国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

染料敏化太陽(yáng)能電池中準(zhǔn)固態(tài)聚合物電解質(zhì)的研究進(jìn)展*

2017-01-10 13:33方悅韻黃啟章朱艷青沈成家王雷雷史繼富
新能源進(jìn)展 2016年6期
關(guān)鍵詞:敏化液態(tài)固態(tài)

方悅韻,黃啟章,朱艷青,沈成家,王雷雷,史繼富?,徐 剛

(1.中國(guó)科學(xué)院廣州能源研究所,廣州 510640;2.中國(guó)科學(xué)院可再生能源重點(diǎn)實(shí)驗(yàn)室,廣州 510640;3.廣東省新能源和可再生能源研究開發(fā)與應(yīng)用重點(diǎn)實(shí)驗(yàn)室,廣州 510640;4.中國(guó)科學(xué)院大學(xué),北京 100049;5.中國(guó)科學(xué)技術(shù)大學(xué),合肥 230026)

染料敏化太陽(yáng)能電池中準(zhǔn)固態(tài)聚合物電解質(zhì)的研究進(jìn)展*

方悅韻1,2,3,4,黃啟章1,2,3,4,朱艷青1,2,3,4,沈成家1,2,3,5,王雷雷1,2,3,史繼富1,2,3?,徐 剛1,2,3

(1.中國(guó)科學(xué)院廣州能源研究所,廣州 510640;2.中國(guó)科學(xué)院可再生能源重點(diǎn)實(shí)驗(yàn)室,廣州 510640;3.廣東省新能源和可再生能源研究開發(fā)與應(yīng)用重點(diǎn)實(shí)驗(yàn)室,廣州 510640;4.中國(guó)科學(xué)院大學(xué),北京 100049;5.中國(guó)科學(xué)技術(shù)大學(xué),合肥 230026)

染料敏化太陽(yáng)能電池(DSSC)制備工藝簡(jiǎn)單、制造成本低廉且轉(zhuǎn)換效率高,是太陽(yáng)能電池的重要發(fā)展方向,具有廣泛的應(yīng)用前景。目前,基于液態(tài)電解質(zhì)的DSSC的光電轉(zhuǎn)換效率最高已達(dá)到13%,但液態(tài)電解質(zhì)封裝困難、長(zhǎng)期穩(wěn)定性差等問(wèn)題阻礙了其實(shí)際應(yīng)用。近些年來(lái),固態(tài)和準(zhǔn)固態(tài)電解質(zhì)引起了研究學(xué)者們的廣泛關(guān)注。其中準(zhǔn)固態(tài)聚合物電解質(zhì)因具有較高的離子電導(dǎo)率、良好的電池界面接觸和可加工性能,成為制備高性能DSSC的重要研究方向之一。根據(jù)特征、形成機(jī)制和電解質(zhì)的物理狀態(tài),可將準(zhǔn)固態(tài)聚合物電解質(zhì)分為四大類:準(zhǔn)固態(tài)熱塑性聚合物電解質(zhì),準(zhǔn)固態(tài)熱固性聚合物電解質(zhì),準(zhǔn)固態(tài)復(fù)合型聚合物電解質(zhì)和準(zhǔn)固態(tài)離子型聚合物電解質(zhì)。本文分析了基于這幾類準(zhǔn)固態(tài)聚合物電解質(zhì)的DSSC的性能參數(shù),并對(duì)其存在的問(wèn)題和未來(lái)的研究方向進(jìn)行了探討。

染料敏化太陽(yáng)能電池;準(zhǔn)固態(tài);電解質(zhì);聚合物電解質(zhì)

0 前 言

1991年瑞士GR?TZEL教授的研究小組[1]首次提出了以羧酸聯(lián)吡啶釕(III)配合物作為染料,敏化多孔納米晶TiO2薄膜,制備出一種新型的太陽(yáng)能電池,稱之為染料敏化太陽(yáng)能電池(dye-sensitized solar cell,DSSC)。DSSC結(jié)構(gòu)簡(jiǎn)單、制備工藝簡(jiǎn)易、成本低廉,而且具有較高的光電轉(zhuǎn)換效率,自問(wèn)世以來(lái)受到了廣泛的關(guān)注。目前,基于液態(tài)電解質(zhì)的DSSC光電轉(zhuǎn)換效率最高已達(dá)到13%[2];然而液態(tài)電解質(zhì)的使用不利于電池的封裝,同時(shí)有機(jī)溶劑的揮發(fā)和泄漏容易造成電池的長(zhǎng)期穩(wěn)定性下降和壽命縮短等問(wèn)題。為此,科研工作者提出了利用固態(tài)或準(zhǔn)固態(tài)電解質(zhì)代替液態(tài)電解質(zhì)的想法。固態(tài)電解質(zhì)如無(wú)機(jī)P型半導(dǎo)體材料、有機(jī)/無(wú)機(jī)空穴傳輸材料、導(dǎo)電聚合物材料等,它們雖然能克服液態(tài)電解質(zhì)易揮發(fā)和泄漏的缺點(diǎn),但其電導(dǎo)率及潤(rùn)濕性能卻遠(yuǎn)不如液態(tài)電解質(zhì),導(dǎo)致DSSC電池效率偏低[3]。在液態(tài)電解質(zhì)中加入聚合物、有機(jī)小分子或者無(wú)機(jī)納米材料,可形成一個(gè)三維網(wǎng)絡(luò)結(jié)構(gòu),使得液態(tài)電解質(zhì)固化,從而得到準(zhǔn)固態(tài)電解質(zhì)[4],其電池的穩(wěn)定性和光電效率都能達(dá)到較高的水平。準(zhǔn)固態(tài)聚合物電解質(zhì)由于具有相對(duì)較高的離子電導(dǎo)率、良好的電池界面接觸和可加工性等優(yōu)勢(shì),是制備高性能準(zhǔn)固態(tài)染料敏化太陽(yáng)能電池(quasi-solid-state dye-sensitized solar cell,QS-DSSC)的研究熱點(diǎn)之一[5]。本文對(duì)國(guó)內(nèi)外研究學(xué)者近幾年關(guān)于準(zhǔn)固態(tài)聚合物電解質(zhì)在染料敏化太陽(yáng)能電池中應(yīng)用的研究成果進(jìn)行綜述。

1 DSSC的結(jié)構(gòu)和工作原理

DSSC的結(jié)構(gòu)是典型的“三明治”結(jié)構(gòu),一般由結(jié)合了染料敏化劑的多孔半導(dǎo)體光陽(yáng)極、氧化還原電解質(zhì)和對(duì)電極(通常為鉑電極)組成,其結(jié)構(gòu)及工作原理如圖1所示[6]。

當(dāng)太陽(yáng)光(hν)照射到DSSC上時(shí),在多孔半導(dǎo)體光陽(yáng)極上結(jié)合的染料分子吸收光能量并受激發(fā)從基態(tài)(S)躍遷到激發(fā)態(tài)(S*),由于S*的能級(jí)處于半導(dǎo)體光陽(yáng)極的導(dǎo)帶之上,在能級(jí)差的驅(qū)動(dòng)下,激發(fā)態(tài)的染料分子快速地將電子注入到半導(dǎo)體的導(dǎo)帶中并富集到導(dǎo)電基底上,經(jīng)外電路傳輸?shù)綄?duì)電極。染料分子因失去電子變成了氧化態(tài)(S+),接受電解質(zhì)溶液中的電子供體(I-)提供的電子而回到基態(tài),染料分子得以再生。I-提供電子后變成I3-,擴(kuò)散到對(duì)電極上得到外電路傳輸而來(lái)的電子而還原。由此完成一個(gè)光電化學(xué)循環(huán)過(guò)程,這就是DSSC的工作原理。然而在DSSC的實(shí)際工作過(guò)程中,氧化態(tài)的染料分子(S+)、電解質(zhì)溶液中的I3-容易與注入到半導(dǎo)體導(dǎo)帶中的電子發(fā)生復(fù)合反應(yīng)(如圖1中紅色虛線所標(biāo)示),稱之為背反應(yīng)。背反應(yīng)的發(fā)生會(huì)在一定程度上影響DSSC的光電轉(zhuǎn)換效率,因此要盡量避免背反應(yīng)的發(fā)生[3,5,7]。

圖1 DSSC的結(jié)構(gòu)和工作原理Fig.1 Structure and operating principle of DSSC

2 準(zhǔn)固態(tài)聚合物電解質(zhì)

