朱光輝, 劉海軍綜述, 張學(xué)利△審校
(1.南方醫(yī)科大學(xué)附屬奉賢醫(yī)院普外科, 上海 201499; 2.上海市奉賢區(qū)中心醫(yī)院普外科, 上海 201499)
?綜 述?
MicroRNA在缺氧誘導(dǎo)腫瘤生物學(xué)行為改變中的研究進(jìn)展*
朱光輝1,2, 劉海軍1,2綜述, 張學(xué)利1,2△審校
(1.南方醫(yī)科大學(xué)附屬奉賢醫(yī)院普外科, 上海 201499; 2.上海市奉賢區(qū)中心醫(yī)院普外科, 上海 201499)
缺氧是腫瘤微環(huán)境的一個(gè)重要特征。缺氧微環(huán)境在多種腫瘤生物學(xué)行為的改變中發(fā)揮重要作用,包括腫瘤細(xì)胞增殖與凋亡、新生血管形成、代謝、自噬、侵襲與轉(zhuǎn)移等。microRNA是一類(lèi)長(zhǎng)度為19~24nt的內(nèi)源性單鏈非編碼RNA片段,與靶mRNA 的3’-非翻譯區(qū)結(jié)合,以調(diào)控mRNA翻譯的方式調(diào)節(jié)基因表達(dá),是缺氧誘導(dǎo)腫瘤生物學(xué)行為改變的重要調(diào)控因子。本文就缺氧微環(huán)境下microRNA在腫瘤生物學(xué)行為改變中的調(diào)控機(jī)制作一綜述。
缺氧; 腫瘤; microRNA
缺氧是實(shí)體瘤微環(huán)境的一個(gè)重要特征,主要是沒(méi)有足夠的血管形成和腫瘤的高代謝及增殖率造成[1]。目前已在胰腺癌、肝癌、直腸癌等多種人類(lèi)惡性腫瘤中證實(shí)缺氧的存在[2-5]。缺氧與臨床上腫瘤的轉(zhuǎn)移、放化療抵抗和不良的預(yù)后密切相關(guān)[6-10]。缺氧微環(huán)境在多種腫瘤生物學(xué)行為的改變中發(fā)揮重要作用[11]。MicroRNA(miRNA)是一類(lèi)長(zhǎng)度為19~24nt的內(nèi)源性單鏈非編碼RNA 片段,與靶mRNA 的3’-非翻譯區(qū)(3’-untranslated region, 3’-UTR) 結(jié)合,在轉(zhuǎn)錄后水平調(diào)節(jié)基因表達(dá)[12]。缺氧微環(huán)境下,腫瘤細(xì)胞內(nèi)多種miRNA的表達(dá)發(fā)生變化,對(duì)缺氧作出應(yīng)答反應(yīng)[13],此類(lèi)miRNA被稱(chēng)為缺氧調(diào)控的miRNA (hypoxia-regulated microRNA, HRM)[14]。近年來(lái)研究發(fā)現(xiàn)不同的miRNA在不同腫瘤中表達(dá)異常,例如:膀胱癌中的miR-100[15],肝癌中的miR-101[16],乳腺癌中的miR-210[17],前列腺癌中miR-96[18],卵巢癌中的miR-18a[19]等,這些異常表達(dá)的miRNA通過(guò)與靶基因結(jié)合,參與調(diào)控腫瘤細(xì)胞的增殖與凋亡、新生血管形成、代謝、自噬、侵襲與轉(zhuǎn)移等[15-20]。這提示miRNA可用于腫瘤的診斷及預(yù)后判斷以及為治療奠定基礎(chǔ)。因此,尋找腫瘤發(fā)生發(fā)展過(guò)程中起關(guān)鍵作用的miRNA及其作用靶點(diǎn)有望為腫瘤的診治提供一個(gè)新的方向。本文就缺氧微環(huán)境下microRNA在腫瘤生物學(xué)行為改變中的調(diào)控機(jī)制做一綜述。
腫瘤細(xì)胞的增殖與凋亡共同決定腫瘤的生長(zhǎng)過(guò)程。目前越來(lái)越多的證據(jù)顯示,腫瘤的增殖與凋亡受到多種miRNA的調(diào)節(jié),如miR-100、miR-18a等。缺氧下調(diào)膀胱癌細(xì)胞中miR-100的表達(dá),而成纖維細(xì)胞生長(zhǎng)因子受體-3(fibroblast growth factor receptor 3, FGFR3)表達(dá)水平上調(diào)。miR-100通過(guò)減少FGFR3下游信號(hào)傳導(dǎo)靶絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)的磷酸化抑制膀胱癌細(xì)胞的增殖[15]。