陳偉強(qiáng) 徐新 張社兵 陶軍
綜述
絲裂原活化蛋白激酶在動脈粥樣硬化中的作用研究進(jìn)展
陳偉強(qiáng) 徐新 張社兵 陶軍
絲裂原活化蛋白激酶; 動脈粥樣硬化; 炎癥反應(yīng); 黏附分子; 抑制劑
動脈粥樣硬化(AS)是一類主要累及大中動脈血管壁的慢性炎癥疾病,主要由血脂紊亂引起,炎癥反應(yīng)參與AS發(fā)生、發(fā)展的全過程[1]。在AS發(fā)生發(fā)展過程中,炎癥細(xì)胞、血管內(nèi)皮細(xì)胞、平滑肌細(xì)胞和細(xì)胞因子、趨化蛋白、黏附分子等相互作用,相互影響動脈粥樣化過程。促炎細(xì)胞因子可改變動脈粥樣硬化早期血管內(nèi)皮功能,誘導(dǎo)血管內(nèi)皮細(xì)胞表達(dá)趨化因子和黏附分子,促進(jìn)白細(xì)胞、淋巴細(xì)胞和單核細(xì)胞遷移、募集、黏附到發(fā)炎的血管壁中。白細(xì)胞在動脈血管內(nèi)膜中被局部產(chǎn)生的細(xì)胞因子永久激活,其可以通過刺激清道夫受體的表達(dá)和增強(qiáng)細(xì)胞介導(dǎo)的氧化來加速巨噬細(xì)胞向泡沫細(xì)胞的轉(zhuǎn)化,加劇動脈粥樣硬化病變進(jìn)展[2-5]。致炎細(xì)胞因子發(fā)揮生物學(xué)功能是通過與細(xì)胞膜表面受體相互作用,經(jīng)過跨膜信號轉(zhuǎn)導(dǎo)活化細(xì)胞內(nèi)的相關(guān)信號通路,最終促進(jìn)靶基因的表達(dá)。目前認(rèn)為,絲裂原活化蛋白激酶(mitogen activated protein kinase,MAPKs)、Janus激酶-信號轉(zhuǎn)導(dǎo)子及轉(zhuǎn)錄激活子(Janus kinase signal transduction and activator of transcription,JAKSTAT)和核因子kB(nuclear factor kB,NF-kB)是細(xì)胞內(nèi)3條重要信號通路,在炎癥信號轉(zhuǎn)導(dǎo)調(diào)控中起重要作用。MAPKs是細(xì)胞外刺激信號轉(zhuǎn)導(dǎo)至細(xì)胞內(nèi)及核內(nèi)并引起生物化學(xué)功能如細(xì)胞增殖、分化、轉(zhuǎn)化及凋亡等的主要信號轉(zhuǎn)導(dǎo)通路。目前許多研究表明,MAPKs信號轉(zhuǎn)導(dǎo)通路參與調(diào)控多種致炎因子誘導(dǎo)的血管細(xì)胞黏附分子-1(vascular cell adhesion molecule-1,VCAM-1)、細(xì)胞間黏附分子-1(intracellular adhesion mole-cule-1,ICAM-1)、單核細(xì)胞趨化因子-1(monocyte chemotactic protein-1,MCP-1)和基質(zhì)金屬蛋白酶(matrix metalloproteinases,MMPs)的表達(dá),在動脈粥樣硬化發(fā)生發(fā)展過程中發(fā)揮至關(guān)作用[6-9]。本文就MAPKs信號轉(zhuǎn)導(dǎo)通路與動脈粥樣硬化相關(guān)性研究進(jìn)展作一綜述。
MAPKs是哺乳動物細(xì)胞內(nèi)廣泛存在的一類絲/蘇氨酸蛋白激酶。MAPKs信號轉(zhuǎn)導(dǎo)通路在將細(xì)胞外刺激信號轉(zhuǎn)導(dǎo)至細(xì)胞內(nèi)及核內(nèi)并引起生物化學(xué)功能(如細(xì)胞增殖、分化、轉(zhuǎn)化及凋亡等)過程中起著至關(guān)重要作用。目前研究發(fā)現(xiàn)MAPKs存在多條并行的信號轉(zhuǎn)導(dǎo)通路,不同的細(xì)胞外刺激通過不同的MAPKs信號轉(zhuǎn)導(dǎo)通路相互調(diào)控而引起不同的生物學(xué)反應(yīng)。