電解質(zhì)作為電荷傳輸?shù)妮d體,對(duì)DSSC的光電轉(zhuǎn)換效率有十分重要的影響?;谝簯B(tài)電解質(zhì)的DSSC雖然具有較高的轉(zhuǎn)換效率,但是液態(tài)電解質(zhì)的使用也會(huì)導(dǎo)致一些實(shí)際問(wèn)題,如溶劑的泄漏和揮發(fā)、染料的光降解和解吸、對(duì)電極的腐蝕、封裝困難及長(zhǎng)期穩(wěn)定性差等。使用固態(tài)電解質(zhì)代替液態(tài)電解質(zhì)雖然克服了溶劑揮發(fā)、電解質(zhì)泄漏、電池壽命短和難封裝等問(wèn)題,但也存在著明顯的不足,比如在半導(dǎo)體氧化物和空穴傳輸材料的界面處電子的復(fù)合速率比較高、傳導(dǎo)率低等,導(dǎo)致電池效率明顯降低[3]。

準(zhǔn)固態(tài)電解質(zhì)是一種介于固態(tài)電解質(zhì)和液態(tài)電解質(zhì)之間的凝膠態(tài)電解質(zhì)[8],既表現(xiàn)出固態(tài)電解質(zhì)的長(zhǎng)期穩(wěn)定性,又具有液態(tài)電解質(zhì)較高的離子電導(dǎo)率和良好的界面潤(rùn)濕性能,因此具有很大的發(fā)展?jié)摿Α?zhǔn)固態(tài)電解質(zhì)是在液態(tài)電解質(zhì)的基礎(chǔ)上加入有機(jī)小分子凝膠劑、無(wú)機(jī)納米粒子或聚合物等一種或多種固化劑形成三維空間網(wǎng)絡(luò)結(jié)構(gòu),使液態(tài)電解質(zhì)固化而得到的。其中,以聚合物為固化劑的準(zhǔn)固態(tài)聚合物電解質(zhì),由于其蒸汽壓低,可塑性強(qiáng),并且對(duì)多孔光陽(yáng)極的滲透性好,不僅可以解決常規(guī)液態(tài)電解質(zhì)揮發(fā)性強(qiáng)、電池使用壽命短的問(wèn)題,還可以克服一般固態(tài)電解質(zhì)與電極之間界面接觸差、電池效率低的缺陷,是DSSC中準(zhǔn)固態(tài)電解質(zhì)體系的研究熱點(diǎn)。

根據(jù)特征、形成機(jī)制和電解質(zhì)的物理狀態(tài),可將準(zhǔn)固態(tài)聚合物電解質(zhì)分為四大類:準(zhǔn)固態(tài)熱塑性聚合物電解質(zhì)、準(zhǔn)固態(tài)熱固性聚合物電解質(zhì)、準(zhǔn)固態(tài)復(fù)合型聚合物電解質(zhì)和準(zhǔn)固態(tài)離子型聚合物電解質(zhì)[6]。

2.1 準(zhǔn)固態(tài)熱塑性聚合物電解質(zhì)(QS-TPPE)

一般情況下,準(zhǔn)固態(tài)聚合物電解質(zhì)是由聚合物(或低聚物)、有機(jī)溶劑、無(wú)機(jī)鹽和添加劑所組成的[6]。將聚合物基體與有機(jī)溶劑混合后,體系將被固化而形成凝膠狀態(tài)。在凝膠化的過(guò)程中,聚合物基體和溶劑之間存在一種相對(duì)較弱的相互作用力,通過(guò)凝膠作用、吸附作用及網(wǎng)絡(luò)纏結(jié)得到一種準(zhǔn)固態(tài)聚合物電解質(zhì)。這種較弱的相互作用包括氫鍵、范德華力和靜電力等,是一種“物理交聯(lián)”的作用力,受溫度的影響比較大[9-10]。因此,這種電解質(zhì)的狀態(tài)可以通過(guò)溫度的變化實(shí)現(xiàn)高溫下流動(dòng)狀態(tài)與低溫下凝膠狀態(tài)之間的可逆轉(zhuǎn)變。根據(jù)這個(gè)特點(diǎn),借用聚合物彈性體領(lǐng)域的一個(gè)名詞,我們稱這類準(zhǔn)固態(tài)聚合物電解質(zhì)為“準(zhǔn)固態(tài)熱塑性聚合物電解質(zhì)”(quasi-solid thermoplastic polymer electrolyte,QS-TPPE)[11]。由于電解質(zhì)體系中仍殘留了大量溶劑,TPPE可表現(xiàn)出液態(tài)電解質(zhì)較高的離子導(dǎo)電率和良好的界面潤(rùn)濕性、填充性的特性;同時(shí),由于溶劑在一定的程度上受到三維網(wǎng)絡(luò)結(jié)構(gòu)的束縛,使得TPPE亦具有一些固態(tài)電解質(zhì)穩(wěn)定性的優(yōu)點(diǎn),如較低的液體流動(dòng)性、較少液體揮發(fā)和泄漏等[10]。

聚合物固化劑是QS-TPPE的一個(gè)重要的組成部分,一般采用線性聚合物,包括聚環(huán)氧乙烷/聚乙二醇(PEO/PEG)、聚丙烯腈(PAN)、聚乙烯吡咯烷酮(PVP)、聚苯乙烯(PS)、聚氯乙烯(PVC)、聚偏氟乙烯(PVDF)、聚甲基丙烯酸甲酯(PMMA)等[12]。

CAO等[13]是在DSSC中使用QS-TPPE的先驅(qū)。1995年,他們將含有碳酸亞乙酯(EC)、碳酸丙烯酯(PC)、乙腈(AN)、NaI和I2的PAN聚合物與液態(tài)電解質(zhì)混合后得到QS-TPPE,用這種電解質(zhì)制備的DSSC表現(xiàn)出可與液態(tài)電解質(zhì)電池相提并論的光電性能和穩(wěn)定性。從此之后,人們開始研究QS-TPPE并應(yīng)用于DSSC中。

PEO/PEG和它的共聚物是制備QS-TPPE最常用的固化劑。2007年,WU等[11]研究了PEG/PC/KI+I2體系,這是制備QS-TPPE的典型例子。以PEG作為聚合物基體(質(zhì)量分?jǐn)?shù)為40%),PC作為有機(jī)溶劑(質(zhì)量分?jǐn)?shù)為60%),KI和I2作為離子導(dǎo)體,進(jìn)行簡(jiǎn)單的混合后即可得到一種新型的電解質(zhì)QS-TPPE,這種電解質(zhì)的粘度、電導(dǎo)率和相態(tài)均可以通過(guò)溫度和電解質(zhì)組分的改變而發(fā)生可逆的變化。在50~100℃的溫度條件下,這種QS-TPPE表現(xiàn)出較強(qiáng)的流動(dòng)性;而在15~40℃的溫度下則表現(xiàn)為流動(dòng)性較差的凝膠狀態(tài),如圖2所示。在組裝電池的過(guò)程中,將電極、電解質(zhì)的溫度始終維持在50℃,此時(shí)電解質(zhì)流動(dòng)性能較好,粘度為0.76 Pa·s,有利于電解質(zhì)更好地滲透進(jìn)多孔TiO2薄膜中,并能增強(qiáng)電解質(zhì)和電極間的界面接觸。組裝完畢后電池冷卻至室溫,電解質(zhì)轉(zhuǎn)變?yōu)槟z狀態(tài),便于電池的存儲(chǔ)和運(yùn)輸。實(shí)際應(yīng)用中,由于太陽(yáng)光譜中紅外波段的熱效應(yīng),DSSC的工作溫度一般高于50℃,此時(shí)相當(dāng)于液態(tài)電池,表現(xiàn)出較高的轉(zhuǎn)換效率7.22%。可見(jiàn),QS-TPPE這種可逆的熱塑性反應(yīng)對(duì)DSSC的制備、長(zhǎng)期穩(wěn)定性及實(shí)際應(yīng)用等方面都有很大益處。SHI等[14]用高分子量的PEO(Mw=2×106)作為聚合物基體(質(zhì)量分?jǐn)?shù)為10%),固化液態(tài)電解質(zhì)并制備出QS-TPPE,相應(yīng)的電池在100 mW·cm-2和30 mW·cm-2光照下的光電轉(zhuǎn)換效率分別為6.12%和10.11%。

