAPARI N B. 2015. Biochar efficiency in pesticides sorption as a function of production variables-a review [J]. Environmental Science and Pollution Research, 22(18): 13824-13841.
ZHAN C L, CAO J J, HAN Y M, et al. 2015. Spatial patterns, storages and sources of black carbon in soils from the catchment of Qinghai Lake, China [J]. European Journal of Soil Science, 66(3): 525-534.
ZHAN C L, ZHANG J Q, CAO J J, et al. 2016. Characteristics and sources of black carbon in atmospheric dustfall particles from Huangshi, China [J]. Aerosol and Air Quality Research, DOI: 10.4209/aaqr.2015.09.0562.
ZHANG Y L, LI J, ZHANG G, et al. 2014. Radiocarbon-based source apportionment of carbonaceous aerosols at a regional background site on Hainan island, South China [J]. Environmental Science & Technology, 48(5): 2651-2659.
ZIOLKOWSKI L A, DRUFFEL E R. 2009. The feasibility of isolation and detection of fullerenes and carbon nanotubes using the benzene polycarboxylic acid method [J]. Marine Pollution Bulletin, 59(4): 213-218.
ZIOLKOWSKI L A, DRUFFEL E R. 2010. Aged black carbon identified in marine dissolved organic carbon [J]. Geophysical Research Letters, DOI: 10.1029/2010GL043963.
ZIOLKOWSKI L A. 2009. Radiocarbon of black carbon in marine dissolved organic carbon [D]. Irvine: University of California.
曹芳, 章炎麟. 2015. 碳質(zhì)氣溶膠的放射性碳同位素 (14C) 源解析: 原理, 方法和研究進(jìn)展[J]. 地球科學(xué)進(jìn)展, 30(4): 425-432.
陳衍婷, 趙金平, 尹麗倩, 等. 2012. 廈門近海沉積物中高分子有機(jī)質(zhì)的來(lái)源初探[J]. 生態(tài)環(huán)境學(xué)報(bào), 21(3): 509-514.
陳穎軍, 蔡偉偉, 黃國(guó)培, 等. 2012. 典型排放源黑碳的穩(wěn)定碳同位素組成研究[J]. 環(huán)境科學(xué), 33(3): 673-678.
何躍, 張甘霖, 楊金玲, 等. 2007. 城市化過(guò)程中黑碳的土壤記錄及其環(huán)境指示意義[J]. 環(huán)境科學(xué), 28(10): 2369-2375.
何躍, 張甘霖. 2006. 城市土壤有機(jī)碳和黑碳的含量特征與來(lái)源分析[J].土壤學(xué)報(bào), 43(2): 177-182.
汪青. 2012. 土壤和沉積物中黑碳的環(huán)境行為及效應(yīng)研究進(jìn)展[J]. 生態(tài)學(xué)報(bào), 32(1): 293-310.
徐福銀, 包兵, 方海蘭. 2014. 上海市城市綠地土壤中黑碳分布特征[J].土壤通報(bào), 45(2): 457-461.
尹云鋒, 楊玉盛, 高人, 等. 2009. 皆伐火燒對(duì)杉木人工林土壤有機(jī)碳和黑碳的影響[J]. 土壤學(xué)報(bào), 46(2): 352-355.
張世春, 王毅勇, 童全松. 2013. 碳同位素技術(shù)在碳質(zhì)氣溶膠源解析中應(yīng)用的研究進(jìn)展[J]. 地球科學(xué)進(jìn)展, 28(1): 62-70.
Source Apportionment of Black Carbon in the Environment: A Review of Methods
ZHAN Changlin1,2, WAN Dejun3, ZHANG Jiaquan1, HAN Yongming2,4, CAO Junji2,4, LIU Xianli1
1. School of Environmental Science and Engineering, Hubei Polytechnic University//Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Huangshi 435003, China; 2. Key Lab of Aerosol Chemistry & Physics//Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; 3. Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China; 4. Institute of Global Environmental Change, Xi’an Jiaotong University, Xi'an 710049, China
Black carbon (BC) is produced by the incomplete combustion of fossil fuel and biomass, formed a special kind of inhomogeneous carbonaceous particulate matter. BC is highly recalcitrant and persists in the environment for millennia. It is of great significance in the global climate change and environment system, and become the focus of current international earth and environmental sciences. Due to the different combustion condition and the fuel source, the physical and chemical properties of the BC component are complex and highly variable, and the environmental behaviors and effects are also obviously different. Therefore, the source apportionment of BC is very important. It is more conducive to find out the global carbon balance and better know the migration and transformation progress in different environmental media. This paper mainly summarizes the current knowledge of the source apportionment methods of BC as well as the research progress of its application. Finally we put forward the future development direction of methods for BC source apportionment. Stable carbon and radiocarbon isotope analysis are the two mostly used methods in the source apportionment of BC, and the combination of them can not only provide more accurate information of BC source, and can quantitatively estimate the contribution of biomass burning and fossil fuel to BC. The methods of biomarkers ratios of polycyclic aromatic hydrocarbons (PAHs), the ratio of BC to organic carbon (OC), molecular marker ratios of benzene polycarboxylic acids (BPCAs), and morphological analysis can only indirectly determine the BC sources, and the application has limitations and uncertainties. There is a need for further strengthen the study of fractionation mechanism of δ13C in different media and the domain features of δ13C and14C for BC in different samples of emission source, and standardize protocols within individual methods for BC analysis. Moreover, there is an ongoing need to give full play to the advantages of different analytical technologies, combined a variety of methods will provide more information about sources, translocation and transformation progresses of BC.
black carbon; source apportionment; carbon isotope; ratio
10.16258/j.cnki.1674-5906.2016.09.023
X13; P532
A
1674-5906(2016)09-1575-09
占長(zhǎng)林, 萬(wàn)的軍, 張家泉, 韓永明, 曹軍驥, 劉先利. 2016. 環(huán)境中黑碳來(lái)源解析方法研究進(jìn)展[J]. 生態(tài)環(huán)境學(xué)報(bào), 25(9): 1575-1583.
ZHAN Changlin, WAN Dejun, ZHANG Jiaquan, HAN Yongming, CAO Junji, LIU Xianli. 2016. Source apportionment of black carbon in the environment: a review of methods [J]. Ecology and Environmental Sciences, 25(9): 1575-1583.
國(guó)家自然科學(xué)基金項(xiàng)目(41603117);湖北理工學(xué)院引進(jìn)人才項(xiàng)目(16xjz02R)
占長(zhǎng)林(1983年生),男,講師,博士,研究方向?yàn)榄h(huán)境地球化學(xué)。E-mail: zhancl@ieecas.cn *通信作者
2016-08-02