馮永輝, 曹雅明, 朱曉彤*
(1.中國(guó)醫(yī)科大學(xué)附屬第一醫(yī)院 檢驗(yàn)科,遼寧 沈陽(yáng) 110001;2.中國(guó)醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)院 免疫學(xué)教研室,遼寧 沈陽(yáng) 110122)
苯肼對(duì)實(shí)驗(yàn)性腦瘧模型DC亞群及功能的影響
馮永輝1,2, 曹雅明2, 朱曉彤2*
(1.中國(guó)醫(yī)科大學(xué)附屬第一醫(yī)院 檢驗(yàn)科,遼寧 沈陽(yáng) 110001;2.中國(guó)醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)院 免疫學(xué)教研室,遼寧 沈陽(yáng) 110122)
探討苯肼(Phenylhydrazine,PHZ)對(duì)實(shí)驗(yàn)性腦瘧模型DC亞群及功能的影響。采用伯氏瘧原蟲(chóng)(PlasmodiumbergheiANKA,PbANKA)感染C57BL/6小鼠建立實(shí)驗(yàn)性腦瘧模型,并在感染前第5天和感染第0天進(jìn)行苯肼處理。動(dòng)態(tài)監(jiān)測(cè)小鼠網(wǎng)織紅細(xì)胞數(shù)量、原蟲(chóng)血癥和生存期;采用FACS檢測(cè)感染后第3天和第5天小鼠脾臟中DC亞群(mDCs和pDCs)及相關(guān)功能分子(CD86、MHC II和IL-2)的變化水平。結(jié)果顯示,PHZ處理能顯著升高血液中網(wǎng)織紅細(xì)胞比例,同時(shí)會(huì)升高小鼠原蟲(chóng)血癥水平,縮短生存期;在感染后第3天和第5天,PHZ處理能促進(jìn)PbANKA感染小鼠mDCs和pDCs的增殖分化,并能增強(qiáng)MHC II類分子和胞內(nèi)IL-12的表達(dá)水平。PHZ引起的貧血能促進(jìn)DCs的分化,同時(shí)促進(jìn)功能分子的表達(dá)升高來(lái)啟動(dòng)適應(yīng)型免疫應(yīng)答,促進(jìn)腦瘧發(fā)生。
實(shí)驗(yàn)性腦瘧; 苯肼;樹(shù)突狀細(xì)胞
2014年WHO瘧疾全球報(bào)告[1]指出:在2013年,全球有33億人受到瘧疾威脅,其中1.98億人發(fā)病,約58萬(wàn)人死亡,絕大多數(shù)是5歲以下兒童。腦瘧(Cerebral Malaria, CM)作為5歲以下兒童死亡的主要原因之一,如果不能有效治療,死亡率高達(dá)89%[2]。盡管CM發(fā)生的具體機(jī)制仍未完全清楚,但宿主免疫應(yīng)答的失調(diào)在CM發(fā)生中發(fā)揮重要作用:過(guò)度的前炎癥免疫應(yīng)答(包括Th1型細(xì)胞因子如IFN-γ和TNF-α)增加血管內(nèi)皮細(xì)胞黏附分子(如VCAM-1、ICAM-1、CD36)的表達(dá)[3-4],促進(jìn)炎性細(xì)胞(CD4/CD8+T細(xì)胞和中性粒細(xì)胞)的聚集和紅細(xì)胞、血小板的粘附聚集,引起腦組織微血管的堵塞和腦組織缺血,從而誘發(fā)中樞神經(jīng)系統(tǒng)產(chǎn)生一系列癥狀[5]。而樹(shù)突狀細(xì)胞作為橋接宿主固有免疫和適應(yīng)性免疫應(yīng)答的重要免疫細(xì)胞,在CM中發(fā)揮重要作用。伯氏瘧原蟲(chóng)(PlasmodiumbergheiANKA,PbANKA)感染C57 BL/6小鼠所建立的實(shí)驗(yàn)性腦瘧(Experimental Cerebral Malaria, ECM)模型能模擬腦瘧發(fā)生過(guò)程中的宿主免疫應(yīng)答,有助于研究腦瘧的病理進(jìn)程。苯肼(Phenylhydrazine,PHZ)作為一種網(wǎng)織紅細(xì)胞(Reticulocyte)誘導(dǎo)劑,能顯著增強(qiáng)小鼠網(wǎng)織紅細(xì)胞數(shù)量[6],常用于建立貧血模型。本研究采用PHZ貧血模型和ECM模型來(lái)探討貧血對(duì)ECM中樹(shù)突狀細(xì)胞(Dendritic Cells,DCs)數(shù)量及相關(guān)功能分子的變化水平,從而為流行區(qū)網(wǎng)織紅細(xì)胞增多的瘧疾患者的治療提供參考。