目前比較確切的MAPKs信號轉(zhuǎn)導(dǎo)通路主要有細(xì)胞外調(diào)節(jié)蛋白激酶(extracellular regulated protein kinases,ERK)、Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)、p38蛋白和 ERK5四種。MAPKs信號轉(zhuǎn)導(dǎo)是以MAPKK激酶(MAPKKKs)、MAPK蛋白激酶(MAPKKs)、MAPKs三級激酶磷酸化級聯(lián)的方式進(jìn)行的。MAPKs磷酸化級聯(lián)反應(yīng)首先由MAPKKKs受有絲分裂原刺激磷酸化而激活,在此基礎(chǔ)上MAPKKKs磷酸化激活下級MAPKKs的絲/蘇氨酸殘基,最后由MAPKKs磷酸化激活下級MAPKs的絲/蘇氨酸殘基,使其活化與底物結(jié)合,引起細(xì)胞增殖、分化、遷移、凋亡和調(diào)控機(jī)體炎癥反應(yīng)[10-13]。
2.1 ERK與動脈粥樣硬化 ERK是1986年由Sturgill等首先報(bào)道的,是經(jīng)典的MAPKs信號轉(zhuǎn)導(dǎo)通路。ERK屬于絲/蘇氨酸蛋白激酶,有ERK1和ERK2兩種亞型,相對分子質(zhì)量分別是44 kD和42 kD。目前已有相關(guān)研究表明,ERK1/2參與細(xì)胞增殖、分化和凋亡[14,15],并調(diào)控黏附分子和基質(zhì)金屬蛋白酶的表達(dá)。早在2005年,Wang等[16]發(fā)現(xiàn)IL-β可通過ERK MAPK、p38 MAPK、JNK、NF-kB信號通路誘導(dǎo)氣管平滑肌內(nèi)皮細(xì)胞VCAM-1表達(dá),使用相關(guān)抑制劑ERK(U0126、PD-98059)、p38(SB-202190)、JNK(SP-600125)可抑制VCAM-1表達(dá)。Ta等[17]的研究發(fā)現(xiàn),在U937細(xì)胞,阿格列汀可抑制ERK依賴的MMP-1表達(dá),給予ERK抑制劑PD98059可明顯抑制MMP-1表達(dá)。Zhu等[18]在兔大動脈平滑肌細(xì)胞發(fā)現(xiàn)厚樸酚可抑制ERK1/2的磷酸化和NF-kB活性,從而減少TNF-α誘導(dǎo)的MMP-2和MMP-9的表達(dá)。Kim等[19]在臍靜脈內(nèi)皮細(xì)胞研究中發(fā)現(xiàn),結(jié)合蛋白C抑制ICAM-1、VCAM-1表達(dá)是通過抑制Akt、p38磷酸化,而不是通過抑制ERK1/2。而同樣在臍靜脈內(nèi)皮細(xì)胞,有研究證實(shí)ERK信號通路參與調(diào)控高糖誘導(dǎo)的VCAM-1、ICAM-1的表達(dá)[20]。以上相關(guān)研究雖未直接表明ERK1/2/MAPKs信號轉(zhuǎn)導(dǎo)通路參與動脈粥樣硬化過程,但ERK1/2參與調(diào)控部分基質(zhì)金屬蛋白酶和黏附分子的表達(dá),而后者可促進(jìn)血管內(nèi)炎癥反應(yīng),誘發(fā)血管內(nèi)皮細(xì)胞功能紊亂,是動脈粥樣硬化早期發(fā)生的關(guān)鍵。
2.2 JNK與動脈粥樣硬化 JNK又稱應(yīng)激活化蛋白激酶(stress-activated protein kinese,SAPK),主要由各種環(huán)境因素(如放射線、熱休克、氧化還原應(yīng)激)、新陳代謝物、細(xì)胞因子和生長因子等刺激使JNK蘇氨酸-酪氨酸磷酸化位點(diǎn)磷酸化而激活[21]。激活的JNK首先活化轉(zhuǎn)錄因子AP-1,AP-1再通過與其他轉(zhuǎn)錄因子相互作用加強(qiáng)基因的轉(zhuǎn)錄和表達(dá)[22]。MRNA編碼JNK基因剪接方式的不同,可以產(chǎn)生10種異構(gòu)體,其中3種JNK1、JNK2、JNK3有高度同源性。JNK1和JNK2廣泛分布在各組織,而JNK3主要表達(dá)于神經(jīng)元細(xì)胞、心肌細(xì)胞和睪丸[23-25]。目前相關(guān)研究表明,許多炎性介質(zhì)包括編碼IL-2、IL-6、E-選擇素、VCAM-1、ICAM-1和MCP-1等的基因表達(dá)均受到JNK通路的調(diào)節(jié)[26]。