也有研究表明miR-100通過(guò)調(diào)節(jié)MAX轉(zhuǎn)錄抑制子(MAX network transcriptional repressor, MNT)和轉(zhuǎn)錄調(diào)節(jié)因子E2F3(E2 promoter binding factor 3 ,E2F3)的表達(dá)影響腫瘤細(xì)胞的增殖,并通過(guò)caspase-8相關(guān)蛋白2(caspase 8 associated protein 2,Casp8ap2)調(diào)控腫瘤細(xì)胞的凋亡[21]。此外,敲除miR-210后減少了缺氧條件下腫瘤細(xì)胞的存活而凋亡增加,這是由于miR-210正向調(diào)節(jié)鐵硫簇蛋白(iron sulfur scaffold protein,ISCU)[17]。Wu等[22]研究發(fā)現(xiàn)缺氧條件下MGC-803和HGC-27胃癌細(xì)胞株中miR-18a的表達(dá)顯著下調(diào)。通過(guò)熒光素酶報(bào)告基因系統(tǒng)和免疫共沉淀實(shí)驗(yàn)證實(shí)缺氧誘導(dǎo)因子-1α(hypoxia inducible factor-1α,HIF-1α)是miR-18a的一個(gè)靶基因。外源性過(guò)表達(dá)miR-18a下調(diào)B淋巴細(xì)胞瘤-2(B-cell lymphoma-2, Bcl-2)基因的表達(dá)而上調(diào)Bcl-2相關(guān)X蛋白(Bcl-2 associated X protein, BAX)、含半胱氨酸的天冬氨酸蛋白水解酶(cysteinyl aspartate specific proteinase,caspase)-3,9的表達(dá),促進(jìn)胃癌細(xì)胞的凋亡。
新生血管的形成是腫瘤進(jìn)展的又一重要步驟,新生血管為腫瘤的生長(zhǎng)提供營(yíng)養(yǎng),并為腫瘤細(xì)胞的遠(yuǎn)處轉(zhuǎn)移提供途徑。研究表明血管內(nèi)皮生長(zhǎng)因子(VEGF)、血管生成素等對(duì)新生血管的形成有重要的促進(jìn)作用。同時(shí)miRNA在腫瘤新生血管的形成過(guò)程中有重要調(diào)控作用。缺氧增加人臍靜脈內(nèi)皮細(xì)胞株(human umbilical vein endothelial cells, HUVECs)、肝癌細(xì)胞株HeLa和組織細(xì)胞淋巴瘤細(xì)胞株U937中miR-101的表達(dá)。miR-101直接與類(lèi)泛素連接酶cullin 3的3’-UTR結(jié)合,通過(guò)抑制泛素化介導(dǎo)的蛋白酶體降解途徑來(lái)穩(wěn)定核因子紅系2相關(guān)因子2(nuclear factor erythroid 2 related factor 2,Nrf 2)。過(guò)表達(dá)miR-101促進(jìn)Nrf 2的聚集,間接調(diào)節(jié)血紅素氧化酶-1(heme oxygenase-1,HO-1)和血管內(nèi)皮生長(zhǎng)因子(vascular endothelial growth factor,VEGF)增加新生血管的形成[16],這表明miR-101對(duì)腫瘤血管生成中起著促進(jìn)作用。miR-20a在缺氧的人鼻咽癌細(xì)胞株中表達(dá)下調(diào)[23],并且靶向調(diào)控HIF-1α[24],miR-20a高表達(dá)抑制VEGF的表達(dá),這表明miR-20a對(duì)腫瘤血管生成具有抑制作用,具體機(jī)制需進(jìn)一步研究。缺氧上調(diào)乳腺癌細(xì)胞株MCF-7中miR-20b的表達(dá),而HIF-1α也是miR-20b的一個(gè)靶基因,miR-20b通過(guò)下調(diào)HIF-1α和STAT3的表達(dá)從而抑制VEGF的表達(dá),這也意味著miR-20b對(duì)乳腺癌的血管生成有著抑制作用[25]。VEGF已被證實(shí)是HIF-1α的一個(gè)靶基因[26]。miR-20a和miR-20b通過(guò)調(diào)節(jié)HIF-1α和VEGF的表達(dá)來(lái)調(diào)控新生血管的形成。類(lèi)似的,miR-15b和miR-16在缺氧的鼻咽癌細(xì)胞系中表達(dá)下調(diào),通過(guò)熒光素酶報(bào)告基因系統(tǒng)證實(shí)它們與VEGF的3’-UTR結(jié)合靶向直接下調(diào)VEGF的表達(dá)[27]。