圖2 PEG/PC/KI+I2體系在不同溫度下制備得到的TPPE[11]Fig.2 TPPE prepared through PEG/PC/KI+I2under different temperatures[11]

除了將聚合物固化劑與液態(tài)電解質(zhì)進(jìn)行簡(jiǎn)單的混合,也有其他一些方法制備QS-TPPE。LEE等[15]將PS納米微粒涂覆在Pt對(duì)電極的表面,當(dāng)將液態(tài)電解質(zhì)填充到組裝好的DSSC中時(shí),PS將會(huì)溶解并作為固化劑使液態(tài)電解質(zhì)轉(zhuǎn)變?yōu)闇?zhǔn)固態(tài)電解質(zhì)。用這種QS-TPPE制備的DSSC轉(zhuǎn)換效率為7.59%,而液態(tài)電解質(zhì)DSSC的效率為7.54%,且這種電池的長(zhǎng)期穩(wěn)定性得到了一定的提升。SEO等[16]把溴化的聚2,6-二甲基-1,4-苯醚(BPPO)納米纖維置于光電陽(yáng)極的表面,BPPO會(huì)溶解在液態(tài)電解質(zhì)中并進(jìn)行固化,形成QS-TPPE,相應(yīng)的DSSC與傳統(tǒng)的液態(tài)電解質(zhì)的效率相近,并且能表現(xiàn)出優(yōu)良的長(zhǎng)期穩(wěn)定性。

2.2 準(zhǔn)固態(tài)熱固性聚合物電解質(zhì)(QS-TSPE)

另一種準(zhǔn)固態(tài)聚合物電解質(zhì)是熱固性聚合物電解質(zhì)。這種電解質(zhì)是通過(guò)有機(jī)小分子的化學(xué)交聯(lián)或共價(jià)交聯(lián)作用形成三維聚合物網(wǎng)絡(luò)結(jié)構(gòu),固化液態(tài)電解質(zhì)而得到的[9,17-18]。在溫度變化情況下,這種電解質(zhì)不能進(jìn)行可逆的熱轉(zhuǎn)換,因此稱之為準(zhǔn)固態(tài)熱固性聚合物電解質(zhì)(quasi-solid thermosetting polymer electrolyte,QS-TSPE)[19]。QS-TSPE雖然從外觀上看是固態(tài)的,但由于在其體系中仍然殘留了一些液態(tài)電解質(zhì),我們?nèi)园阉鼩w為準(zhǔn)固態(tài)電解質(zhì)的范疇。QS-TPPE和QS-TSPE的主要區(qū)別在于,QS-TPPE是物理交聯(lián)形成的,而QS-TSPE是化學(xué)交聯(lián)形成的。盡管QS-TSPE的離子電導(dǎo)率比QS-TPPE和液態(tài)電解質(zhì)的要低,但它的物理性能、化學(xué)性能、熱穩(wěn)定性都比其他兩種電解質(zhì)要好,因此,QS-TSPE是能得到具有良好光電性能和長(zhǎng)期穩(wěn)定性DSSC的一種優(yōu)質(zhì)的電解質(zhì)[20-21]。

制備QS-TSPE有三種常用的方法,如圖3所示。第一種制備方法是光引發(fā)原位聚合,將未交聯(lián)的單體或低聚物溶解在液態(tài)電解質(zhì)中,然后注入到組裝好的DSSC中,DSSC的液態(tài)電解質(zhì)或?qū)﹄姌O中已含有交聯(lián)劑,在光照的條件下,將引發(fā)原位聚合并發(fā)生交聯(lián)反應(yīng),形成準(zhǔn)固態(tài)化學(xué)交聯(lián)電解質(zhì)QS-TSPE。2001年,MATSUMOTO等[22]首次在多孔TiO2薄膜上通過(guò)光引發(fā)α-甲基丙烯酰-ω-甲氧基八聚環(huán)氧乙烷[α-methacryloyl-ω-methoxyocta(oxyethylene),MMO] 發(fā)生原位聚合,固化液態(tài)電解質(zhì),從而制備出QS-TSPE。用這種電解質(zhì)制得的DSSC的離子電導(dǎo)率為2.67 mS·cm-1,光電轉(zhuǎn)換效率為2.62%,能達(dá)到液態(tài)電解質(zhì)的86.4%。在這之后,HAYASE小組[23-29]系統(tǒng)地研究了能用于DSSC的光引發(fā)原位聚合的化學(xué)交聯(lián)電解質(zhì)QS-TSPE。2011年,PARVEZ等[30]在DSSC的TiO2多孔薄膜中注入含PEG和雙官能團(tuán)的PEGDA(聚乙二醇二丙烯酸酯)單體的電解質(zhì)溶液;在100 mW·cm-2的紫外光下照射20 min,PEG和PEGDA形成交聯(lián)結(jié)構(gòu),DSSC的轉(zhuǎn)換效率從2.58%升高到4.18%,并且表現(xiàn)出比純PEG液態(tài)電解質(zhì)更好的長(zhǎng)期穩(wěn)定性。

圖3 QS-TSPE的制備方法[6]Fig.3 Preparation of QS-TSPE[6]

第二種制備方法與第一種方法類似,是熱引發(fā)原位聚合[22,30-31]。KOMIYA等[32]使用聚(環(huán)氧乙烷-共-環(huán)氧丙烷)三甲基丙烯酸酯[poly(ethylene oxide-co-propylene oxide) trimethacrylate] 作為制備準(zhǔn)固態(tài)電解質(zhì)的前驅(qū)體,注入到組裝好的電池中,在90℃下加熱90 min,形成三維網(wǎng)絡(luò)結(jié)構(gòu)。也許是由于三維網(wǎng)絡(luò)結(jié)構(gòu)的作用抑制了反向電流,用這種QS-TSPE制得的DSSC與液態(tài)電解質(zhì)相比,具有更高的Voc和較高的光電效率,為8.1%。WANG等[33]制備出一種隱含了化學(xué)交聯(lián)凝膠電解質(zhì)前驅(qū)體的項(xiàng)鏈狀準(zhǔn)固態(tài)聚合物電解質(zhì),并將其注入組裝好的DSSC中,加熱到80℃后產(chǎn)生凝膠化,引發(fā)了原位聚合形成三維共價(jià)交聯(lián)聚合物網(wǎng)絡(luò),最終形成QS-TSPE。該DSSC的電流密度為13~17 mA·cm-2,光電效率為7.72%。

第三種制備方法是液態(tài)電解質(zhì)吸附法[19,21,34-43],采用已化學(xué)交聯(lián)的大分子聚合物作為基質(zhì)吸附液態(tài)電解質(zhì)或?qū)⑵湓谝簯B(tài)電解質(zhì)中溶脹。梁桂杰等[44]合成聚檸檬酸-乙二醇(PCE)交聯(lián)聚合物作為基體吸收液態(tài)電解質(zhì),制備出PCE/LiI/I2交聯(lián)聚合物電解質(zhì),其形成示意圖如圖4所示。WU等[19-21]通過(guò)典型的PAA-PEG/NMP+GBL/NaI+I2(PAA:聚丙烯酸,NMP:N-甲基吡咯烷酮,GBL:γ-羥基丁酸內(nèi)酯)體系制備出一種QS-TSPE,經(jīng)過(guò)兩親性PEG改性后,PAA-PEG表現(xiàn)出高水平的有機(jī)溶劑吸收能力,能吸收自重8~10倍的液態(tài)電解質(zhì)。將PAA-PEG浸泡在液態(tài)電解質(zhì)中,由實(shí)驗(yàn)現(xiàn)象可見(jiàn)其浸泡前是黃色的,浸泡后變?yōu)樽厣?,表明含碘電解質(zhì)已被吸收,最終得到QS-TSPE,如圖5所示。這種QS-TSPE具有較高的離子電導(dǎo)率,為6.12 mS·cm-1,相應(yīng)的DSSC表現(xiàn)出卓越的長(zhǎng)期穩(wěn)定性,且轉(zhuǎn)換效率為6.10%。此外,當(dāng)在PAA-PEG體系中引入第三種組分聚吡咯(PPY),可形成PAA-PEG-PPY聚合物基質(zhì),相應(yīng)的DSSC的效率可達(dá)7.0%。ILEPERUMA等[45]用制備的超薄多孔聚偏氟乙烯-六氟丙烯(PVDF-HFP)共聚物薄膜吸收有機(jī)液體電解質(zhì)后制得超薄多孔PVDF-HFP薄膜電解質(zhì),相應(yīng)的DSSC效率為8.35%,而液態(tài)電解質(zhì)DSSC的效率為7.9%。HO小組[46]用聚氧化乙烯嵌段的多官能團(tuán)共聚物、氨基酸交聯(lián)劑、酰胺交聯(lián)劑來(lái)制備3D網(wǎng)絡(luò)納米通道并吸收液態(tài)電解質(zhì)制得QS-TSPE。這種電解質(zhì)相應(yīng)的DSSC的效率為9.48%,比液態(tài)電解質(zhì)DSSC的8.84%要高,這可能是由于QS-TSPE的存在能夠有效地抑制暗反應(yīng)。