早期研究發(fā)現(xiàn)JNK1主要與胰島素抵抗和肥胖相關(guān)[27-29]。2001年Nishio等[30]的研究發(fā)現(xiàn),JNK2在動脈粥樣硬化斑塊中的巨噬細(xì)胞高表達(dá),提出JNK2可能與動脈粥樣硬化有關(guān)。Ricci等[31]也提出JNK2參與動脈粥樣硬化過程,而不是JNK1。他們在易發(fā)動脈粥樣硬化的載脂蛋白 E基因缺陷(ApoE-/-)小鼠模型中發(fā)現(xiàn),同時缺乏JNK2(ApoE-/-,JNK2-/-)小鼠比單ApoE-/-小鼠或者同時缺乏JNK1(ApoE-/-,JNK1-/-)小鼠更少發(fā)生動脈粥樣硬化。其機(jī)制可能為JNK2使巨噬細(xì)胞中依賴JNK2磷酸化的內(nèi)在清道夫A受體(SR-A)活性增強(qiáng),促進(jìn)巨噬細(xì)胞對脂質(zhì)的攝取,而轉(zhuǎn)出胞外脂質(zhì)沒有相應(yīng)增加,脂質(zhì)蓄積促使巨噬細(xì)胞泡沫化,而泡沫細(xì)胞的形成是動脈粥樣硬化發(fā)生和病變進(jìn)展的重要環(huán)節(jié)。而缺乏JNK2的巨噬細(xì)胞,SR-A磷酸化減少,巨噬細(xì)胞攝取脂質(zhì)減少及降解被修飾脂蛋白增多,減少脂質(zhì)蓄積,減少泡沫細(xì)胞形成。近年來,隨著對JNK1研究的深入,Amini等[32]的研究發(fā)現(xiàn),敲除JNK1基因可保護(hù)Ldlr-/-高脂喂養(yǎng)小鼠的內(nèi)皮細(xì)胞免于凋亡,同時減少泡沫細(xì)胞形成,縮小動脈粥樣斑塊面積,提示JNK1參與調(diào)控高脂誘導(dǎo)的內(nèi)皮細(xì)胞凋亡和早期動脈粥樣硬化病變的發(fā)生。為明確巨噬細(xì)胞中JNK1/JNK2對早期動脈粥樣硬化的作用,Babaev等[33]的研究發(fā)現(xiàn),使巨噬細(xì)胞JNK1缺陷或活性降低,可抑制其凋亡,同時加速早期動脈粥樣硬化病變進(jìn)展。他們在敲除LDL受體(Ldlr-/-)小鼠模型上重組了載有野生型基因、JNK1基因缺陷型(JNK1-/-)和JNK2基因缺陷型(JNK2-/-)的造血細(xì)胞,同時給予高脂喂養(yǎng),結(jié)果發(fā)現(xiàn),含有JNK1-/-基因型的Ldlr-/-小鼠相對于野生型、JNK2-/-基因型Ldlr-/-小鼠出現(xiàn)的動脈粥樣斑塊更大,斑塊內(nèi)巨噬細(xì)胞數(shù)目更多,且巨噬細(xì)胞更少發(fā)生凋亡。
綜觀以上研究,目前比較明確JNK2可促進(jìn)泡沫細(xì)胞形成,加劇動脈粥樣病變進(jìn)展,但關(guān)于JNK1在動脈粥樣硬化中的作用持有不同的觀點(diǎn):在血管內(nèi)皮細(xì)胞,JNK1促進(jìn)泡沫細(xì)胞形成[32],而在巨噬細(xì)胞,敲除JNK1促進(jìn)動脈粥樣硬化病變進(jìn)展,JNK1可能有抗動脈粥樣硬化作用[33],其原因及機(jī)制未見相關(guān)報(bào)道。
隨著對JNK結(jié)構(gòu)及功能的進(jìn)一步研究,許多研究表明抑制JNK活性有保護(hù)動脈粥樣硬化作用。Ricci等給予高脂喂養(yǎng)的ApoE-/-小鼠4周JNK小分子抑制劑SP600125,可減少巨噬泡沫細(xì)胞形成,明顯改善小鼠動脈粥樣硬化病變[31]。Zakkar等[34]的研究發(fā)現(xiàn),增強(qiáng)內(nèi)皮細(xì)胞JNK上游通路抑制基因MAP磷酸激酶1(MKP-1)的表達(dá)可抑制VCAM-1表達(dá),而抑制MKP-1活性,VCAM-1表達(dá)增加。隨后Kwok等[35]的研究發(fā)現(xiàn),抑制JNK活性可減輕ApoE-/-小鼠機(jī)體炎癥反應(yīng),同時減輕血管內(nèi)炎癥反應(yīng),發(fā)生動脈粥樣硬化概率減小。
