許德成,田小建,郭小輝,劉 微
(1.吉林大學(xué)電子科學(xué)與工程學(xué)院,吉林 長(zhǎng)春 130012;2.吉林師范大學(xué)信息技術(shù)學(xué)院,吉林 四平 136000;3.合肥工業(yè)大學(xué)電子科學(xué)與應(yīng)用物理學(xué)院,安徽 合肥 230009)
2.45 GHz柔性可穿戴織物天線的設(shè)計(jì)與研究
許德成1,2,田小建1,郭小輝3,劉 微2
(1.吉林大學(xué)電子科學(xué)與工程學(xué)院,吉林 長(zhǎng)春 130012;2.吉林師范大學(xué)信息技術(shù)學(xué)院,吉林 四平 136000;3.合肥工業(yè)大學(xué)電子科學(xué)與應(yīng)用物理學(xué)院,安徽 合肥 230009)
基于柔性織物基體石墨烯/聚苯胺填充PDMS制備柔性導(dǎo)電復(fù)合材料,提出一種工作于2.45 GHz的柔性織物天線,旨在提升人體中心通信系統(tǒng)中柔性天線的穿戴舒適性.闡述柔性織物天線的拓?fù)浣Y(jié)構(gòu)、制備流程及性能特點(diǎn),通過(guò)尺寸優(yōu)化可實(shí)現(xiàn)2.45 GHz中心頻率處實(shí)測(cè)回波損耗為-22.6 dB,-10 dB帶寬為165 MHz,增益方向圖與仿真結(jié)果保持良好的一致性,同時(shí),建立的天線接近人體模型,研究了天線距人體組織不同位置處SAR值及輻射性能.提出的柔性織物天線及制備方法為可穿戴設(shè)備無(wú)線通信中柔性天線的設(shè)計(jì)提供了一種解決方案.
柔性天線;織物天線;石墨烯;聚苯胺;可穿戴
隨著人體中心通信技術(shù)的快速發(fā)展,穿戴式電子產(chǎn)品逐漸普及,具備柔性、可形變、易穿戴特點(diǎn)的新型天線成為無(wú)線體域網(wǎng)(Wireless Body Area Network,WBAN)中研究的熱點(diǎn)之一[1].
近些年,以PDMS[2-3]、PET[4]、聚四氟乙烯玻璃纖維[1]等柔性基體及銀納米顆粒[5]、銀納米線[3]、碳納米管[6]、ITO[7]、銅箔[8-9]等為導(dǎo)電材料制備柔性可穿戴天線取得了良好效果.上述基體雖具有良好的柔性,卻存在不易集成于衣服、穿戴舒適性差等弊端,為提升新型柔性天線的穿戴舒適度,基于織物質(zhì)軟、透氣、可清洗、易于與穿戴式系統(tǒng)集成等優(yōu)勢(shì)[10],以織物為基體,通過(guò)在其表面印刷微帶天線拓?fù)浣Y(jié)構(gòu)并制備柔性織物天線成為可穿戴天線的一種發(fā)展趨勢(shì)[5,11-12].具有二維平面結(jié)構(gòu)的石墨烯因其光學(xué)透明、優(yōu)良的電學(xué)性能和機(jī)械性能被應(yīng)用于傳感器[13]、天線[14-15]等研究領(lǐng)域中.
微帶天線在兼?zhèn)涮炀€性能的同時(shí),還具備低剖面、易共形、體積小等優(yōu)點(diǎn)[16],在可穿戴天線研究領(lǐng)域中具備重要的研究意義和廣闊的應(yīng)用前景.本文以織物為柔性基體,選用石墨烯與聚苯胺填充PDMS(Polydimethylsiloxane)制備柔性導(dǎo)電貼片與接地平面,設(shè)計(jì)一款工作于2.45 GHz的柔性可穿戴織物微帶天線.