圖4 PCE/LiI/I2交聯(lián)聚合物電解質(zhì)的形成示意圖[44]Fig.4 Formation of the PCE/LiI/I2crosslinked polymer electrolyte[44]

圖5 PAA-PEG在含碘液體電解質(zhì)中浸泡前(a)和浸泡后(b)的對(duì)比[19]Fig.5 PAA-PEG before (a) and after (b) being soaked in iodide/triiodide liquid electrolyte[19]

PARK等[47-49]2012年發(fā)明了一種引發(fā)表面原位聚合的方法制備QS-TSPE。其研究表明,在納米晶TiO2表面引發(fā)的交聯(lián)聚合作用將會(huì)導(dǎo)致TiO2粒子密封,這種密封效果會(huì)提高DSSC的穩(wěn)定性和光電性能,其光電效率從7.6%提高到8.1%。2013年,他們?cè)诩{米晶TiO2顆粒的表面通過(guò)引發(fā)甲基丙烯酸甲酯(MMA)和1,6-己二醇二丙烯酸鹽(HDDA)發(fā)生交聯(lián)聚合反應(yīng),合成了納米多孔網(wǎng)狀聚合物。這種納米多孔結(jié)構(gòu)能夠有選擇的運(yùn)輸?shù)怆x子,顯著地抑制暗電流,相應(yīng)DSSC的轉(zhuǎn)換效率為10.6%,比液態(tài)電解質(zhì)DSSC高出20%。

2.3 準(zhǔn)固態(tài)復(fù)合型聚合物電解質(zhì)

在液態(tài)聚合物電解質(zhì)中加入無(wú)機(jī)材料,如TiO2、SiO2、ZnO、Al2O3、碳等作為固化劑制備得到準(zhǔn)固態(tài)復(fù)合型聚合物電解質(zhì)(quasi-solid composite polymer electrolyte)[50-51]。眾所周知,許多聚合物電解質(zhì)由于其嚴(yán)格的結(jié)晶性導(dǎo)致其表現(xiàn)出較低的離子電導(dǎo)率。在DSSC中,添加無(wú)機(jī)納米粒子可以固化液態(tài)電解質(zhì)轉(zhuǎn)變?yōu)闇?zhǔn)固態(tài)電解質(zhì),進(jìn)而提高電解質(zhì)的離子電導(dǎo)率和長(zhǎng)期穩(wěn)定性[52-59]。同時(shí),在電解質(zhì)中摻雜無(wú)機(jī)納米粒子會(huì)形成有機(jī)和/或有機(jī)-無(wú)機(jī)網(wǎng)絡(luò)結(jié)構(gòu),I-/I3-離子能有序排列并在無(wú)機(jī)納米粒子網(wǎng)絡(luò)中運(yùn)輸,將加快電荷傳輸速度[60-63]。

摻雜TiO2、SiO2、ZnO、Al2O3無(wú)機(jī)納米粒子是制備準(zhǔn)固態(tài)復(fù)合型聚合物電解質(zhì)常用的固化劑。1998年前后,CLEMENTE等[64]和CROCE等[65-66]提出在聚合物電解質(zhì)中加入無(wú)機(jī)納米粒子來(lái)改變電解質(zhì)的物理狀態(tài)和電導(dǎo)率。其研究顯示,在電解質(zhì)中加入TiO2和Al2O3納米粉末后,由于增大了電解質(zhì)的非晶度,PEO-LiClO4電解質(zhì)的電導(dǎo)率有所上升。KATSAROS等[67-68]在含聚環(huán)氧乙烷(PEO)、LiI和I2的聚合物電解質(zhì)中加入TiO2納米顆粒,相應(yīng)QS-DSSC在65.6 mW·cm-2的光強(qiáng)下效率為4.2%。HUO等[61]用TiO2納米顆粒作固化劑固化PVDF-HFP液態(tài)電解質(zhì)(如圖6所示),這種納米TiO2聚合物電解質(zhì)所制得的QS-DSSC的光電轉(zhuǎn)換效率為7.18%,而液態(tài)電解質(zhì)DSSC的效率為7.01%。其電阻抗譜圖顯示,加入TiO2納米粒子能減少電解質(zhì)與電極間的電荷復(fù)合,而且這種DSSC在60℃下加熱1 000 h后仍能保持其90%的光電性能。MENG小組[69-71]將SiO2納米顆粒加入到LiI-C2H5OH液態(tài)電解質(zhì)中,電解質(zhì)從溶膠狀態(tài)轉(zhuǎn)變?yōu)闇?zhǔn)固態(tài),制備出一種環(huán)境友好型的復(fù)合型聚合物電解質(zhì)。這種Li(C2H5OH)4I/SiO2復(fù)合型聚合物電解質(zhì)所制得的QS-DSSC的光電轉(zhuǎn)換效率為6.1%。ZHANG等[72]將用PEG嫁接后的ZnO納米顆粒分散在液態(tài)電解質(zhì)中形成準(zhǔn)固態(tài)復(fù)合型聚合物電解質(zhì)(ZnO-PEG∶PEG∶KI∶I2=19.3∶73.3∶6.7∶0.67),相應(yīng)的QS-DSSC的效率為3.1%。在電解質(zhì)中再加入4-叔丁基吡啶(TBP)組分后,電池的效率增加到5.0%。

圖6 液態(tài)電解質(zhì)、凝膠電解質(zhì)(倒置)、添加TiO2納米顆粒的復(fù)合凝膠電解質(zhì)(倒置)的圖示(從左到右)[61]Fig.6 Electrolyte photos,from left to right,of liquid,normal gel (bottle upside down) and titania nanoparticles composite gel (bottle upside down)[61]

此外,介孔顆粒(MCM-41)、納米黏土、碳納米材料等也可作為固化劑制備準(zhǔn)固態(tài)復(fù)合型聚合物電解質(zhì)。介孔二氧化硅MCM-41納米顆粒由于其獨(dú)特的介孔結(jié)構(gòu)和較大比表面積,為氧化還原電對(duì)提供了傳輸?shù)募{米通道,摻雜介孔顆粒的聚合物電解質(zhì)相應(yīng)的DSSC的效率為4.65%(30 mW·cm-2)[73]。最近,MHAISALKAR和UCHIDA小組[74-75]通過(guò)合成的硝酸鹽-鋁碳酸鎂納米黏土固化液態(tài)電解質(zhì)制備出一種準(zhǔn)固態(tài)復(fù)合型聚合物電解質(zhì),相應(yīng)的DSSC的效率為10.1%。

2.4 準(zhǔn)固態(tài)離子型聚合物電解質(zhì)

離子液體是指在室溫下呈現(xiàn)液體狀態(tài)的離子化合物,也稱之為室溫融鹽,一般由有機(jī)雜環(huán)陽(yáng)離子和無(wú)機(jī)陰離子組成,其中陰離子是碘離子的離子液體較多地應(yīng)用于DSSC領(lǐng)域。相對(duì)于有機(jī)溶劑電解質(zhì),離子液體電解質(zhì)的蒸汽壓低,基本不揮發(fā),并且化學(xué)性質(zhì)穩(wěn)定,具有較大的溫度范圍,電化學(xué)窗口寬,電導(dǎo)率較高。在離子液體溶液中加入高分子聚合物、小分子交聯(lián)劑或無(wú)機(jī)納米顆粒等進(jìn)行固化能得到準(zhǔn)固態(tài)離子型電解質(zhì)。將聚合物作為固化劑,引入離子液體,得到的準(zhǔn)固態(tài)離子型聚合物電解質(zhì)(quasi-solid ionic liquid polymer electrolytes),同時(shí)兼?zhèn)淞穗x子液體和聚合物的優(yōu)點(diǎn),所組成DSSC的熱穩(wěn)定性和化學(xué)穩(wěn)定性都得到了提高,因此受到了一定的關(guān)注[8,76]。