2.3 P38與動脈粥樣硬化 P38是MAPK家族的重要成員之一,p38包括p38α、p38β、p38γ、p38δ四種亞型。P38 MAPK可以由細(xì)胞外的多種應(yīng)激包括紫外線、熱休克、促炎因子、內(nèi)毒素、特定抗原及其他應(yīng)激反應(yīng)活化,在細(xì)胞凋亡、細(xì)胞因子釋放、轉(zhuǎn)錄調(diào)節(jié)及細(xì)胞骨架識別中起重要作用[10,36]。P38是調(diào)控炎癥介質(zhì)轉(zhuǎn)錄和翻譯的關(guān)鍵點(diǎn)[37]。P38不僅介導(dǎo)炎癥介質(zhì)致炎過程,同樣調(diào)控血管內(nèi)炎癥反應(yīng):p38 MAPK激活放大產(chǎn)生活性氧的上下游反應(yīng)鏈,ROS產(chǎn)生增多,ROS降低內(nèi)在NO利用率,導(dǎo)致血管平滑肌收縮,導(dǎo)致機(jī)體缺血事件發(fā)生如急性冠脈綜合征、缺血性腦卒中等[38-40]。在血管炎癥方面,體外研究表明p38調(diào)控ox-LDL誘導(dǎo)細(xì)胞CD36表達(dá),促進(jìn)巨噬細(xì)胞泡沫化,而P38抑制劑(SB203580)可抑制ox-LDL誘導(dǎo)的巨噬細(xì)胞泡沫化[41]。Proctor等[42]的研究表明,在鼠血管損傷模型中,p38可促進(jìn)血管平滑肌新生內(nèi)膜的形成,具有修復(fù)損傷血管和抗炎作用。而在心血管疾病方面,目前臨床Ⅰ、Ⅱ期數(shù)據(jù)表明,MAPK p38抑制劑在生物標(biāo)記、安全性、耐受性、藥效性等方面較為樂觀。在近年,心血管疾病臨床Ⅱ期試驗(yàn)表明,p38抑制劑GW856553可改善高脂血癥人群的血管內(nèi)皮功能,減弱動脈粥樣硬化血管內(nèi)炎癥反應(yīng),為治療動脈粥樣硬化提供了新的方向[43,44]。2015年Emami等[45]的一項(xiàng)多中心臨床研究,隨機(jī)給動脈粥樣硬化患者口服p38新型抑制劑BMS-582949(100 mg/d)、安慰劑、阿托伐他汀鈣片(80 mg/d)12周,用18FDG-PET/CT成像技術(shù)測量頸動脈、主動脈粥樣斑塊服藥前后大小。研究結(jié)果表明,服用BMS-582949試驗(yàn)組相對于安慰劑組動脈粥樣斑塊大小無顯著差異,相對于服用阿托伐他汀鈣試驗(yàn)組,BMS-582949試驗(yàn)組血漿IL-6、TNF-α、MMP-9等炎性指標(biāo)無明顯下降,揭示目前尚無充分論據(jù)支持新型p38抑制劑BMS-582949可以治療動脈粥樣硬化。
在細(xì)胞、動物實(shí)驗(yàn)?zāi)P蜕?,以上相關(guān)研究表明p38參與血管炎癥反應(yīng)及巨噬細(xì)胞泡沫化過程,而應(yīng)用p38抑制劑可減輕血管炎癥反應(yīng),改善高脂血癥患者的血管內(nèi)皮功能。
雖然目前對動脈粥樣硬化的研究已取得大量成果,MAPKs信號通路參與調(diào)控血管內(nèi)皮細(xì)胞表達(dá)黏附分子、趨化因子和基質(zhì)金屬蛋白酶等,加劇血管內(nèi)皮細(xì)胞的炎癥反應(yīng)。MAPKs各信號通路抑制劑的研究結(jié)果表明,MAPKs抑制劑有抗炎作用,應(yīng)用其特異性抑制劑可能是減輕動脈粥樣化形成的新治療方法。然而,MAPKs特異性抑制劑應(yīng)用于臨床仍需解決許多問題。第一,ERK、JNK、p38均有亞型結(jié)構(gòu),而目前研究發(fā)現(xiàn)應(yīng)用同一信號通路不同的抑制劑會出現(xiàn)不同效果,因此深入研究它們的亞型結(jié)構(gòu)及功能顯得尤為重要。第二,MAPKs信號轉(zhuǎn)導(dǎo)通路調(diào)控炎癥機(jī)制極其復(fù)雜,MAPKs各通路間也有交互作用,因此,明確MAPKs信號通路參與機(jī)體一系列疾病的病理生理過程的機(jī)理是應(yīng)用MAPKs抑制劑治療動脈粥樣硬化性疾病的前提。第三,應(yīng)用MAPKs特異性抑制劑治療動脈粥樣硬化性疾病,其有效性和安全性如何,目前需要更多的臨床試驗(yàn)及多中心臨床研究成果來定義其益處和潛在的副作用。