1.1 材料
1.1.1 實(shí)驗(yàn)動(dòng)物 6~8周齡,雌性C57 BL/6小鼠,購(gòu)自中國(guó)科學(xué)院上海實(shí)驗(yàn)動(dòng)物中心;PbANKA由日本愛(ài)嬡大學(xué)分子寄生蟲(chóng)學(xué)教研室惠贈(zèng)。
1.1.2 主要試劑 苯肼(PHZ,購(gòu)自Sigma),以下抗體均購(gòu)自BD Biosciences:FcγⅢ/Ⅱ封閉抗體(clone 2.4G2)、FITC-anti-CD11c(clone HL3)、PE-anti-CD11b(clone H1.2F3)、PE-anti-CD86(clone GL1)、PerCP-anti-CD45R/B220(clone RA3-6B2)、PE-IL-12p40/70(clone C15.6)、APC-anti-MHC II(clone M5/114.15.2)。
1.2 方法
1.2.1 實(shí)驗(yàn)?zāi)P徒⒓疤幚?雌性C57 BL/6小鼠隨機(jī)分為4組:正常組(NC)、正常對(duì)照組(Pb)、Pb+PHZ組和PHZ組。Pb+PHZ組和PHZ組小鼠在感染前第5天和第0天經(jīng)腹腔注射60 mg/kg PHZ。Pb組和Pb+PHZ組小鼠在第0天分別經(jīng)腹腔感染1×106PbANKA寄生紅細(xì)胞,建立ECM模型,NC組小鼠不做任何處理。感染前后不同時(shí)間小鼠尾靜脈取血,鏡檢計(jì)數(shù)網(wǎng)織紅細(xì)胞數(shù)量和細(xì)胞感染率,并每日觀察生存率。
1.2.2 脾臟流式細(xì)胞術(shù) 無(wú)菌取出感染后第3天和第5天小鼠脾臟,常規(guī)方法制備脾細(xì)胞懸液,用0.17 mol/L NH4Cl裂解紅細(xì)胞。以含10%胎牛血清(FCS)的RPMI 1640調(diào)整脾細(xì)胞終濃度為1×107/mL。每份樣品用抗-CD11c-FITC單克隆抗體、抗-CD11b-PE單克隆抗體、抗-CD45R/B220-PerCP、抗-MHCⅡ-APC單克隆抗體進(jìn)行四色分析,另設(shè)陰性對(duì)照管。在預(yù)先加入FcγⅢ/Ⅱ封閉抗體的流式細(xì)胞儀專用染色管中加入脾細(xì)胞懸液0.1 mL,再加入抗-CD11c-FITC單克隆抗體、抗-CD11b-PE單克隆抗體、抗-CD45R/B220-PerCP單克隆抗體和抗-MHCⅡ-APC單克隆抗體進(jìn)行表面染色。離心去上清后,用0.5 mL細(xì)胞染色緩沖液重懸浮細(xì)胞,流式細(xì)胞儀進(jìn)行檢測(cè)。每份樣品用抗-CD11c-FITC單克隆抗體和抗CD86-PE單克隆抗體進(jìn)行雙色分析,另設(shè)陰性對(duì)照管。每份樣品用抗-CD11c-FITC單抗進(jìn)行雙色分析, 另設(shè)陰性對(duì)照管。在預(yù)先加入FcγⅢ/Ⅱ封閉抗體的流式細(xì)胞儀專用染色管中加入脾細(xì)胞懸液0.1 mL,按試劑說(shuō)明書(shū)所示,進(jìn)行固定和透膜后,再分別加入生物素標(biāo)記的抗-TLR9單抗和PE-streptavidin。在預(yù)先加入FcγⅢ/Ⅱ封閉抗體的流式細(xì)胞儀專用染色管中加入脾細(xì)胞懸液0.1 mL,刺激5 h后,再加入抗-CD11c-FITC單克隆抗體,固定透膜后加入IL-12-PE單克隆抗體,染色30 min。離心去上清后,用0.5 mL細(xì)胞染色緩沖液重懸浮細(xì)胞,流式細(xì)胞儀進(jìn)行檢測(cè)。采用FACS Calibur流式細(xì)胞儀進(jìn)行檢測(cè),用Flowjo v7.6.2進(jìn)行分析。
1.2.3 統(tǒng)計(jì)學(xué)分析 使用SPSS17.0統(tǒng)計(jì)軟件對(duì)數(shù)據(jù)進(jìn)行處理,標(biāo)本采用獨(dú)立樣本t檢驗(yàn)比較分析組內(nèi)和組間均值差異,采用Kaplan-Meyer方法進(jìn)行生存期分析。P<0.05為顯著差異。