2002年,WANG等[77]首次利用聚合物作為固化劑制備DSSC的準(zhǔn)固態(tài)離子型聚合物電解質(zhì)。首先用離子液體1-甲基-3-丙基咪唑碘(MPII)與P(VDF-HFP) 結(jié)合形成聚合物凝膠電解質(zhì),然后用染料Z907敏化光陽(yáng)極,制得DSSC。該電池在100 mW·cm-2的光強(qiáng)下,電池的Jsc、Voc、FF分別為11.29 mA·cm-2、0.665 V、0.712,光電轉(zhuǎn)換效率達(dá)到5.3%,與液態(tài)電解質(zhì)DSSC很接近,而且其體系比較穩(wěn)定,經(jīng)過(guò)長(zhǎng)時(shí)間照射后電池的效率無(wú)明顯下降,這一點(diǎn)對(duì)DSSC的實(shí)用化是非常重要的。

LI等[78]采用氯化(1-丁基-3-甲基咪唑)([BMIM]Cl)為溶劑、碘化-1-甲基-3-丙基咪唑(MPII)為碘源、聚(甲基丙烯酸羥乙酯/丙三醇)[P(HEMA/GR)]為凝膠劑,制備了一種吸附離子液體的準(zhǔn)固態(tài)聚合物電解質(zhì)。由于兩親性的P(HEMA/GR)具有超凡的吸收能力,離子液體電解質(zhì)能被吸收并與P(HEMA/GR)進(jìn)行相互作用。這種準(zhǔn)固態(tài)聚合物離子液體電解質(zhì)表現(xiàn)出較高的離子電導(dǎo)率(14.29×10-3S·cm-1)和良好的耐久性能,相應(yīng)的DSSC的效率為7.15%。

2014年,CHANG等[79]合成了一種新型的聚合物離子液體POEI-II,用于制備DSSC的凝膠電解質(zhì),如圖7所示。這種POEI-II凝膠電解質(zhì)相應(yīng)的QS-DSSC達(dá)到較高的光電轉(zhuǎn)換效率7.19%。此外,在POEI-II凝膠電解質(zhì)中添加多壁碳納米管(MWCNT)后(如圖8所示),由于擴(kuò)展傳輸材料(EETM)的影響,能進(jìn)一步提升電池的性能。這種POEI-II/MWCNT凝膠電解質(zhì)的DSSC得到的最高轉(zhuǎn)換效率為7.65%,且在50℃下存放超過(guò)1 000 h后仍保持穩(wěn)定。

離子液體與傳統(tǒng)的有機(jī)溶劑相比有很多優(yōu)點(diǎn),離子型電解質(zhì)在DSSC中的應(yīng)用受到越來(lái)越多的重視。但它同時(shí)也存在著一些不足,由于離子液體的粘度較大,會(huì)影響碘離子的擴(kuò)散,進(jìn)而降低了電池的光電轉(zhuǎn)換效率。因此,采用低粘度離子液體、使用兩種或兩種以上的離子液體混合使其性能互補(bǔ),能進(jìn)一步推動(dòng)此類離子型電解質(zhì)的實(shí)用化,將會(huì)是今后研究的重點(diǎn)[8,76]。

圖7 POE-II的合成路徑[79]Fig.7 Synthetic pathway to poly(oxyethylene)-imide imidazolium iodide (POE-II)[79]

圖8 (a)原始POEI-II,(b)POEI-II凝膠電解質(zhì),(c)POEI-II/MWCNT凝膠電解質(zhì)的圖示[79]Fig.8 Electrolyte photographs of (a) pristine POEI-II,(b) POEI-II gel,and (c) POEI-II/MWCNT gel[79]

3 展 望

采用準(zhǔn)固態(tài)聚合物電解質(zhì)代替?zhèn)鹘y(tǒng)的液態(tài)電解質(zhì)組裝而成的染料敏化太陽(yáng)能電池,在彌補(bǔ)液態(tài)電解質(zhì)易揮發(fā)和泄漏等不足的同時(shí)能提高電池的穩(wěn)定性,然而其光電轉(zhuǎn)換效率仍低于液態(tài)電解質(zhì)電池。我們分析認(rèn)為主要是由于以下幾個(gè)原因:(1)準(zhǔn)固態(tài)聚合物電解質(zhì)體系的粘度大,電導(dǎo)率與液態(tài)電解質(zhì)相比相對(duì)較低;(2)具有高結(jié)晶性的聚合物在低溫下易析出,不利于電解質(zhì)與電極的界面接觸并降低其潤(rùn)濕性能;(3)當(dāng)溫度升高時(shí),仍然存在揮發(fā)、穩(wěn)定性下降等問(wèn)題。為了克服上述缺點(diǎn),目前的研究主要采取以下措施改進(jìn)聚合物電解質(zhì):(1)添加增塑劑,提高高分子鏈段的移動(dòng)能力,降低體系粘度進(jìn)而增加離子電導(dǎo)率;(2)添加交聯(lián)劑,在提高機(jī)械強(qiáng)度的同時(shí)抑制高分子結(jié)晶;(3)采用兩種或以上的聚合物共混或共聚,降低電解質(zhì)內(nèi)部的結(jié)晶度,提高電導(dǎo)率;(4)合成超支化聚合物電解質(zhì)等[80-84]。

目前,準(zhǔn)固態(tài)聚合物電解質(zhì)在染料敏化太陽(yáng)能電池中的應(yīng)用中雖然已經(jīng)取得了一定的進(jìn)展,但是研究進(jìn)程仍處于初級(jí)階段,還有很多問(wèn)題沒(méi)有解決,仍有很大的發(fā)展?jié)摿?。相信在我們廣大科研工作者的共同努力下,染料敏化太陽(yáng)能電池的光電轉(zhuǎn)換效率將得到進(jìn)一步的提高,產(chǎn)業(yè)化指日可待。

[1] O’REGAN B,GR?TZEL M.A low-cost,high-efficiency solar cell based on dye-sensitized colloidal TiO2films[J].Nature,1991,353(6346):737-740.DOI:10.1038/353737a0.

[2] MATHEW S,YELLA A,GAO P,et al.Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers[J].Nature chemistry,2014,6(3):242-247.DOI:10.1038/nchem.1861.

[3] 孫旭輝,包塔娜,張凌云,等.染料敏化太陽(yáng)能電池的研究進(jìn)展[J].化工進(jìn)展,2012,31(1):47-52.DOI:10.16085/j.issn.1000-6613.2012.01.003.

[4] 林琳,林建明,康世杰,等.染料敏化太陽(yáng)能電池中電解質(zhì)的研究進(jìn)展[J].材料導(dǎo)報(bào),2007,21(IX):292-294,298.

[5] 王惟嘉,楊英,郭學(xué)益,等.準(zhǔn)固態(tài)聚合物電解質(zhì)在染料敏化太陽(yáng)能電池中的應(yīng)用[J].化學(xué)通報(bào),2011,74(2):144-149.DOI:10.14159/j.cnki.0441-3776.2011.02.013.

[6] WU J H,LAN Z,LIN J M,et al.Electrolytes in dye-sensitized solar cells[J].Chemical reviews,2015,115(5):2136-2173.DOI:10.1021/cr400675m.

[7] 陳煒,孫曉丹,李恒德,等.染料敏化太陽(yáng)能電池的研究進(jìn)展[J].世界科技研究與發(fā)展,2004,26(5):27-35.DOI:10.16507/j.issn.1006-6055.2004.05.006.

[8] 劉雨欣,唐宏哲.染料敏化太陽(yáng)能電池研究進(jìn)展[J].現(xiàn)代制造技術(shù)與裝備,2015(5):27-30.DOI:10.16107/j.cnki.mmte.2015.0274.

[9] NOGUEIRA A F,LONGO C,DE PAOLI M-A.Polymers in dye sensitized solar cells:overview and perspectives[J].Coordination chemistry reviews,2004,248(13/14):1455-1468.DOI:10.1016/j.ccr.2004.05.018.

[10] WU J H,LAN Z,HAO S C,et al.Progress on the electrolytes for dye-sensitized solar cells[J].Pure and applied chemistry,2008,80(11):2241-2258.DOI:10.1351/pac200880112241.

