王莉,陳曉明*,肖偉,張祥輝,羅學(xué)剛
(1.西南科技大學(xué)生命科學(xué)與工程學(xué)院,四川 綿陽(yáng) 621010;2.西南科技大學(xué)核廢物與環(huán)境安全國(guó)防重點(diǎn)實(shí)驗(yàn)室,四川 綿陽(yáng) 621010)
氧化亞鐵硫桿菌(Thiobacillusferrooxidans)對(duì)重金屬富集植物腐蝕作用研究
王莉1,2,陳曉明1,2*,肖偉1,2,張祥輝1,2,羅學(xué)剛1,2
(1.西南科技大學(xué)生命科學(xué)與工程學(xué)院,四川 綿陽(yáng) 621010;2.西南科技大學(xué)核廢物與環(huán)境安全國(guó)防重點(diǎn)實(shí)驗(yàn)室,四川 綿陽(yáng) 621010)
為了獲得重金屬富集植物生物法預(yù)處理的最佳工藝條件,實(shí)現(xiàn)其資源化利用,以黑麥草(Lolium perenne)為材料,探究氧化亞鐵硫桿菌(Thiobacillus ferrooxidans,T.f)在不同接種量和不同濃度底物添加劑(S0、Na2S2O3、FeSO4、FeS和Fe0)條件下對(duì)黑麥草的腐蝕作用,通過(guò)掃描電鏡進(jìn)一步觀察其對(duì)細(xì)胞壁的破壞情況。結(jié)果表明:氧化亞鐵硫桿菌對(duì)黑麥草具有較好的腐蝕作用,各接種量(5%~15%)之間差異較小,反應(yīng)第10 d,10%接種量處理組中黑麥草的纖維素降解率達(dá)40.97%,半纖維素降解率達(dá)77.49%,木質(zhì)素降解率達(dá)19.33%。投加底物添加劑后,氧化亞鐵硫桿菌對(duì)纖維素降解率有明顯提高。總體來(lái)看,添加14 g·L-1的S0對(duì)黑麥草的降解效果較好,纖維素、半纖維素及木質(zhì)素的降解率分別達(dá)到81.31%、82.29%、26.02%,此條件下鈾、鉻、鎘的浸出效率均較高。在氧化亞鐵硫桿菌及底物添加劑的作用下,除FeS、Fe0處理組外,其他各處理組的pH值均呈下降趨勢(shì),反應(yīng)10 d后,pH值最低降至1.0左右,pH值的降低能有效提高半纖維素降解率,但與纖維素及木質(zhì)素的降解率無(wú)明顯關(guān)系。掃描電鏡結(jié)果表明氧化亞鐵硫桿菌對(duì)黑麥草細(xì)胞壁有較強(qiáng)的破壞作用。氧化亞鐵硫桿菌對(duì)黑麥草具有很好的腐蝕效果,并且能充分利用底物添加劑提高黑麥草中纖維素降解率。后期需進(jìn)一步考慮提高氧化亞鐵硫桿菌對(duì)木質(zhì)素的降解效率及黑麥草中重金屬的回收率。
黑麥草;氧化亞鐵硫桿菌;腐蝕作用;纖維素;半纖維素;木質(zhì)素
隨著經(jīng)濟(jì)的發(fā)展,重金屬污染日趨嚴(yán)重。植物修復(fù)技術(shù)以其成本低廉、對(duì)環(huán)境干擾小等優(yōu)點(diǎn)成為當(dāng)前環(huán)境科學(xué)和污染生態(tài)學(xué)等領(lǐng)域的研究熱點(diǎn)[1-7]。但是,該技術(shù)在處理環(huán)境問(wèn)題的同時(shí)會(huì)產(chǎn)生大量的重金屬富集生物質(zhì),一旦處理不當(dāng),重金屬很可能重新釋放到環(huán)境中造成“二次污染”[1]。目前對(duì)重金屬富集生物質(zhì)的資源化利用仍存在高成本和低效率等問(wèn)題,其中原料預(yù)處理技術(shù)的不成熟成為了限制其資源化利用的瓶頸之一。
生物質(zhì)預(yù)處理方法可以大體上分為物理法、物理-化學(xué)法、化學(xué)法和生物法4大類(lèi)[8-10]。前三類(lèi)中應(yīng)用較多的包括酸堿預(yù)處理技術(shù)、離子液體預(yù)處理技術(shù)、臭氧預(yù)處理技術(shù)等[11-14],雖然能夠脫除生物質(zhì)中大量的纖維素、半纖維素和木質(zhì)素,具有一定的研究?jī)r(jià)值,但其主要受限于兩點(diǎn):一是對(duì)反應(yīng)溫度要求較高,二是需要較高的合成和制備成本。而微生物法預(yù)處理技術(shù)[15-16]具有作用條件溫和、能耗低、處理成本少等優(yōu)點(diǎn),成為生物質(zhì)預(yù)處理的一個(gè)重要發(fā)展方向和研究熱點(diǎn)。近年來(lái),微生物法預(yù)處理技術(shù)研究領(lǐng)域?qū)Π赘④浉犬a(chǎn)酶真菌研究較多[16],而對(duì)細(xì)菌的研究卻鮮見(jiàn)。