2.1 PHZ處理對(duì)ECM模型小鼠感染率和生存期的影響
如圖1所示,PHZ處理后,C57小鼠血液中的網(wǎng)織紅細(xì)胞會(huì)顯著誘導(dǎo)網(wǎng)織紅細(xì)胞的生成,之后會(huì)有顯著下降,而Pb組小鼠在感染后網(wǎng)織紅細(xì)胞有輕微上升,隨著感染進(jìn)程會(huì)逐漸下降。C57BL/6小鼠在感染PbANKA后,原蟲(chóng)血癥隨著感染時(shí)間不斷升高,在感染后第10天達(dá)到峰值,Pb組小鼠在感染后第7~10天全部死亡;Pb+PHZ組小鼠感染率在第8天達(dá)到峰值,小鼠在感染后第7~8天全部死亡(與Pb組相比,P<0.05)。盡管Pb+PHZ組小鼠死亡時(shí)間提前,但與Pb組小鼠生存期相比,無(wú)顯著性差異(P>0.05)。
圖1 PHZ處理對(duì)ECM模型小鼠感染率和生存期的影響Fig.1 Effects of PHZ treatment on the parasitemia and survival rate of C57BL/6 mice infected with Pb ANKA 與Pb組相比,*:P< 0.05,**:P< 0.01,***:P< 0.001,下圖同 *, ** and*** represent P< 0.05, P< 0.01 and P< 0.001 compared with Pb group, respectively
2.2 PHZ處理對(duì)DC亞群數(shù)量的影響
DC在固有免疫和適應(yīng)性免疫的橋接中發(fā)揮重要作用。檢測(cè)了PHZ處理對(duì)ECM模型DC亞群(髓樣樹(shù)突狀細(xì)胞(myeloid DCs,mDCs)和漿樣樹(shù)突狀細(xì)胞(plasmacytoid DCs,pDCs))數(shù)量的影響。如圖2所示,PHZ提前處理能顯著增強(qiáng)小鼠脾臟中mDCs和pDCs的比例(與正常鼠相比,P<0.05);在感染后第3天和第5天,PHZ處理能促進(jìn)Pb ANKA感染小鼠mDCs(P>0.05)和pDCs(P<0.05)亞群的擴(kuò)增,提示PHZ處理能刺激小鼠脾細(xì)胞中DCs的分化。
圖2 PHZ處理對(duì)DC亞群數(shù)量的影響Fig.2 Effects of PHZ treatment on DCs subsets of C57BL/6 mice infected with Pb ANKA
2.3 PHZ對(duì)DC表面功能分子表達(dá)水平的影響
DC表面分子的表達(dá)水平對(duì)DCs的活化及功能發(fā)揮具有重要作用。在感染后第5天檢測(cè)了DC表面分子MHC II和CD86分子的表達(dá)水平。從圖3中可以看出,PHZ處理對(duì)MHC II類分子的表達(dá)沒(méi)有顯著影響,但會(huì)增強(qiáng)CD86分子的表達(dá)水平。
圖3 PHZ對(duì)DC表面功能分子表達(dá)水平的影響Fig.3 Effects of PHZ treatment on DCs functional molecular of C57BL/6 mice infected with Pb ANKA
2.4 PHZ對(duì)分泌IL-12的DC影響
從圖4中可以看出,在感染后第3天和第5天,PbANKA感染會(huì)誘導(dǎo)脾細(xì)胞中CD11c+IL-12+DCs升高,但與正常鼠相比,沒(méi)有顯著區(qū)別(P>0.05);而PHZ和Pb+PHZ處理均能顯著升高宿主脾細(xì)胞中CD11c+IL-12+DCs的比例(P<0.05),從而促進(jìn)DCs的功能活化。
圖4 PHZ對(duì)分泌IL-12的DC影響Fig.4 Effects of PHZ treatment on DC secreting IL-12 of C57BL/6 mice infected with Pb ANKA