1.1 天線拓?fù)浣Y(jié)構(gòu)
圖1為本文提出柔性可穿戴織物天線的拓?fù)浣Y(jié)構(gòu)及尺寸參數(shù)示意圖,選用石墨烯和聚苯胺制備高導(dǎo)電性輻射貼片與接地平面,并基于絲網(wǎng)印刷技術(shù)在丁尼布織物兩面制備織物微帶天線.依據(jù)傳輸線模型及丁尼布的特性參數(shù)(介電常數(shù)εr=1.68,損耗角tanδ=0.03[17-18]),對(duì)柔性織物天線進(jìn)行優(yōu)化設(shè)計(jì).
圖1 柔性織物天線拓?fù)浣Y(jié)構(gòu)及尺寸參數(shù)示意圖
1.2 織物天線制備
柔性可穿戴織物天線的制備流程如圖2所示,在質(zhì)量分?jǐn)?shù)為30%的石墨烯和30%的聚苯胺中加入適量分散劑并進(jìn)行超聲分散(VCY-300,上海研永)30 min,然后加入一定固化比例的PDMS,使用磁力攪拌機(jī)(FDWTC-D型,上海復(fù)旦天欣科教儀器有限公司)均勻攪拌30 min以制備石墨烯/聚苯胺/PDMS復(fù)合導(dǎo)電材料.
圖2 柔性織物天線制備流程示意圖
依據(jù)圖1中柔性織物天線拓?fù)浣Y(jié)構(gòu)和尺寸參數(shù)信息,制備掩模板并成型,使用環(huán)氧型導(dǎo)電銀膠(YC-01,南京喜力特膠黏劑有限公司)將SMA插座與饋電面連接以備天線性能表征.使用ST-2258C型多功能數(shù)字式四探針測(cè)試儀(蘇州晶格電子有限公司)測(cè)試石墨烯/聚苯胺/PDMS復(fù)合導(dǎo)電材料的方阻約為48.3 Ω.圖3為提出柔性可穿戴織物天線的實(shí)物圖,該織物微帶天線具備良好的柔性,為穿戴舒適度提供了保障.
圖3 柔性可穿戴織物天線實(shí)物圖
利用電磁仿真軟件HFSS對(duì)提出的柔性可穿戴織物微帶天線進(jìn)行性能仿真優(yōu)化,并完成天線樣品制備,使用矢量網(wǎng)絡(luò)分析儀(ZNB8,Rohde & Schwarz)測(cè)試織物天線的特性.柔性可穿戴織物微帶天線的回波損耗仿真與實(shí)測(cè)結(jié)果如圖4所示.由圖4可知,在中心頻率2.45 GHz處實(shí)測(cè)其仿真與實(shí)測(cè)回波損耗分別為-36.2和-22.6 dB,-10 dB 帶寬約165 MHz,滿足工程要求.
圖4 柔性織物天線回波損耗仿真與實(shí)測(cè)結(jié)果
天線方向圖是表征天線輻射特性與空間角度關(guān)系的圖形[19],為驗(yàn)證本文提出柔性可穿戴織物天線在2.45 GHz處中心頻率的輻射特性,在暗室中對(duì)該柔性可穿戴織物天線進(jìn)行遠(yuǎn)場(chǎng)參數(shù)測(cè)試(如圖5和6所示).從圖5和6可以看出,其XOZ與YOZ平面的方向圖仿真結(jié)果與實(shí)測(cè)結(jié)果保持良好的一致性,驗(yàn)證了所提出柔性可穿戴織物天線的可行性.
圖5 XOZ平面仿真與實(shí)測(cè)增益方向圖
圖6 YOZ平面仿真與實(shí)測(cè)增益方向圖
柔性織物天線面向穿戴式系統(tǒng)應(yīng)用,通常采用比吸收率(Specific Absorption Ratio,SAR)定量衡量天線輻射能量對(duì)人體組織的影響,局部SAR的計(jì)算公式為
(1)
其中σ為導(dǎo)電率,E為電場(chǎng)強(qiáng)度的均方根值,ρ為人體組織密度.文獻(xiàn)[18,20]給出了2.45 GHz時(shí)三層人體組織模型(包括皮膚、脂肪和肌肉)的電磁參數(shù),在HFSS下建立如圖7所示的天線接近人體模型.