半纖維素和纖維素對(duì)酸、堿溶液及氧化劑較敏感,在適當(dāng)?shù)臍潆x子濃度、氧化條件和溫度作用下化學(xué)結(jié)構(gòu)能夠被破壞。氧化亞鐵硫桿菌屬專(zhuān)性化能自養(yǎng)菌,能夠通過(guò)氧化底物添加劑(Fe2+、S0、S2-等)獲得生長(zhǎng)、擴(kuò)增所需的能量,同時(shí)產(chǎn)生硫酸及其他代謝產(chǎn)物,已廣泛應(yīng)用于金屬和土壤的腐蝕作用、污泥重金屬生物淋濾和其他重金屬回收利用的研究中,但在生物質(zhì)方面的應(yīng)用極少[17-20]。與現(xiàn)有微生物法預(yù)處理技術(shù)不同,試驗(yàn)以重金屬富集植物黑麥草為材料,利用氧化亞鐵硫桿菌破壞黑麥草結(jié)構(gòu),通過(guò)投入底物添加劑加速反應(yīng),提高黑麥草中纖維素的降解效率并分析最佳腐蝕條件下重金屬的浸出情況。該研究對(duì)于黑麥草中重金屬的進(jìn)一步回收及固體廢棄物的資源化利用具有重要意義。
1.1 菌種
氧化亞鐵硫桿菌(Thiobacillus ferrooxidans,ATCC 53990),購(gòu)于中國(guó)微生物菌種中心。
1.2 黑麥草預(yù)處理
黑麥草(Lolium perenne)是我國(guó)各地常見(jiàn)的優(yōu)質(zhì)牧草,具有生長(zhǎng)速度快、生物量大、可多次刈割等優(yōu)點(diǎn),在重金屬植物修復(fù)、水土保持等方面具有較大優(yōu)勢(shì)[3-7,21-22]。本試驗(yàn)黑麥草采用土培盆栽方式種于西南科技大學(xué)國(guó)防重點(diǎn)實(shí)驗(yàn)室溫室,待種子發(fā)芽后52 d,株高約30 cm,植株處于旺盛生長(zhǎng)期時(shí)收獲,經(jīng)過(guò)清水去除泥土等雜質(zhì),截取其地上部分,105℃條件下干燥30 min,65℃烘干至恒重,最后利用植物粉碎機(jī)(RT-02A)將其粉碎后備用。黑麥草中初始成分如表1所示。
表1 黑麥草初始成分(干重)Table 1 Analysis of the initial composition of ryegrass(dry weight)
1.3 試驗(yàn)方案設(shè)計(jì)
1.3.1 氧化亞鐵硫桿菌接種量對(duì)腐蝕作用的影響
種子液按照10%的接種量接入9K培養(yǎng)基,于140 r·min-1、30℃條件下振蕩培養(yǎng)3 d,再按照1%、3%、5%、10%、15%的接種量分別培養(yǎng)3 d,并按照固液比1∶30加入黑麥草,30℃條件下培養(yǎng),分別在2、4、6、8、10 d反應(yīng)后取樣分析,每個(gè)處理組重復(fù)三次,其中以9K培養(yǎng)基為對(duì)照組。9K培養(yǎng)基配方如下:
A液:(NH4)2SO43.0 g,K2HPO40.5 g,KCl 0.1 g,MgSO4·7H2O 0.5 g,Ca(NO3)20.01 g,去離子水800 mL,pH2.0,121℃高壓滅菌30 min。B液:FeSO4·7H2O 44.78 g,去離子水200 mL,pH2.0,0.22 μm的微孔濾膜過(guò)濾除菌。將滅菌后的A液與B液混勻。
1.3.2 底物添加劑對(duì)腐蝕作用的影響
取5組250 mL錐形瓶,每組25個(gè),按照固液比1∶30加入黑麥草和10%氧化亞鐵硫桿菌。然后分別添加不同濃度的5組底物添加劑(S0、Na2S2O3、FeSO4、FeS、Fe0),每組濃度分別為2.0、4.0、6.0、10.0、14.0 g· L-1,30℃條件下培養(yǎng),在2、4、6、8、10 d反應(yīng)后取樣分析。每個(gè)處理組重復(fù)三次,其中以9K培養(yǎng)基為對(duì)照組1,以只含相應(yīng)的底物添加劑為對(duì)照組2,以10%氧化亞鐵硫桿菌為對(duì)照組3。
1.4 樣品分析方法
1.4.1 含量分析
纖維素、半纖維素、木質(zhì)素含量分析:從第2 d起每隔1 d取樣并離心(8000 r·min-1,15 min)后,上清液采用玻璃電極法測(cè)定其pH值,過(guò)濾棄其上清液,將剩余固體水洗3次,75℃烘干至恒重,稱(chēng)重,并分析其成分變化。樣品中纖維素含量采用蒽酮比色法測(cè)定[23],半纖維素含量采用DNS比色法測(cè)定[23],木質(zhì)素含量采用乙酰溴比色法測(cè)定[24]。纖維素、半纖維素、木質(zhì)素降解率計(jì)算公式如下:
纖維素降解率=(樣品初始纖維素含量×樣品質(zhì)量-處理后樣品纖維素含量×處理后樣品質(zhì)量)/(樣品初始纖維素含量×樣品質(zhì)量)×100%
將上述公式的纖維素含量換成半纖維素含量或木質(zhì)素含量,其他不變,計(jì)算出半纖維素和木質(zhì)素的降解率。
1.4.2 腐蝕前后形貌及重金屬分析
黑麥草樣品采用日本電子光學(xué)公司JSM-5600LV型掃描電鏡(SEM)對(duì)腐蝕前后的表面形貌進(jìn)行分析,利用電感耦合等離子體質(zhì)譜儀(ICP-MS)測(cè)定樣品中重金屬含量。
1.4.3 數(shù)據(jù)統(tǒng)計(jì)方法