[1]Ross R.Atherosclerosis-An Inflammatory Disease.Am Heart J,1999,340:115-126.
[2]Aitoufella H,Taleb S,Mallat Z,et al.Recent Advances on the Role of Cytokines in Atherosclerosis.Arterioscl Throm Vas,2011,31:969-979.
[3]Kleinbongard P,Heusch G,Schulz R.TNFalpha in atherosclerosis,myocardial ischemia/reperfusion and heart failure.Pharmacol Therapeut,2010,127:295-314.
[4]Komarova Y,Malik AB.Regulation of endothelial permeability via paracellular and transcellular transport pathways.Annu Rev Physiol,2010,72:463-493.
[5]Weber C,Zernecke A,Libby P.The multifaceted contributions of leukocyte subsets to atherosclerosis:lessons from mouse models.Nat Rev Immunol,2008,8:802-815.
[6]Muslin AJ.MAPK Signaling in Cardiovascular Health and Disease:Molecular Mechanisms and Therapeutic Targets.Clin Sci,2008,115:203-218.
[7]Liu Y,Liang C,Liu X,et al.AGEs increased migration and in-flammatory responses of adventitial fibroblasts via RAGE,MAPK and NF-kappaB pathways.Atherosclerosis,2010,208:34-42.
[8]Fu R,Chen Z,Wang Q,et al.XJP-1,a novel ACEI,with anti-inflammatory properties in HUVECs. Atherosclerosis,2011,219:40-48.
[9]Zhu P,Ren M,Yang C,et al.Involvement of RAGE,MAPK and NF-κB pathways in AGEs-induced MMP-9 activation in HaCaT keratinocytes.Exp Dermatol,2012,21:123-129.
[10]Chang L,Karin M.Mammalian MAP kinase signaling cascades. Nature,2001,410:37-40.
[11]Johnson GL,Lapadat R.Mitogen-Activated Protein Kinase Pathways Mediated by ERK,JNK,and p38 Protein Kinases. Science,2002,298:1911-1912.