[11] WU J H,HAO S C,LAN Z,et al.A thermoplastic gel electrolyte for stable quasi-solid-state dye-sensitized solar cells[J].Advanced functional materials,2007,17(15):2645-2652.DOI:10.1002/adfm.200600621.

[12] SONG D,CHO W,LEE J H,et al.Toward higher energy conversion efficiency for solid polymer electrolyte dye-sensitized solar cells:ionic conductivity and TiO2pore-filling[J].The journal of physical chemistry letters,2014,5(7):1249-1258.DOI:10.1021/jz5002727.

[13] CAO F,OSKAM G,SEARSON P C.A solid state,dye sensitized photoelectrochemical cell[J].The journal of physical chemistry,1995,99(47):17071-17073.DOI:10.1021/j100047a003.

[14] SHI Y T,ZHAN C,WANG L D,et al.The electrically conductive function of high-molecular weight poly(ethylene oxide) in polymer gel electrolytes used for dye-sensitized solar cells[J].Physical chemistry chemical physics,2009,11(21):4230-4235.DOI:10.1039/B901003C.

[15] LEE K S,JUN Y,PARK J H.Controlled dissolution of polystyrene nanobeads:transition from liquid electrolyte to gel electrolyte[J].Nano letters,2012,12(5):2233-2237.DOI:10.1021/nl204287w.

[16] SEO S-J,YUN S-H,WOO J-J,et al.Preparation and characterization of quasi-solid-state electrolytes using a brominated poly(2,6-dimethyl-1,4-phenylene oxide) electrospun nanofiber mat for dye-sensitized solar cells[J].Electrochemistry communications,2011,13(12):1391-1394.DOI:10.1016/j.elecom.2011.08.018.

[17] Chapin D M,Fuller C S,Pearson G L.A new silicon P-N junction photocell for converting solar radiation into electrical power[J].Journal of Applied Physics,1954,25(5):676-677.DOI:10.1063/1.1721711.

[18] LISKA P,VLACHOPOULOS N,NAZEERUDDIN M K,et al.cis-Diaquabis(2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium(II) sensitizes wide band gap oxide semiconductors very efficiently over a broad spectral range in the visible[J].Journal of the american chemical society,1988,110(11):3686-3687.DOI:10.1021/ja00219a068.

[19] WU J H,LAN Z,LIN J M,et al.A novel thermosetting gel electrolyte for stable quasi-solid-state dye-sensitized solar cells[J].Advanced materials,2007,19(22):4006-4011.DOI:10.1002/adma.200602886.

[20] KANG M-S,AHN K-S,LEE J-W.Quasi-solid-state dye-sensitized solar cells employing ternary component polymer-gel electrolytes[J].Journal of power sources,2008,180(2):896-901.DOI:10.1016/j.jpowsour.2008.02.087.

[21] LAN Z,WU J H,HAO S C,et al.Template-free synthesis of closed-microporous hybrid and its application in quasi-solid-state dye-sensitized solar cells[J].Energy &environmental science,2009,2(5):524-528.DOI:10.1039/B821908G.

[22] MATSUMOTO M,WADA Y,KITAMURA T,et al.Fabrication of solid-state dye-sensitized TiO2solar cell using polymer electrolyte[J].Bulletin of the chemical society of Japan,2001,74(2):387-393.DOI:10.1246/ bcsj.74.387.

[23] KATO T,OKAZAKI A,HAYASE S.Latent gel electrolyte precursors for quasi-solid dye sensitized solar cells[J].Chemical communications,2005(3):363-365.DOI:10.1039/b412462f.

[24] MIKOSHIBA S,MURAI S,SUMINO H,et al.Anomalous increase in photocurrent density for quasi-solid dye sensitized solar cells by addition of Tetra(bromomethyl)benzene[J].Chemistry letters,2002,31(9):918-919.DOI:10.1246/cl.2002.918.

[25] MIKOSHIBA S,MURAI S,SUMINO H,et al.Ionic liquid type dye-sensitized solar cells:increases in photovoltaic performances by adding a small amount of water[J].Current applied physics,2005,5(2):152-158.DOI:10.1016/j.cap.2004.06.023.

[26] MURAI S,MIKOSHIBA S,SUMINO H,et al.Quasi-solid dye-sensitized solar cells containing chemically cross-linked gel:How to make gels with a small amount of gelator[J].Journal of photochemistry and photobiology A:chemistry,2002,148(1/3):33-39.DOI:10.1016/S1010-6030(02) 00046-1.

[27] MURAI S,MIKOSHIBA S,SUMINO H,et al.Quasi-solid dye sensitised solar cells filled with phase-separated chemically cross-linked ionic gels[J].Chemical communications,2003(13):1534-1535.DOI:10.1039/b302793g.

[28] SAKAGUCHI S,UEKI H,KATO T,et al.Quasi-solid dye sensitized solar cells solidified with chemically cross-linked gelators:Control of TiO2/gel electrolytes and counter Pt/gel electrolytes interfaces[J].Journal of photochemistry and photobiology A:chemistry,2004,164(1/3):117-122.DOI:10.1016/j.jphotochem.2003.11.014.

[29] SHIBATA Y,KATO T,KADO T,et al.Quasi-solid dye sensitised solar cells filled with ionic liquid—increase in efficiencies by specific interaction between conductive polymers and gelators[J].Chemical communications,2003(21):2730-2731.DOI:10.1039/b305368g.

[30] PARVEZ M K,IN I,PARK J M,et al.Long-term stable dye-sensitized solar cells based on UV photocrosslinkable poly(ethylene glycol) and poly(ethylene glycol) diacrylate based electrolytes[J].Solar energy materials and solar cells,2011,95(1):318-322.DOI:10.1016/j.solmat.2010.04.018.

[31] BELLA F,BONGIOVANNI R.Photoinduced polymerization:an innovative,powerful and environmentally friendly technique for the preparation of polymer electrolytes for dye-sensitized solar cells[J].Journal of photochemistry and photobiology C:photochemistry reviews,2013,16:1-21.DOI:10.1016/j.jphotochemrev.2013.03.002.

[32] KOMIYA R,HAN L,YAMANAKA R,et al.Highly efficient quasi-solid state dye-sensitized solar cell with ion conducting polymer electrolyte[J].Journal of photochemistry and photobiology A:chemistry,2004,164(1/3):123-127.DOI:10.1016/j.jphotochem.2003.11.015.

[33] WANG L,FANG S B,LIN Y,et al.A 7.72% efficient dye sensitized solar cell based on novel necklace-like polymer gel electrolyte containing latent chemically cross-linked gel electrolyte precursors[J].Chemical communications,2005(45):5687-5689.DOI:10.1039/ b510335e.

[34] LAN Z,WU J H,LIN J M,et al.Quasi-solid-state dye-sensitized solar cells with a novel efficient absorbent for liquid electrolyte based on PAA-PEG hybrid[J].Journal of power sources,2007,164(2):921-925.DOI:10.1016/j.jpowsour.2006.11.011.

[35] LAN Z,WU J H,LIN J M,et al.Quasi-solid-state dye-sensitized solar cells containing P(MMA-co-AN)-based polymeric gel electrolyte[J].Polymers for advanced technologies,2011,22(12):1812-1815.DOI:10.1002/pat.1675.

[36] LAN Z,WU J H,LIN J M,et al.Influence of molecular weight of PEG on the property of polymer gel electrolyte and performance of quasi-solid-state dye-sensitized solar cells[J].Electrochimica acta,2007,52(24):6673-6678.DOI:10.1016/j.electacta.2007.04.076.

[37] LI P,WU J H,HAO S C,et al.Quasi-solid state dye-sensitized solar cells based on the cross-linked poly(ethylene glycol) electrolyte with tetraethoxysilane[J].Journal of applied polymer science,2011,120(3):1752-1757.DOI:10.1002/app.33369.

[38] LI P J,WU J H,HUANG M L,et al.The application of P(MMA-co-MAA)/PEG polyblend gel electrolyte in quasi-solid state dye-sensitized solar cell at higher temperature[J].Electrochimica acta,2007,53(2):903-908.DOI:10.1016/j.electacta.2007.07.068.

[39] TANG Z Y,LIU Q,TANG Q W,et al.Preparation of PAA-g-CTAB/PANI polymer based gel-electrolyte and the application in quasi-solid-state dye-sensitized solar cells[J].Electrochimica acta,2011,58:52-57.DOI:10.1016/j.electacta.2011.08.074.