運(yùn)用SPSS 22.0和Oringe 8.5軟件對(duì)測(cè)定數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析,圖中數(shù)據(jù)為3次重復(fù)的平均值±標(biāo)準(zhǔn)差(SE),并采用單因素方差分析(One-way ANOVA)和最小顯著差異法(LSD)比較不同數(shù)據(jù)組間的差異。
2.1 氧化亞鐵硫桿菌接種量對(duì)黑麥草腐蝕作用的影響
以9K培養(yǎng)基為對(duì)照組,分析并研究了氧化亞鐵硫桿菌接種量對(duì)黑麥草腐蝕作用的影響,結(jié)果如圖1所示。由圖1A可以看出,氧化亞鐵硫桿菌在腐蝕過(guò)程中pH值先上升至2.2再逐步下降,最后穩(wěn)定在1.37,主要原因?yàn)槠鸪鮂e2+被氧化亞鐵硫桿菌氧化而消耗酸,導(dǎo)致pH值上升,之后Fe3+水解產(chǎn)生酸,致使pH值下降。同時(shí)可以看出,不同接種量的pH值變化情況相似,此研究結(jié)果與Wen等[25]和Gan等[26]的相似;對(duì)照組中pH值的變化可能是腐蝕過(guò)程中產(chǎn)生的一些有機(jī)化合物所導(dǎo)致。圖1B、圖1C表明,隨著時(shí)間的推移,各處理組和對(duì)照組中黑麥草的纖維素、半纖維素降解率逐漸增加,且各處理組的結(jié)果明顯大于對(duì)照組,而5%~15%接種量各處理組之間差異較小。圖1D顯示各處理組的木質(zhì)素降解率均略大于對(duì)照組,但差異不顯著(P>0.05),且各處理組之間差異較小。
通過(guò)綜合分析可知,10%接種量效果最佳,反應(yīng)第10 d,其纖維素降解率達(dá)40.97%,半纖維素降解率達(dá)77.49%,木質(zhì)素降解率達(dá)19.33%。
研究結(jié)果表明,氧化亞鐵硫桿菌對(duì)黑麥草具有較好的腐蝕作用,且10%接種量效果最佳,因而選擇以10%接種量的氧化亞鐵硫桿菌進(jìn)行下一步研究。
2.2 底物添加劑對(duì)腐蝕過(guò)程中pH值的影響
以10%氧化亞鐵硫桿菌為對(duì)照組,分析其在加入5種底物添加劑后對(duì)腐蝕過(guò)程中pH值的影響,結(jié)果如圖2所示。
加入底物添加劑后,隨著腐蝕的進(jìn)行,除硫化亞鐵和單質(zhì)鐵外,其他各處理組的pH值總體呈逐步下降趨勢(shì),其中單質(zhì)硫pH值下降幅度最大。反應(yīng)第2 d,所有處理組pH值均小于對(duì)照組;到第4 d,硫化亞鐵與單質(zhì)鐵各處理組的pH值開(kāi)始迅速上升,且濃度較高時(shí)其pH值也較高,經(jīng)分析推測(cè),這與溶液中生成H2S和S2-在短時(shí)間內(nèi)的不完全氧化有關(guān);到第10 d,因單質(zhì)硫被氧化成硫酸,單質(zhì)硫各處理組的pH值均下降至1.0左右。此研究結(jié)果與張軍等[27]和陳麗璇等[28]的相似。由于硫代硫酸鈉為強(qiáng)酸弱堿性鹽,當(dāng)濃度較高(大于6 g·L-1)時(shí)水解產(chǎn)生OH-的速率大于酸化速率,致使pH值高于對(duì)照組。硫酸亞鐵各處理組的pH值與對(duì)照組相差不大。
綜上分析,單質(zhì)硫致酸效果最佳,而硫化亞鐵、單質(zhì)鐵的致酸效果較差。此結(jié)果有利于進(jìn)一步探究pH值是否會(huì)影響纖維素、半纖維素、木質(zhì)素的降解效率。
2.3 底物添加劑對(duì)黑麥草中纖維素的影響
以9K培養(yǎng)基作為對(duì)照組1,分別以只含相應(yīng)的底物添加劑為對(duì)照組2(由于9K培養(yǎng)基中投加不同濃度的同一種底物對(duì)黑麥草的成分影響幾乎一致,本文只給出濃度為2 g·L-1時(shí)的結(jié)果),以10%氧化亞鐵硫桿菌為對(duì)照組3,探究5種底物添加劑對(duì)黑麥草中纖維素的影響,結(jié)果見(jiàn)圖3。
圖1 氧化亞鐵硫桿菌不同接種量對(duì)黑麥草腐蝕作用的影響Figure 1 The effects of corrosion behavior of ryegrass under different inoculation amount of Thiobacillus ferrooxidans
與3個(gè)對(duì)照組相比,投加底物添加劑后,黑麥草中纖維素的降解率均有明顯提高(P<0.05)。投加單質(zhì)硫的氧化亞鐵硫桿菌處理組中,濃度對(duì)纖維素降解率有一定影響,高濃度時(shí)作用效果較好,反應(yīng)第10 d,濃度為14 g·L-1時(shí),纖維素降解率最大達(dá)81.31%,而硫代硫酸鈉和硫酸亞鐵在低濃度時(shí)作用效果較好。投加硫化亞鐵和單質(zhì)鐵后濃度對(duì)纖維素降解率的影響隨著時(shí)間的推移逐漸縮小,兩種添加劑降解效果均較好。