[12]Sun Y,Liu WZ,Liu T,et al.Signaling pathway of MAPK/ ERK in cell proliferation,differentiation,migration,senescence and apoptosis.J Recept Signal Tr R,2015,35:600-604.
[13]Kim EK,Choi EJ.Pathological roles of MAPK signaling pathways in human diseases.Acta Bioch Bioph Sin,2010,1802:396-405.
[14]Mccubrey JA,Steelman LS,Chappell WH,et al.Roles of the Raf/MEK/ERK pathway in cell growth,malignant transformation and drug resistance.Bba-Biomembranes,2007,1773:1263-1284.
[15]Yin G,Yang X,Li B,et al.Connexin43 siRNA promotes HUVEC proliferation and inhibits apoptosis induced by ox-LDL:an involvement of ERK signaling pathway.Mol Cell Biochem,2014,394:101-107.
[16]Wang CC,Lin WN,Lee CW,et al.Involvement of p42/p44 MAPK,p38 MAPK,JNK,and NF-kappaB in IL-1betainduced VCAM-1 expression in human tracheal smooth muscle cells.Am J Physiol-Lung C,2005,288:L227-237.
[17]Ta NN,Li Y,Schuyler CA,et al.DPP-4(CD26)inhibitor alogliptin inhibits TLR4-mediated ERK activation and ERK-dependent MMP -1 expression by U937 histiocytes. Atherosclerosis,2010,213:429-435.
[18]Zhu X,Wang Z,Hu C,et al.Honokiol suppresses TNF-αinduced migration and matrix metalloproteinase expression by blocking NF-kappaB activation via the ERK signaling pathway in rat aortic smooth muscle cells.Acta Histochem,2014,116:588-595.
[19]Kim YM,Min YK,Kim HJ,et al.Compound C independent of AMPK inhibitsICAM-1 and VCAM-1 expression in inflammatory stimulants-activated endothelial cells in vitro,and in vivo.Atherosclerosis,2011,219:57-64.
[20]Kim MH,Kang HM,Kim CE,et al.Ramipril Inhibits High Glucose-Stimulated Up-Regulation of Adhesion Molecules Via the Erk1/2 Mapk Signaling Pathway in Human Umbilical Vein Endothelial Cells.Cell Mol Biol Lett,2015,20:937-947.
[21]Weston CR,Davis RJ.The JNK signal transduction pathway. Curr Opin Cell Biol,2007,19:142-149.
[22]Yan D,An GY,Kuo MT.C-Jun N-terminal kinase signalling pathway in response to cisplatin.J Cell Mol Med,2016,20:2013-2019.
[23]Barnat M,Enslen H,Propst F,et al.Distinct roles of c-Jun N-terminal kinase isoforms in neurite initiation and elongation during axonal regeneration.J Neurosci,2010,30:7804-7816.
[24]Zeke A,Misheva M,Reményi A,et al.JNK Signaling:Regulation and Functions Based on Complex Protein-Protein Partnerships.Microbiol Mol Biol R,2016,80:793-835.
[25]Bogoyevitch MA,Ngoei KRW,Zhao TT,et al.c-Jun N-terminalkinase(JNK) signaling: Recentadvances and challenges.Bba-Biomembranes,2010,1804:463-475.
[26]Sumara G,Belwal M,Ricci R."Jnking"atherosclerosis.Cell Mol Life Sci,2005,62:2487-2494.
[27]Hirosumi J,Tuncman G,Chang L,et al.A central role for JNK in obesity and insulin resistance.Nature,2002,420:333-336.
[28]Sabio G,Kennedy NJ,Cavanagh-Kyros J,et al.Role of Muscle c-Jun NH2-Terminal Kinase 1 in Obesity-Induced Insulin Resistance.Cell Microbiol,2010,30:106-115.
[29]Han MS,Jung DY,Morel C,et al.JNK Expression by Macrophages Promotes Obesity-induced Insulin Resistance and Inflammation.Science,2013,339:218-222.
[30]Nishio H,Matsui K,Tsuji H,et al.Immunohistochemical study of the phosphorylated and activated form of c-Jun NH2-terminal kinase in human aorta.J Mol Histol,2001,33:167-171.