PHZ作為一種化療藥物,能夠破壞紅細(xì)胞膜,造成紅細(xì)胞裂解,引起貧血,進(jìn)而刺激機(jī)體血液循環(huán)中的網(wǎng)織紅細(xì)胞數(shù)量增加[7]。缺鐵性貧血患者給予鐵離子補(bǔ)充后也會(huì)引起網(wǎng)織紅細(xì)胞短暫的升高[8-9]。在非洲瘧疾流行區(qū),貧血會(huì)使瘧疾患者原蟲(chóng)血癥升高,加重臨床重癥瘧疾的發(fā)生[10-11]。本研究中PHZ預(yù)處理會(huì)顯著升高血液中網(wǎng)織紅細(xì)胞的比例,這為研究缺鐵性貧血對(duì)腦瘧免疫應(yīng)答的影響提供了一個(gè)非常好的實(shí)驗(yàn)?zāi)P汀?/p>
DCs在活化T細(xì)胞以及隨后的適應(yīng)性免疫應(yīng)答過(guò)程中發(fā)揮重要作用,主要有兩種亞群,包括mDCs和pDCs[12]。DCs的數(shù)量與功能決定Th1免疫應(yīng)答的強(qiáng)度[13]。MHC II類分子和共刺激分子CD86的表達(dá)上調(diào)是DCs成熟的標(biāo)志[14],在ECM模型中,我們發(fā)現(xiàn)PHZ處理對(duì)DCs表面MHC II類分子的表達(dá)水平?jīng)]有影響,但會(huì)顯著上調(diào)CD86的表達(dá)水平,DCs表面的CD86分子表達(dá)升高能夠啟動(dòng)并活化Th1免疫應(yīng)答。DCs分泌的IL-12能增強(qiáng)Th1和Th2適應(yīng)性免疫應(yīng)答,尤其是Th1型免疫應(yīng)答的強(qiáng)度[13],從而加重ECM的進(jìn)程。本研究結(jié)果顯示PHZ處理能顯著增強(qiáng)分泌IL-12的DCs數(shù)量。這些結(jié)果說(shuō)明PHZ處理引起的貧血能顯著促進(jìn)DCs的分化并增強(qiáng)DCs的功能,因此推測(cè)貧血引起的DCs數(shù)量增加和活化會(huì)啟動(dòng)Th1免疫應(yīng)答,從而加重ECM的發(fā)生,縮短C57BL/6小鼠的生存期。
綜上所述,本研究揭示了PHZ引起的貧血與DCs之間的關(guān)系:PHZ引起的貧血能促進(jìn)DCs的分化,同時(shí)促進(jìn)功能分子的表達(dá)升高來(lái)啟動(dòng)適應(yīng)型免疫應(yīng)答,加重腦瘧進(jìn)程,提示在研發(fā)抗瘧藥物時(shí)應(yīng)考慮貧血對(duì)宿主免疫應(yīng)答的影響。
[1] WHO.World Malaria Report 2014[R].World Health Organiz-ation, 2014.
[2] Bangirana P, Opoka R O, Boivin M J, et al. Severe malarial anemia is associated with long-term neurocognitive impairment[J]. Clin Infect Dis, 2014, 59(3): 336-344.
[3] Wu J J,Chen G,Liu J,et al.Natural regulatory T cells mediate the development of cerebral malaria by modifying the pro-inflammatory response[J]. Parasitol Int, 2010, 59(2): 232-241.
[4] Liu Y,Chen Y,Li Z,et al.Role of IL-10-producing regulatory B cells in control of cerebral malaria in Plasmodium berghei infected mice[J]. Eur J Immunol, 2013, 43(11): 2907-2918.
[5] Villegas-Mendez A, Greig R, Shaw T N, et al. IFN-gamma-producing CD4+T cells promote experimental cerebral malaria by modulating CD8+T cell accumulation within the brain[J]. J Immunol, 2012, 189(2): 968-979.