由于氧化亞鐵硫桿菌能夠通過(guò)氧化底物添加劑(Fe2+、S0、S2-等)促進(jìn)自身代謝作用,投入的5種底物添加劑均能明顯提高黑麥草中纖維素的降解率。反應(yīng)10 d后,濃度為4 g·L-1的硫化亞鐵處理組纖維素降解率最大,達(dá)87.26%,比對(duì)照組1提高了223.07%,比對(duì)照組2提高了175.53%,比對(duì)照組3提高了112.99%。Pia-Maria等[29]和Ballesteros等[30]用0.2% H2SO4(200℃,10 min)和0.15%H2SO4(154.5℃,10 min)處理稻草秸稈,纖維素脫除率分別僅為78%和70%。Oberoi等[31]和Jin-Woo等[32]分別用NaOH和氨水在高溫條件下處理稻草,其纖維素脫除率為50%和5%,遠(yuǎn)低于本試驗(yàn)結(jié)果。此外,Sathitsuksanoh等[33]研究發(fā)現(xiàn)[BMIM]Cl離子液體(110℃,72 h)能夠脫除玉米秸稈中92%的纖維素,但成本較高;Davinia等[34]的研究中白腐菌(I.lacteus)經(jīng)過(guò)長(zhǎng)達(dá)21 d的反應(yīng)僅能降解小麥秸稈中47%的纖維素。
根據(jù)2.2節(jié)中對(duì)pH值的研究結(jié)果,硫化亞鐵處理組致酸效果較差,說(shuō)明酸性的強(qiáng)弱并不是影響纖維素結(jié)構(gòu)破壞的唯一因素,這可能與氧化亞鐵硫桿菌的氧化作用或其他因素有關(guān)。Antonopoulou等[35]也證實(shí)了該結(jié)論,其利用不同pH值(5.89、1.89、1.19)的H2SO4處理向日葵秸稈,結(jié)果發(fā)現(xiàn)隨著pH值的降低,向日葵秸稈中半纖維素脫除率逐漸增大,但纖維素的脫除率與對(duì)照組并沒(méi)有明顯差異,且pH值最低時(shí),纖維素脫除率并非最高。
圖2 5種底物添加劑對(duì)氧化亞鐵硫桿菌pH值的影響Figure 2 The effects of pH of Thiobacillus ferrooxidans under five kinds of substrates
2.4 底物添加劑對(duì)黑麥草中半纖維素的影響
采用與2.3節(jié)相同的分析方法,探究5種底物添加劑對(duì)黑麥草中半纖維素的影響,結(jié)果如圖4所示。
反應(yīng)10 d后,相比對(duì)照組1和2,除硫化亞鐵與單質(zhì)鐵外,其他3種底物添加劑均能顯著提高半纖維素降解率(P<0.05)。相比對(duì)照組3,5種底物添加劑中僅單質(zhì)硫(10 g·L-1和14 g·L-1)和硫代硫酸鈉(2 g·L-1)能提高半纖維素降解率。結(jié)合2.2節(jié)中對(duì)pH值的研究結(jié)果發(fā)現(xiàn),投加14 g·L-1單質(zhì)硫的致酸效果最佳,同時(shí)其對(duì)半纖維素降解率最大,高達(dá)82.29%,而投加單質(zhì)鐵的致酸效果較差,其對(duì)半纖維素的降解效果也較差。由此說(shuō)明,半纖維素結(jié)構(gòu)的破壞程度受pH值的影響較大。該研究結(jié)果與Guo等[36]和Antonopoulou等[35]的研究結(jié)果相符。
氧化亞鐵硫桿菌能夠充分利用致酸效果較好的底物添加劑對(duì)黑麥草進(jìn)行腐蝕,提高半纖維素降解率,其中降解率最高可達(dá)82.29%。Lee等[37]利用15%草酸(168℃,26 min)僅能脫除玉米秸稈中75.74%的半纖維素;García-Cubero等[38]和Agudelo等[39]分別采用臭氧和蒸汽爆破技術(shù)處理黑麥秸稈,半纖維素的脫除率僅為50%和52%。與前人相比,本試驗(yàn)方法優(yōu)于一般的生物質(zhì)預(yù)處理技術(shù),能夠?qū)Π肜w維素進(jìn)行更有效的去除。
圖3 5種底物添加劑對(duì)黑麥草中纖維素的影響Figure 3 The effects of content of cellulose in ryegrass under five kinds of substrates
2.5 底物添加劑對(duì)黑麥草中木質(zhì)素的影響
由圖5可以看出,相比3個(gè)對(duì)照組,除硫代硫酸鈉效果較差外,其余4種底物添加劑均能在一定程度上提高木質(zhì)素降解率,同一底物的不同濃度之間差異較?。≒>0.05)。5種底物添加劑中,6 g·L-1硫化亞鐵處理組中木質(zhì)素降解率最大,達(dá)27.68%,比對(duì)照組1提高了55.24%,比對(duì)照組2提高了48.90%,比對(duì)照組3提高了43.20%。該結(jié)果表明氧化亞鐵硫桿菌對(duì)木質(zhì)素降解率并不高,與Song等[40]研究結(jié)果相似,其主要原因?yàn)槟举|(zhì)素具有芳香性高聚物的特性,結(jié)構(gòu)非常穩(wěn)定,在一般的酸堿條件下很難被破壞。Davinia等[34]發(fā)現(xiàn)白腐菌(P.tigrinus)經(jīng)過(guò)21 d的反應(yīng)能夠降解小麥秸稈中47%的木質(zhì)素,Ravichandra等[41]和Rouches等[42]研究結(jié)果同樣表明白腐菌能夠?qū)δ举|(zhì)素進(jìn)行很好的降解。由于腐蝕后的黑麥草中纖維素和半纖維素的降解導(dǎo)致了木質(zhì)素的暴露。因此,在將來(lái)的研究中,可以考慮從白腐菌、褐腐菌、軟腐菌等產(chǎn)酶真菌中挑選出對(duì)木質(zhì)素有較好破壞能力的微生物,對(duì)腐蝕后的黑麥草進(jìn)行進(jìn)一步降解[43]。