[40] TANG Z Y,WU J H,LI Q H,et al.The preparation of poly(glycidyl acrylate)-polypyrrole gel-electrolyte and its application in dye-sensitized solar cells[J].Electrochimica acta,2010,55(17):4883-4888.DOI:10.1016/j.electacta.2010.03.081.

[41] TANG Z Y,WU J H,LIU Q,et al.Preparation of poly(acrylic acid)/gelatin/polyaniline gel-electrolyte and its application in quasi-solid-state dye-sensitized solar cells[J].Journal of power sources,2012,203:282-287.DOI:10.1016/j.jpowsour.2011.11.039.

[42] WU J H,LAN Z,WANG D B,et al.Quasi-solid state dye-sensitized solar cells-based gel polymer electrolytes with poly(acrylamide)-poly(ethylene glycol) composite[J].Journal of photochemistry and photobiology A:chemistry,2006,181(2/3):333-337.DOI:10.1016/j.jphotochem.2005.12.015.

[43] ZHOU Y,LIN G,SHIH A J,et al.Assembly pressure and membrane swelling in PEM fuel cells[J].Journal of power sources,2009,192(2):544-551.DOI:10.1016/ j.jpowsour.2009.01.085.

[44] 梁桂杰,鐘志成,許杰,等.基于新型交聯(lián)聚合物電解質(zhì)的準(zhǔn)固態(tài)染料敏化太陽(yáng)能電池[J].物理化學(xué)學(xué)報(bào),2012,28(12):2852-2860.DOI:10.3866/PKU.WHXB 201210091.

[45] YANG H S,ILPERUMA OA,SHIMOMURA M,et al.Effect of ultra-thin polymer membrane electrolytes on dye-sensitized solar cells[J].Solar energy materials and solar cells,2009,93(6/7):1083-1086.DOI:10.1016/ j.solmat.2008.12.019.

[46] DONG R-X,SHEN S-Y,CHEN H-W,et al.A novel polymer gel electrolyte for highly efficient dye-sensitized solar cells[J].Journal of materials chemistry A,2013,1(29):8471-8478.DOI:10.1039/c3ta11331k.

[47] PARK S-H,LIM J,KWON Y S,et al.Tunable nanoporous network polymer nanocomposites having size-selective ion transfer for dye-sensitized solar cells[J].Advanced energy materials,2013,3(2):184-192.DOI:10.1002/aenm.201200437.

[48] PARK S-H,LIM J,SONG I Y,et al.Stable dyesensitized solar cells by encapsulation of N719-sensitized TiO2electrodes using surface-induced cross-linking polymerization[J].Advanced energy materials,2012,2(2):219-224.DOI:10.1002/aenm.201100533.

[49] PARK S-H,SONG IY,LIM J,et al.A novel quasi-solid state dye-sensitized solar cell fabricated using a multifunctional network polymer membrane electrolyte[J].Energy &environmental science,2013,6(5):1559-1564.DOI:10.1039/c3ee24496b.

[50] DI NOTO V,LAVINA S,GIFFIN G A,et al.Polymer electrolytes:Present,past and future[J].Electrochimica acta,2011,57:4-13.DOI:10.1016/j.electacta.2011.08.048.

[51] LI B,WANG L D,KANG B N,et al.Review of recent progress in solid-state dye-sensitized solar cells[J].Solar energy materials and solar cells,2006,90(5):549-573.DOI:10.1016/j.solmat.2005.04.039.

[52] CHEN C-L,TENG H S,LEE Y-L.In situ gelation of electrolytes for highly efficient gel-state dye-sensitizedsolar cells[J].Advanced materials,2011,23(36):4199-4204.DOI:10.1002/adma.201101448.

[53] CHEN J N,XIA J B,FAN K,et al.A novel CuI-based iodine-free gel electrolyte for dye-sensitized solar cells[J].Electrochimica acta,2011,56(16):5554-5560.DOI:10.1016/j.electacta.2011.03.109.

[54] KAWANO R,WATANABE M.Equilibrium potentials and charge transport of an I-/I3-redox couple in an ionic liquid[J].Chemical communications,2003(3):330-331.DOI:10.1039/b208388b.

[55] KIM J H,KANG M S,KIM Y J,et al.Dye-sensitized nanocrystalline solar cells based on composite polymer electrolytes containing fumed silica nanoparticles[J].Chemical communications,2004(14):1662-1663.DOI:10.1039/b405215c.

[56] LEE C-P,CHEN P-Y,VITTAL R,et al.Iodine-free high efficient quasi solid-state dye-sensitized solar cell containing ionic liquid and polyaniline-loaded carbon black[J].Journal of materials chemistry,2010,20(12):2356-2361.DOI:10.1039/b922350a.

[57] LIM S J,CHOI Y J,SONG K S,et al.Quasi-solid-state dye-sensitized solar cells assembled by in-situ chemical cross-linking at ambient temperature[J].Electrochemistry communications,2011,13(11):1284-1287.DOI:10.1016/j.elecom.2011.08.020.

[58] USUI H,MATSUI H,TANABE N,et al.Improved dye-sensitized solar cells using ionic nanocomposite gel electrolytes[J].Journal of photochemistry and photobiology A:chemistry,2004,164(1/3):97-101.DOI:10.1016/j.jphotochem.2003.12.020.

[59] WANG H X,LI H,XUE B F,et al.Solid-state composite electrolyte Lil/3-hydroxypropionitrile/SiO2for dye-sensitized solar cells[J].Journal of the American chemical society,2005,127(17):6394-6401.DOI:10.1021/ja043268p.

[60] BERGINC M,HO?EVAR M,KRA?OVEC U O,et al.Ionic liquid-based electrolyte solidified with SiO2nanoparticles for dye-sensitized solar cells[J].Thin solid films,2008,516(14):4645-4650.DOI:10.1016/j.tsf.2007.06.079.

[61] HUO Z P,DAI S Y,WANG K J,et al.Nanocomposite gel electrolyte with large enhanced charge transport properties of an I3-/I-redox couple for quasi-solid-state dye-sensitized solar cells[J].Solar energy materials and solar cells,2007,91(20):1959-1965.DOI:10.1016/ j.solmat.2007.08.003.

[62] KUBO W,KITAMURA T,HANABUSA K,et al.Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator[J].Chemical communications,2002(4):374-375.DOI:10.1039/b110019j.

[63] STATHATOS E,LIANOS P,ZAKEERUDDIN S M,et al.A quasi-solid-state dye-sensitized solar cell based on a sol-gel nanocomposite electrolyte containing ionic liquid[J].Chemistry of materials,2003,15(9):1825-1829.DOI:10.1021/cm0213568.

[64] CLEMENTE A,PANERO S,SPILA E,et al.Solid-state,polymer-based,redox capacitors[J].Solid state ionics,1996,85(1/4):273-277.DOI:10.1016/0167-2738(96)00070-7.

[65] CROCE F,APPETECCHI G B,PERSI L,et al.Nanocomposite polymer electrolytes for lithium batteries[J].Nature,1998,394(6692):456-458.DOI:10.1038/28818.

[66] CROCE F,PERSI L,RONCI F,et al.Nanocomposite polymer electrolytes and their impact on the lithium battery technology[J].Solid State Ionics,2000,135(1/4):47-52.DOI:10.1016/s0167-2738(00)00329-5.

[67] KATSAROS G,STERGIOPOULOS T,ARABATZIS I M,et al.A solvent-free composite polymer/inorganic oxide electrolyte for high efficiency solid-state dye-sensitized solar cells[J].Journal of photochemistry and photobiology A:chemistry,2002,149(1/3):191-198.DOI:10.1016/s1010-6030(02)00027-8.

[68] STERGIOPOULOS T,ARABATZIS I M,KATSAROS G,et al.Binary polyethylene oxide/titania solid-state redox electrolyte for highly efficient nanocrystalline TiO2photoelectrochemical cells[J].Nano letters,2002,2(11):1259-1261.DOI:10.1021/nl025798u.

[69] AN H L,XUE B F,LI D M,et al.Environmentally friendly LiI/ethanol based gel electrolyte for dyesensitized solar cells[J].Electrochemistry communications,2006,8(1):170-172.DOI:10.1016/j.elecom.2005.11.012.