[6] Cromer D, Evans K J, Schofield L, et al. Preferential invasion of reticulocytes during late-stage Plasmodium berghei infection accounts for reduced circulating reticulocyte levels[J]. Int J Parasitol, 2006, 36(13): 1389-1397.
[7] Mcmillan D C, Powell C L, Bowman Z S, et al. Lipids versus proteins as major targets of pro-oxidant, direct-acting hemolytic agents[J]. Toxicol Sci, 2005, 88(1): 274-283.
[8] Gwamaka M, Kurtis J D, Sorensen B E, et al. Iron deficiency protects against severe Plasmodium falciparum malaria and death in young children[J]. Clin Infect Dis, 2012, 54(8): 1137-1144.
[9] Jonker F A, Calis J C, Van Hensbroek M B, et al. Iron status predicts malaria risk in Malawian preschool children[J]. PLoS One, 2012, 7(8): e42670.
[10]Clark M A, Goheen M M, Fulford A, et al. Host iron status and iron supplementation mediate susceptibility to erythrocytic stage Plasmodium falciparum[J]. Nat Commun, 2014, 5: 4446.
[11]Sangare L, Van Eijk A M, Ter Kuile F O, et al. The association between malaria and iron status or supplementation in pregnancy: a systematic review and meta-analysis[J]. PLoS One, 2014, 9(2): e87743.
[12]Gilliet M, Boonstra A, Paturel C, et al. The development of murine plasmacytoid dendritic cell precursors is differentially regulated by FLT3-ligand and granulocyte/macrophage colony-stimulating factor[J]. J Exp Med, 2002, 195(7): 953-958.
[13]Langhorne J, Albano F R, Hensmann M, et al. Dendritic cells, pro-inflammatory responses, and antigen presentation in a rodent malaria infection[J]. Immunol Rev, 2004, 201: 35-47.
[14]Wykes M N, Liu X Q, Beattie L, et al. Plasmodium strain determines dendritic cell function essential for survival from malaria[J]. PLoS Pathog, 2007, 3(7): e96.
Effect of Phenylhydrazine on DC Subgroup Mechanical Function on Experimental Cerebral Malaria Model
FENG Yong-hui1, 2, CAO Ya-ming2, ZHU Xiao-tong2
(1.Dept.ofMed.Lab,Affil. 1stHosp.ofChinaMed.Uni.,Shenyang110001;2.Teach&Res.Div.Immunol.,Coll.ofBasicMed.Sci.,ChinaMed.Uni.,Shenyang110122)
The effect of phenylhydrazine (PHZ) on DCs’ subgroups and mechanical function in experimental cerebral malaria model was investigated. An experimental cerebral malaria model was established adopted C57BL/6 mice infected withPbANKA and treated with PHZ on d 5 before infection and d 0 on the infection processing. Dynamic monitoring the variation level of reticulocyte number, parasitemia and survival time; DCs’ subgroups (mDCs and pDCs) and related functional molecules (CD86, MHC II and IL-2) in the spleen were detected adopting FACS on d 3 and d 5 post infection. The results showed that PHZ treatment could markedly increase the proportion of reticulocyte in blood, at the same time raise the parasitemia level in mice, shorten the survival time. On d 3 and d 5 after the infection, the PHZ treatment could promote the amplification of mDCs and pDCs, and strengthen the expression levels of MHC II and intracellular IL-12 in thePbANKA infected mice. Therefore, anemia caused by PHZ could promote the differentiation of DCs, at the same time promote the expression of functional molecules to initiate the adaptive immune response, and aggravate the cerebral malaria.
experimental cerebral malaria; phenylhydrazine (PHZ); dendritic cells
國(guó)家自然科學(xué)青年基金項(xiàng)目(81301455)
馮永輝 男,主管技師。主要從事抗感染免疫研究。E-mail:yonghui_feng@hotmail.com
* 通訊作者。女,副教授,碩士生導(dǎo)師。主要從事抗感染免疫研究。E-mail:zhu.xt918@gmail.com
2016-03-08;
2016-04-12
Q939.91;R392.3+1
A
1005-7021(2016)05-0051-06
10.3969/j.issn.1005-7021.2016.05.009