圖4 5種底物添加劑對(duì)黑麥草中半纖維素的影響Figure 4 The effects of content of hemicellulose in ryegrass under five kinds of substrates
2.6 黑麥草腐蝕前后SEM電鏡分析
為了進(jìn)一步了解氧化亞鐵硫桿菌腐蝕黑麥草過(guò)程中黑麥草內(nèi)部形態(tài)學(xué)的變化,本研究對(duì)腐蝕前后的黑麥草進(jìn)行了SEM觀察,結(jié)果如圖6所示。腐蝕前,黑麥草細(xì)胞壁由致密的層狀結(jié)構(gòu)組成,有較為明顯的紋路(表面沾染少許碎片,對(duì)觀察結(jié)果存在一定影響)。經(jīng)氧化亞鐵硫桿菌腐蝕后,黑麥草細(xì)胞壁結(jié)構(gòu)疏松多孔,形成大小不等的缺口,一些基本的植物組分(表皮和維管束等結(jié)構(gòu))也發(fā)生了變化,最初連接的組織遭到破壞,可能與氧化亞鐵硫桿菌產(chǎn)酸作用和其氧化作用造成細(xì)胞壁中纖維素、半纖維素、木質(zhì)素結(jié)構(gòu)破壞有較大關(guān)系。此結(jié)果與Antonopoulou等[35]和Martins[44]等利用化學(xué)和真菌處理向日葵秸稈和石炭酸灌木葉的研究結(jié)果相似。
圖5 5種底物添加劑對(duì)黑麥草中木質(zhì)素的影響Figure 5 The effects of content of lignin in ryegrass under five kinds of substrates
2.7 最優(yōu)腐蝕條件下重金屬的浸出效率
通過(guò)上述研究可知,14 g·L-1的單質(zhì)硫?qū)邴湶莸母g效果最佳,因而對(duì)該條件下重金屬鈾、鉻、鎘的浸出情況進(jìn)行了分析,其浸出效率分別高達(dá)80.1%、62%、85.3%(表2)。由此說(shuō)明,氧化亞鐵硫桿菌不僅在污泥重金屬生物淋濾中有很好的應(yīng)用價(jià)值[27-28],而且能有效降低黑麥草中重金屬的含量,這將有利于黑麥草中重金屬的進(jìn)一步回收和其固體廢棄物的資源化利用。
(1)氧化亞鐵硫桿菌對(duì)黑麥草具有較強(qiáng)的腐蝕作用。投加底物添加劑后,氧化亞鐵硫桿菌對(duì)纖維素降解率有顯著提高(P<0.05)??傮w來(lái)看,投加14 g·L-1的單質(zhì)硫?qū)邴湶莸慕到庑Ч^好,該試驗(yàn)方法優(yōu)于一般的生物質(zhì)預(yù)處理技術(shù)。
(2)在氧化亞鐵硫桿菌及底物添加劑的作用下,單質(zhì)硫致酸效果最佳。pH值的降低能有效提高半纖維素降解率,但與纖維素及木質(zhì)素的降解率無(wú)明顯關(guān)系。
(3)氧化亞鐵硫桿菌對(duì)黑麥草細(xì)胞壁結(jié)構(gòu)有較強(qiáng)破壞作用。
(4)在最優(yōu)腐蝕條件下,纖維素、半纖維素的降解使得重金屬浸出效率較高,有利于黑麥草中重金屬的進(jìn)一步回收及固體廢棄物的資源化利用。
本課題的試驗(yàn)方法相比于一般的酸、堿等預(yù)處理技術(shù),能顯著提高纖維素、半纖維素的降解效率,并可在較低溫度下完成,對(duì)設(shè)備要求低,且經(jīng)濟(jì)實(shí)惠;相比于真菌預(yù)處理技術(shù),本方法能縮短反應(yīng)周期,提高降解效率,具有較高的應(yīng)用價(jià)值。
圖6 黑麥草經(jīng)氧化亞鐵硫桿菌腐蝕前后SEM圖片F(xiàn)igure 6 SEM pictures of ryegrass before and after corrosion in Thiobacillus ferrooxidans
表2 最優(yōu)腐蝕條件下重金屬浸出情況(干重)Table 2 Recovery of heavy metals in ryegrass under optimal corrosion conditions(dry weight)
[1]劉維濤,倪均成,周啟星,等.重金屬富集植物生物質(zhì)的處置技術(shù)研究進(jìn)展[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2014,33(1):15-27.