[70] LI D M,QIN D,DENG M H,et al.Optimization the solid-state electrolytes for dye-sensitized solar cells[J].Energy &environmental science,2009,2(3):283-291.DOI:10.1039/b813378f.

[71] XUE B F,WANG H X,HU Y S,et al.An alternative ionic liquid based electrolyte for dye-sensitized solar cells[J].Photochemical &photobiological sciences,2004,3(10):918-919.DOI:10.1039/b412647e.

[72] ZHANG X,YANG H,XIONG H-M,et al.A quasi-solid-state dye-sensitized solar cell based on the stable polymer-grafted nanoparticle composite electrolyte[J].Journal of power sources,2006,160(2):1451-1455.DOI:10.1016/j.jpowsour.2006.03.008.

[73] GENG Y,SUN X,CAI Q,et al.Gel electrolytes containing several kinds of particles used in quasi-solidstate dye-sensitized solar cells[J].Rare metals,2006,25(6):201-206.DOI:10.1016/s1001-0521(07)60074-6.

[74] WANG X,DENG R,KULKARNI S A,et al.Investigation of the role of anions in hydrotalcite for quasi-solid state dye-sensitized solar cells application[J].Journal of materials chemistry A,2013,1(13):4345-4351.DOI:10.1039/c3ta01581e.

[75] WANG X,KULKARNI S A,ITO B I,et al.Nanoclay gelation approach toward improved dye-sensitized solar cell efficiencies:an investigation of charge transport and shift in the TiO2conduction band[J].ACS applied materials &interfaces,2013,5(2):444-450.DOI:10.1021/am3025454.

[76] 秦達(dá),郭曉枝,孫惠成,等.染料敏化太陽(yáng)能電池固態(tài)電解質(zhì)[J].化學(xué)進(jìn)展,2011,23(2/3):557-568.

[77] WANG P,ZAKEERUDDIN S M,EXNAR I,et al.High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte[J].Chemical communications,2002(24):2972-2973.DOI:10.1039/b209322g.

[78] LI Q H,TANG Q W,DU N,et al.Employment of ionic liquid-imbibed polymer gel electrolyte for efficient quasi-solid-state dye-sensitized solar cells[J].Journal of power sources,2014,248:816-821.DOI:10.1016/j.jpowsour.2013.10.027.

[79] CHANG L-Y,LEE C-P,LI C-T,et al.Synthesis of a novel amphiphilic polymeric ionic liquid and its application in quasi-solid-state dye-sensitized solar cells[J].Journal of materials chemistry A,2014,2(48):20814-20822.DOI:10.1039/c4ta05436a.

[80] 史彥濤,孫曉丹,翁端,等.準(zhǔn)固態(tài)電解質(zhì)在染料敏化太陽(yáng)能電池中的應(yīng)用[J].世界科技研究與發(fā)展,2006,28(3):45-50,19.DOI:10.16507/j.issn.1006-6055.2006.03.009.

[81] 陳就斌,徐雪青,史繼富,等.準(zhǔn)固態(tài)電解質(zhì)在染料敏化太陽(yáng)電池中的應(yīng)用和發(fā)展[J].新能源進(jìn)展,2013,1(2):137-144.DOI:10.3969/j.issn.2095-560X.2013.02.003.

[82] 胡濱,劉國(guó)軍,胡志強(qiáng),等.染料敏化太陽(yáng)能電池中凝膠電解質(zhì)的研究進(jìn)展[J].現(xiàn)代化工,2008,28(1):31-34.DOI:10.16606/j.cnki.issn0253-4320.2008.01.022.

[83] 周嫻,潘華錦,張莉,等.高分子聚合物在太陽(yáng)能電池電解質(zhì)中的應(yīng)用[J].現(xiàn)代化工,2010,30(3):31-34,36.DOI:10.16606/j.cnki.issn0253-4320.2010.03.019.

[84] 崔艷崢.染料敏化太陽(yáng)能電池準(zhǔn)固態(tài)聚合物電解質(zhì)研究[D].寧波:寧波大學(xué),2013.

Research Progress on Quasi-Solid State Polymer Electrolytes for Dye-Sensitized Solar Cell

FANG Yue-yun1,2,3,4,HUANG Qi-zhang1,2,3,4,ZHU Yan-qing1,2,3,4,SHEN Cheng-jia1,2,3,5,WANG Lei-lei1,2,3,SHI Ji-fu1,2,3,XU Gang1,2,3
(1.Guangzhou Institute of Energy Conversion,Chinese Academy of Sciences,Guangzhou 510640,China;2.Key Laboratory of Renewable Energy,Chinese Academy of Sciences,Guangzhou 510640,China;3.Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development,Guangzhou 510640,China;4.University of Chinese Academy of Sciences,Beijing 100049,China;5.University of Science and Technology of China,Hefei 230026,China)

Dye-sensitized solar cells (DSSCs) have triggered great research interests and have a broad application future due to their easy fabrication,low cost and relatively high power conversion efficiency.Although the highest efficiency of 13% for DSSCs has been attained by using liquid electrolytes nowadays,their sealing difficulty and long-term instability are the main obstacles in the path of their practical application.Therefore,in recent years,solid and quasi-solid state electrolytes have been widely investigated to improve the stability of DSSCs.Among them,quasi-solid state polymer electrolytes possess the advantages of high ionic conductivity,favorable battery contact interface,and convenient processing,and thus become an important research direction of DSSCs.In addition,according to the characters,formation mechanism and physical states,quasi-solid state polymer electrolytes can be divided into four species including quasi-solid state thermoplastic polymer electrolytes (QS-TPPE),quasi-solid state thermosetting polymer electrolytes (QS-TSPE),quasi-solid state composite polymer electrolytes (QS-CPE) and quasi-solid state ionic liquid polymer electrolytes (QS-ILPE).In this paper,the performances of DSSCs based on different kinds of quasi-solid state polymer electrolytes are analyzed in detail,while their drawbacks and development prospects are also reviewed.

dye-sensitized solar cell;quasi-solid state;electrolyte;polymer electrolyte

TK514

A

10.3969/j.issn.2095-560X.2016.06.008

2095-560X(2016)06-0475-11

方悅韻(1993-),女,碩士研究生,主要從事染料敏化太陽(yáng)能電池準(zhǔn)固態(tài)電解質(zhì)的研究與開發(fā)。

黃啟章(1990-),男,博士研究生,主要從事染料敏化太陽(yáng)能電池電解質(zhì)的研究與開發(fā)。

史繼富(1982-),男,博士,副研究員,碩士生導(dǎo)師,主要從事染料敏化太陽(yáng)能電池、太陽(yáng)能光熱利用的研究。

徐 剛(1970-),男,博士,研究員,博士生導(dǎo)師,中國(guó)科學(xué)院“百人計(jì)劃”項(xiàng)目引進(jìn)人才,主要從事太陽(yáng)能光熱、光電納米復(fù)合材料的研究與開發(fā)。

2016-09-26

2016-10-31

國(guó)家自然科學(xué)基金(21673243,51506205);廣東省科技計(jì)劃項(xiàng)目(2014A010106018,2013A011401011);粵港聯(lián)合創(chuàng)新項(xiàng)目(2014B050505015);廣東省特支計(jì)劃項(xiàng)目(2014TQ01N610);太陽(yáng)能光熱先端材料工程技術(shù)中心項(xiàng)目(2014B090904071)

? 通信作者:史繼富,E-mail:shijf@ms.giec.ac.cn

猜你喜歡
敏化液態(tài)固態(tài)
穴位敏化柔性輔助檢測(cè)傳感器的研發(fā)
冠心病穴位敏化現(xiàn)象與規(guī)律探討
近5年敏化態(tài)與非敏化態(tài)關(guān)元穴臨床主治規(guī)律的文獻(xiàn)計(jì)量學(xué)分析
固態(tài)Marx發(fā)生器均流技術(shù)研究
Sn摻雜石榴石型Li7La3Zr2O12固態(tài)電解質(zhì)的制備
透明陶瓷在固態(tài)照明中的應(yīng)用進(jìn)展
銅的硫化物對(duì)電極在量子點(diǎn)敏化太陽(yáng)能電池中的應(yīng)用
產(chǎn)紅色素真菌Monascus sanguineus的液態(tài)發(fā)酵條件研究
2017年中外液態(tài)食品機(jī)械行業(yè)大事記
淺談液態(tài)渣的顯熱利用和工藝技術(shù)