[31]Ricci R,Sumara G,Sumara I,et al.Requirement of JNK2 for ScavengerReceptorA:MediatedFoam CellFormationin Atherogenesis.Science,2004,306:1558-1561.
[32]Amini N,Boyle JJ,Moers B,et al.Requirement of JNK1 for endothelial cell injury in atherogenesis. Atherosclerosis,2014,235:613-618.
[33]Babaev VR,Yeung M,Erbay E,et al.Jnk1 Deficiency in Hematopoietic CellsSuppressesMacrophage Apoptosisand Increases Atherosclerosis in Low-Density Lipoprotein Receptor Null Mice.Arterioscl Throm Vas,2016,36:1122-1131.
[34]ZakkarM,ChaudhuryH,Sandvik G,etal.Increased endothelial mitogen-activated protein kinase phosphatase-1 expression suppresses proinflammatory activation at sites that areresistant to atherosclerosis.Circ Res,2008,103:726-732.
[35]Kwok KH,Cheng K,Hoo RL,et al.Adipose-Specific Inactivation of JNK Alleviates Atherosclerosis in ApoE-deficient Mice.Clin Sci,2016,130:2087-2100.
[36]Roux PP,Blenis J.ERK and p38 MAPK-Activated Protein Kinases:a Family of Protein Kinases with Diverse Biological Functions.Microbiol Mol Biol R,2004,68:320-344.
[37]Denise ME,De Nicola GF,Marber MS.New therapeutic targets in cardiology:p38 alpha mitogen-activated protein kinase for ischemic heart disease.Circulation,2012,126:357-368.
[38]Goettsch C,Goettsch W,Muller G,et al.Nox4 overexpression activates reactive oxygen species and p38 MAPK in human endothelial cells.Biochem Bioph Res Co,2009,380:355-360.
[39]Aukrust P,Sandberg WJ,Otterdal K,et al.Tumor necrosis factor superfamily molecules in acute coronary syndromes.Ann Med,2011,43:90-103.
[40]Elkhawad M,Rudd JHF,Sarov-Blat L,et al.Effects of p38 Mitogen-Activated Protein Kinase Inhibition on Vascular and Systemic Inflammation in Patients With Atherosclerosis.Jacc-Cardiovasc Imag,2012,5:911-922.
[41]Zhao M,Liu Y,Wang X,et al.Activation of the p38 MAP kinase pathway is required forfoam cellformation from macrophages exposed to oxidized LDL.APMIS,2002,110:458-468.
[42]Proctor BM,Jin X,Lupu TS,et al.Requirement for p38 Mitogen-Activated Protein Kinase Activity in Neointima Formation After Vascular Injury.Circulation,2008,118:658-666.
[43]Cheriyan J,Webb AJ,Sarovblat L,et al.Inhibition of p38 mitogen-activated protein kinase improves nitric oxide-mediated vasodilatation and reduces inflammation in hypercholesterolemia. Curr Eye res,2011,123:515-523.
[44]Fisk M,GajendragadkarPR,Maki-PetajaKM,etal. Therapeutic potential of p38 MAP kinase inhibition in the management of cardiovascular disease.Am J Cardiovasc Drug,2014,14:155-165.
[45]Emami H,Vucic E,Subramanian S,et al.The effect of BMS-582949,a P38 mitogen-activated protein kinase(P38 MAPK)inhibitor on arterial inflammation:A multicenter FDG-PET trial.Atherosclerosis,2015,240:490-496.
The relevant research on the role of Mitogen-activated protein kinases in atherosclerosis
Mitogen-activated protein kinases; Atherosclerosis; Inflammation; Adhesion molecules; Inhibitors
10.3969/j.issn.1672-5301.2017.07.002
R541.4
A
1672-5301(2017)07-0582-05
2017-02-23)
廣東省科技計(jì)劃項(xiàng)目(項(xiàng)目編號:2013BO21800091)
512026 廣東省韶關(guān)市,汕頭大學(xué)醫(yī)學(xué)院附屬粵北人民醫(yī)院心血管內(nèi)科(陳偉強(qiáng)、徐新、張社兵);中山大學(xué)第一附屬醫(yī)院心內(nèi)科(陶軍)
徐新,E-mail:03xuxin@163.com