LIU Wei-tao,NI Jun-cheng,ZHOU Qi-xing,et al.Research progress of disposal technology for heavy metal-enriched plant biomass[J].Journal of Agro-Environment Science,2014,33(1):15-27.
[2]石福貴,郝秀珍,周東美,等.鼠李糖脂與EDDS強(qiáng)化黑麥草修復(fù)重金屬?gòu)?fù)合污染土壤[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2009,28(9):1818-1823.
SHI Fu-gui,HAO Xiu-zhen,ZHOU Dong-mei,et al.Remediation of the combined polluted soil by growing ryegrass enhanced by EDDS/ rhamnolipid[J].Journal of Agro-Environment Science,2009,28(9):1818-1823.
[3]郝希超,陳曉明,羅學(xué)剛,等.不同牧草在鈾脅迫下生長(zhǎng)及鈾富集的比較研究[J].核農(nóng)學(xué)報(bào),2016,30(3):548-555.
HAO Xi-chao,CHEN Xiao-ming,LUO Xue-gang,et al.Comparative study on the growth and uranium enrichment in different grasses[J]. Journal of Nuclear Agricultural Sciences,2016,30(3):548-555.
[4]阮晨,陳曉明,劉小玲,等.4種草坪植物成苗期Co(Ⅱ)耐受性綜合評(píng)價(jià)[J].核農(nóng)學(xué)報(bào),2015,29(4):777-785.
RUAN Chen,CHEN Xiao-ming,LIU Xiao-ling,et al.Comprehensive evaluation of resistance to Co(Ⅱ)of four kinds of lawn plant in adult stage[J].Journal of Nuclear Agricultural Sciences,2015,29(4):777-785.
[5]榮麗杉,梁宇,劉迎九,等.5種植物對(duì)鈾的積累特征差異研究[J].環(huán)境科學(xué)與技術(shù),2015,38(11):33-36.
RONG Li-Shan,LIANG Yu,LIU Ying-jiu,et al.Comparative study of uranium accumulation abilities of five herbs[J].Environmental Science &Technology,2015,38(11):33-36.
[6]Zou X L.Phytoextraction of heavy metals from contaminated soil by cocropping solanum nigrum with ryegrass associated with endophytic bacterium[J].Separation Science and Technology,2015,50(12):1806-1813.
[7]Zhu T Y,Fu D F,Yang F.Effect of saponin on the phytoextraction of Pb, Cd and Zn from soil using Italian ryegrass[J].Bulletin of Environmental Contamination and Toxicology,2015,94(1):129-133.
[8]Maurya D P,Singla A,Negi S.An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol[J].3 Biotech,2015,5(5):597-609.
[9]Srivastava N,Rawat R,Oberoi H S,et al.A review on fuel ethanol production from lignocellulosic biomass[J].International Journal of Green Energy,2015,12(9):949-960.
[10]Chaturvedi V,Verma P.An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products[J].3 Biotech,2013,3(5):122-130.
[11]Singh J,Suhag M,Dhaka A.Augmented digestion of lignocellulose by steam explosion,acid and alkaline pretreatment methods:A review[J]. Carbohydrate Polymers,2015,117C:624-631.
[12]Travaini R,Martín-Juárez J,Lorenzo-Hernando A,et al.Ozonolysis:An advantageous pretreatment for lignocellulosic biomass revisited[J]. Bioresource Technology,2016,199:2-12.
[13]Zheng Y,Zhou J,Xu F Q,et al.Pretreatment of lignocellulosic biomass for enhanced biogas production[J].Progress in Energy and Combustion Science,2014,42(1):35-53.
[14]Alvira P,Tomás-Pejó E,Ballesteros M,et al.Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis:A review[J].Bioresource Technology,2010,101(13):4851-4861.
[15]Sindhu R,Binod P,Pandey A.Biological pretreatment of lignocellulosic biomass:An overview[J].Bioresource Technology,2016,199:76-82.
[16]Wan C X,Li Y B.Fungal pretreatment of lignocellulosic biomass[J]. Biotechnology Advances,2012,30(6):1447-1457.
[17]Wang B,Yuan X Y,Han L,et al.Release and bioavailability of heavy metals in three typical mafic tailings under the action of Bacillus mucilaginosus and Thiobacillus ferrooxidans[J].Environmental Earth Sciences,2015,74(6):5087-5096.
[18]Vukovic M,Pesic B,Strbac N,et al.Linear polarization study of the corrosion of iron in the presence of Thiobacillus ferrooxidans bacteria [J].International Journal of Electrochemical Science,2012,7(3):2487-2503.