圖7 HFSS下三層人體組織模型
改變天線與人體表面的距離參數(shù)(h為1,3和5 mm),并進(jìn)行如圖8所示(選取h=3 mm)的SAR仿真分析,表1給出了h取不同值時(shí)1 g人
圖8 SAR仿真結(jié)果
體組織的最大SAR值,隨著h增加,其SAR值逐漸降低,均小于1.6 W/kg的標(biāo)準(zhǔn).
表1 不同距離下的SAR值
圖9為2.45 GHz工作頻率下天線模型與人體組織模型在不同距離下的回波損耗仿真結(jié)果,當(dāng)天線與人體組織模型較近時(shí),其中心頻率會(huì)發(fā)生輕微偏移,然而,其-10 dB帶寬、回波損耗等性能仍能滿足要求.
圖9 天線距離人體不同位置時(shí)的回波損耗
基于柔性織物和石墨烯/聚苯胺/PDMS復(fù)合導(dǎo)電材料提出了一種柔性織物微帶天線,提升了柔性天線的穿戴舒適性.介紹了織物天線的拓?fù)浣Y(jié)構(gòu)、制備流程以及性能特點(diǎn),可實(shí)現(xiàn)2.45 GHz 中心頻率處實(shí)測(cè)回波損耗為-22.6,-10 dB帶寬為165 MHz,增益方向圖與仿真結(jié)果保持良好的一致性.通過(guò)建立的天線接近人體模型,研究了人體對(duì)天線性能的影響.仿真結(jié)果顯示SAR低于1.6 W/kg的標(biāo)準(zhǔn),為可穿戴天線提供了一種實(shí)現(xiàn)方法.
[1] YANG H L,YAO W,YI Y,et al. A dual-band low-profile metasurface-enabled wearable antenna for WLAN devices[J]. Progress In Electromagnetics Research C,2016,61:115-125.
[2] HUANG G W,XIAO H M,F(xiàn)U S Y. Wearable electronics of silver-nanowire/poly (dimethylsiloxane) nanocomposite for smart clothing[J]. Scientific Reports,2015,5:1-9.
[3] SONG L,MYERS A C,ADAMS J J,et al. Stretchable and reversibly deformable radio frequency antennas based on silver nanowires[J]. ACS Applied Materials & Interfaces,2014,6(6):4248-4253.
[4] BETANCOURT D,CASTAN J. Printed antenna on flexible low-cost pet substrate for uhf applications[J]. Progress In Electromagnetics Research C,2013,38:129-140.
[5] STEMPIEN Z,RYBICKI E,RYBICKI T,et al. Inkjet-printing deposition of silver electro-conductive layers on textile substrates at low sintering temperature by using an aqueous silver ions-containing ink for textronic applications[J]. Sensors and Actuators B:Chemical,2016,224:714-725.
[6] ZAHIR H,WOJKIEWICZ J L,ALEXANDER P,et al. Design fabrication and characterisation of polyaniline and multiwall carbon nanotubes composites-based patch antenna[J]. IET Microwaves,Antennas & Propagation,2016,10(1):88-93.
[7] LEE C,KIM I,KIM Y,et al. Fabrication and analysis of flexible and transparent antenna on polyamide substrate for laptop computer[J]. Journal of the Korea Academia-Industrial Cooperation Society,2014,15(7):4457-4462.
[8] 程春霞,張福順. 柔性微帶天線設(shè)計(jì)與研究[J]. 微波學(xué)報(bào),2014,30(4):25-28,44.
[9] MORO R,AGNEESSENS S,ROGIER H,et al. Wearable textile antenna in substrate integrated waveguide technology[J]. Electronics Letters,2012,48(16):985-987.