[19]Lvanus R C.Bioleaching of metals from electronic scrap by pure and mixed culture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans[J].Metalurgia International,2010,15(4):62-70.
[20]甘莉,劉賀琴,王清萍,等.氧化亞鐵硫桿菌生物浸出污泥中的重金屬離子[J].中國(guó)環(huán)境科學(xué),2014,34(10):2617-2623.
GAN Li,LIU He-qin,WANG Qing-ping,et al.Bioleaching of heavy metals in sewage sludge using Acidithiobacillus ferrooxidans[J].China Environmental Science,2014,34(10):2617-2623.
[21]Zalewska M.Response of perennial ryegrass(Lolium perenne)to soil contamination with zinc[J].Journal of Elementology,2012,17(2):329-343.
[22]Wang K,Huang H G,Zhu Z Q,et al.Phytoextraction of metals and rhizoremendiation of PAHs in co-contaminated soil by co-planting of Sedum alfredii with ryegrass(Lolium perenne)or castor(Ricinus communis)[J].International Journal of Phytoremediation,2013,15(3):283-298.
[23]王金主,王元秀,李峰,等.玉米秸稈中纖維素、半纖維素和木質(zhì)素的測(cè)定[J].山東食品發(fā)酵,2010(3):44-47.
WANG Jin-zhu,WANG Yuan-xiu,LI Feng,et al.Determination of cellulose,hemicellulose and lignin in corn stalk[J].Shandong Food Fermentation,2010(3):44-47.
[24]王建慶,曹佃元,張玉.乙酰溴法測(cè)定棉籽殼中木質(zhì)素的含量[J].紡織學(xué)報(bào),2013,34(9):12-16.
WANG Jian-qing,CAO Tian-yuan,ZHANG Yu.Acetyl bromide test method for determining amount of lignin in cottonseed coat[J].Journal of Textile Research,2013,34(9):12-16.
[25]Wen Y,Qing P W,Cai X T,et al.Bioleaching of heavy metals from sewage sludge by Acidithiobacillus thiooxidans:A comparative study[J]. Journal of Soils and Sediments,2012,12(6):900-908.
[26]Gan M,Zi B S,Zhu J Y,et al.Efficient bioleaching of heavy metals from contaminated sediment in batch method coupled with the assistance of heterotrophic microorganisms[J].Environ Earth Science,2016, 75(6):457-467.
[27]張軍,徐浚洋,王敦球,等.含硫底物種類(lèi)與濃度對(duì)污泥重金屬生物瀝濾的影響[J].環(huán)境工程,2015,4(9):39-57.
ZHANG Jun,XU Jun-yang,WANG Dun-qiu,et al.Effects of types and concentrations of sulfur substrate on bioleaching heavy metals from sewage sludge[J].Environmental Engineering,2015,4(9):39-57.
[28]陳麗璇,陳菲,蔡曉東,等.底物種類(lèi)和濃度對(duì)污泥重金屬生物淋濾效果的影響[J].亞熱帶植物科學(xué),2013,42(4):337-341.
CHEN Li-xuan,CHEN Fei,CAI Xiao-Dong,et al.Effects of substrates on bioleaching of heavy metals from sewage sludge[J].Subtropical Plant Science,2013,42(4):337-341.
[29]Pia-Maria B,Mats G,Guido Z.Ethanol and biogas production after steam pretreatment of corn stover with or without the addition of sulphuric acid[J].Biotechnology for Biofuels,2013,6(1):1-11.
[30]Ballesteros I,Ballesteros M,Manzanares P,et al.Dilute sulfuric acid pretreatment of cardoon for ethanol production[J].Biotechnology for Biofuels,2008,42(1):84-91.
[31]Oberoi H S,Babbar N,Sandhu S K,et al.Ethanol production from al-kali-treated rice straw via simultaneous saccharification and fermentation using newly isolated thermotolerant Pichia kudriavzevii HOP-1[J]. Journal of Industrial Microbiology&Biotechnology,2012,39(4):557-566.
[32]Jin-Woo K,Seob K K,Jin-Suk L,et al.Two-stage pretreatment of rice straw using aqueous ammonia and dilute acid[J].Bioresource Technology,2011,102(19):8992-8999.
[33]Sathitsuksanoh N,Zhu Z G,Zhang Y H.Cellulose solvent-based pretreatment for corn stover and avicel:Concentrated phosphoric acid versus ionic liquid[BMIM]Cl[J].Cellulose,2012,19(4):1161-1172.
[34]Davinia S,Alicia P,María L A,et al.Fungal pretreatment:An alternative in second-generation ethanol from wheat straw[J].Bioresource Technology,2011,102(16):7500-7506.
[35]Antonopoulou G,Dimitrellos G,Beobide A S,et al.Chemical pretreatment of sunflower straw biomass:The effect on chemical composition andstructural changes[J].Waste and Biomass Valorization,2015,6(5):733-746.
[36]Guo P,Mochizuki K,Cheng W,et al.Effects of different pretreatment strategies on corn stalk acidogenic fermentation using a microbial consortium[J].Bioresource Technology,2011,102(16):7526-7531.
[37]Lee J W,Houtman C J,Kim H Y,et al.Scale-up study of oxalic acid pretreatment of agricultural lignocellulosic biomass for the production of bioethanol[J].Bioresource Technology,2011,102(16):7451-7456.