[10] XIAOHUI GUO,YING HUANG,XIA CAI,et al. Capacitive wearable tactile sensor based on smart textile substrate with carbon black/silicone rubber composite dielectric[J].Measurement Science and Technology,2016,27(4):045105.
[11] LI Y,TORAH R,BEEBY S,et al. Fully direct-write dispenser printed dipole antenna on woven polyester cotton fabric for wearable electronics applications[J]. Electronics Letters,2015,51(17):1306-1308.
[12] 楊福慧,杜成珠. 基于三維織物的四元陣紡織天線[J]. 電子元件與材料,2014,33(7):52-54.
[13] ZHU B,NIU Z,WANG H,et al. Microstructured graphene arrays for highly sensitive flexible tactile sensors[J]. Small,2014,10(18):3625-3631.
[14] HUANG X,LENG T,ZHANG X,et al. Binder-free highly conductive graphene laminate for low cost printed radio frequency applications[J]. Applied Physics Letters,2015,106(20):203105.
[15] VOLMAN V,ZHU Y,RAJI A R O,et al. Radio-frequency-transparent,electrically conductive graphene nanoribbon thin films as deicing heating layers[J]. ACS Applied Materials & Interfaces,2013,6(1):298-304.
[16] KURUP D,JOSEPH W,VERMEEREN G,et al. Specific absorption rate and path loss in specific body location in heterogeneous human model[J]. IET Microwaves,Antennas & Propagation,2013,7(1):35-43.
[17] RIZWAN M,RAHMAT-SAMII Y,UKKONEN L. Circularly polarized textile antenna for 2.45 GHz[C]//RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO),2015 IEEE MTT-S 2015 International Microwave Workshop Series on, Phoenix:IEEE,2015:21-22.
[18] TAHIR F A,JAVED A. A compact dual-band frequency-reconfigurable textile antenna for wearable applications[J]. Microwave and Optical Technology Letters,2015,57(10):2251-2257.
[19] KAMYSHNY A,MAGDASSI S. Conductive nanomaterials for printed electronics[J]. Small,2014,10(17):3515-3535.
[20] 劉寧. 人體中心網(wǎng)絡(luò)可穿戴天線及傳播特性研究[D]. 北京:北京郵電大學(xué),2012.
(責(zé)任編輯:石紹慶)
Design and research of flexible wearable textile antenna for 2.45 GHz
XU De-cheng1,2, TIAN Xiao-jian1, GUO Xiao-hui3, LIU Wei2
(1.College of Electronic Science and Engineering,Jilin University,Changchun 130012,China;2.College of Information Technology,Jilin Normal University,Siping 136000,China;3.School of Electronic Science & Applied Physics,Hefei University of Technology,Hefei 230009,China)
In order to improve the wearing comfort of body centric wireless network,a flexible textile antenna based on graphene/PANI/PDMS composites and fabric flexible substrate was proposed in this paper for 2.45 GHz. The geometry and dimensions of the proposed antenna were illustrated and optimized; and the measured reflection coefficient and -10 dB bandwidth achieved -22.6 dB and 165 MHz,respectively. The radiating properties were also characterized and the measured results showed a good correlation with the simulated results. Meanwhile,the SAR under different distances was also studied based on phantom model in HFSS with three-layer tissue. The proposed antenna and preparation methods provide a feasible solution to the design of flexible antenna for wearable wireless communication system.
flexible antenna;textile antenna;grapheme;PANI;wearable
1000-1832(2016)04-0088-04
10.16163/j.cnki.22-1123/n.2016.04.019
2016-08-02
國(guó)家自然科學(xué)基金資助項(xiàng)目(61305082).
許德成(1977—),男,博士研究生,講師,主要從事傳感器、嵌入式控制系統(tǒng)、微波與天線技術(shù)等研究.
TP 391.9 [學(xué)科代碼] 520·60
A