[38]García-Cubero M A,González-Benito G,Indacoechea I,et al.Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw[J].Bioresource Technology,2008,100(4):1608-1613.
[39]Agudelo R A,Garcia-Aparicio M P,Gorgens J F.Steam explosion pretreatment of triticale(×triticosecale wittmack)straw for sugar production[J].New Biotechnology,2016,33(1):153-163.
[40]Song Z L,Gai H Y,Liu X F,et al.Comparison of seven chemical pretreatments of corn straw for improving methane yield by anaerobic digestion[J].PloS One,2014,9(4):1-8.
[41]Ravichandra P,Raju B R,Priyanka N,et al.Simultaneous pretreatment and sacchariffication of rice husk by phanerochete chrysosporium for improved production of reducing sugars[J].Bioresource Technology,2012, 128C:113-117.
[42]Rouches E,Zhou J P,Steyer H C.White-rot fungi pretreatment of lignocellulosic biomass for anaerobic digestion:Impact of glucose supplementation[J].Process Biochemistry,2016,51(5):555-564.
[43]王宏勛,杜甫佑,張曉昱.白腐菌選擇性降解秸稈木質(zhì)纖維素研究[J].華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2006,34(3):97-100.
WANG Hong-xun,DU Fu-you,ZHANG Xiao-yu.Selective degradation of corn straw lignocellulose by white-rot fungi[J].Huazhong University of Science&Technology(Nature Science Edition),2006,34(3):97-100.
[44]Martins S,José A T,Solange I M.Solid-state fermentation as a strategy to improve the bioactive compounds recovery from larrea tridentata leaves[J].AppliedBiochemistryandBiotechnology,2013,171(5):1227-1239.
The corrosive effects of Thiobacillus ferrooxidans on heavy metal-enriched plant
WANG Li1,2,CHEN Xiao-ming1,2*,XIAO Wei1,2,ZHANG Xiang-hui1,2,LUO Xue-gang1,2
(1.School of Life Science and Engineering,Southwest University of Science and Technology,Mianyang 621010,China;2.State Defense Key Laboratory of the Nuclear Waste and Enviromental Security,Southwest University of Science and Technology,Mianyang 621010,China)
In order to obtain the optimal processing conditions and solve the resource utilization for the biological pretreatment of heavy metal-enriched plants,this paper explored the corrosive behavior of ryegrass(Lolium perenne)inoculated Thiobacillus ferrooxidans(T.f)under different concentrations of substrates(including S0,Na2S2O3,FeSO4,FeS and Fe0)conditions.Destruction of the cell wall structure of ryegrass was detected by scanning electron microscopy.The results showed that T.f had strong corrosion effect on ryegrass.There was no significant difference of degradation effect in inoculation amount(5%~10%)of T.f.At the 10thday,the cellulose digestibility,hemicellulose digestibility,and lignin digestibility of ryegrass were 40.97%,77.49%,and 19.33%,respectively with 10%T.f.After supplementing different substrates with T.f,the digestibility of cellulose was significantly improved.Overall,the digestibility of ryegrass was better at the dosing quanlity of S0was 14 g·L-1.In this case,the digestibility of cellulose,hemicellulose and lignin of ryegrass can be up to 81.31%,82.29%and 26.02%,respectively.Meanwhile,the recovery efficiency of uranium,chromium and cadmium were high.Under the mutual influences of T.fand different substrates,the pH of all substrates groups declined dramatically,except the groups of FeS and Fe0.The lowest value of pH was about 1.0 at the 10thday.The results showed that the decrease of pH could effectively increase the digestibility of hemicelluloses,but no significant relationship on the cellulose and lignin.Futhermore,T.f had strong destructive action on the cell wall structure of ryegrass detected by the scanning electron microscope.T.f made strong corrosion on ryegrass and combined with making full use of the substrates,it could improve the digestibility of cellulose of ryegrass.To summary,the study on both corrosion efficiency of lignin and recovery efficiency of heavy metals will be improved in the further.
ryegrass;Thiobacillus ferrooxidans;corrosive effects;cellulose;hemicellulose;lignin
X712
A
1672-2043(2016)12-2420-11
10.11654/jaes.2016-0826
王莉,陳曉明,肖偉,等.氧化亞鐵硫桿菌(Thiobacillus ferrooxidans)對(duì)重金屬富集植物腐蝕作用研究[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2016,35(12):2420-2430.
WANG Li,CHEN Xiao-ming,XIAO Wei,et al.The corrosive effects of Thiobacillus ferrooxidans on heavy metal-enriched plant[J].Journal of Agro-Environment Science,2016,35(12):2420-2430.
2016-06-20
國(guó)家核設(shè)施退役及放射性廢物治理科研重點(diǎn)項(xiàng)目(14ZG6101);國(guó)民核生化災(zāi)害防護(hù)國(guó)家重點(diǎn)實(shí)驗(yàn)室開(kāi)放基金項(xiàng)目(SKLNBC2015-04);核廢物與環(huán)境安全國(guó)防重點(diǎn)學(xué)科實(shí)驗(yàn)室基金(15yyhk05)
王莉(1990—),女,四川彭州人,碩士研究生,主要從事重金屬富集生物質(zhì)的降解和重金屬回收利用研究。E-mail:380959774@qq.com
*通信作者:陳曉明E-mail:cxmhyx99@163.com