Yamakuchi等[28]研究發(fā)現(xiàn)miR-107通過(guò)抑制缺氧誘導(dǎo)因子-1β(hypoxia inducible factor-1β, HIF-1β)降低缺氧信號(hào)通路相關(guān)分子的表達(dá)。敲除內(nèi)源性的miR-107后,增強(qiáng)人結(jié)腸癌細(xì)胞株中HIF-1β和缺氧信號(hào)通路相關(guān)分子的表達(dá),反之miR-107的高表達(dá)抑制HIF-1β和缺氧信號(hào)通路相關(guān)分子的表達(dá),從而抑制VEGF的表達(dá)。此外體內(nèi)動(dòng)物模型證實(shí)腫瘤細(xì)胞中過(guò)表達(dá)miR-107能顯著降低腫瘤的生長(zhǎng)和新生血管的形成,并且VEGF的表達(dá)下調(diào)。Kong等[29]研究證實(shí)乳腺癌細(xì)胞中miR-199a通過(guò)靶向腫瘤抑制因子希佩爾林道(von Hippel-Lindau, VHL)參與腫瘤新生血管的形成。外源性miR-199a誘導(dǎo)人臍靜脈內(nèi)皮細(xì)胞網(wǎng)絡(luò)的建立,而敲除miR-199a后的作用與之相反。乳房脂肪墊異種移植模型中,外源性miR-199a導(dǎo)致廣泛的腫瘤新生血管形成。而VHL的表達(dá)抑制miR-199a的這種作用。膠質(zhì)瘤組織中miR-128表達(dá)下調(diào)。核糖體蛋白S6激酶(ribosomal protein S6 kinase, 70kDa,p70S6K1)為miR-128的一個(gè)靶基因。miR-128的過(guò)表達(dá)抑制p70S6K1及其下游分子如HIF-1和VEGF的表達(dá),從而抑制腫瘤細(xì)胞的增殖、生長(zhǎng)和新生血管的形成。而外源性過(guò)表達(dá)p70S6K1則可部分抑制這種效應(yīng)[30]。卵巢癌組織和細(xì)胞株中miR-199a和miR-125b表達(dá)下調(diào)。過(guò)表達(dá)miR-199a和miR-125b抑制卵巢癌細(xì)胞中HIF-1α和VEGF的表達(dá),從而抑制腫瘤新生血管的形成[31]。
即使在有氧條件下,腫瘤細(xì)胞也表現(xiàn)為將葡萄糖代謝為乳酸,這稱(chēng)之為Warburg效應(yīng)[32]。大量研究表明許多miRNA調(diào)節(jié)代謝酶的表達(dá)參與腫瘤細(xì)胞這種Warburg效應(yīng)。糖酵解相關(guān)基因[葡萄糖轉(zhuǎn)運(yùn)體1(glucose transporter 1,GLUT1),GLUT3,乳酸脫氫酶A(lactic dehydrogenase A,LDHA),LDHB,己糖激酶1(hexokinase 1,HK1),HK2,丙酮酸激酶M型(pyruvate kinase type M,PKM)和HIF-1α]的表達(dá)在膀胱癌腫瘤組織中比癌旁組織高,這表明糖酵解在膀胱癌中發(fā)揮作用。抑制miR-21減少膀胱癌細(xì)胞的有氧糖酵解[33]。沉默miR-21減少葡萄糖的攝取和乳酸產(chǎn)生,促進(jìn)磷酸酶及張力蛋白同源物(phosphatase and tensin homologue,PTEN)基因的表達(dá),降低磷酸化AKT的表達(dá)和失活雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)。此外,糖酵解相關(guān)基因的mRNA和蛋白表達(dá)水平也下調(diào)。已有的研究結(jié)果[33]表明,miR-21充當(dāng)分子開(kāi)關(guān),經(jīng)由PTEN /磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase,PI3K)/ AKT / mTOR途徑調(diào)節(jié)膀胱癌細(xì)胞的有氧糖酵解。在乳腺癌細(xì)胞中證實(shí)miR-210調(diào)控線(xiàn)粒體的鐵硫簇蛋白ISCU。而ISCU是鐵硫簇的組裝、三羧酸循環(huán)關(guān)鍵酶的輔因子、是電子傳遞和鐵代謝所必須的。ISCU蛋白的下調(diào)是缺氧誘導(dǎo)活性氧元件(reactive oxygen species,ROS)產(chǎn)生的主要原因。抑制ISCU降低線(xiàn)粒體復(fù)合物1(mitochondrial complex 1, MC-1)和順烏頭酸酶的活性,引起常氧條件下糖酵解的逆轉(zhuǎn)和細(xì)胞活力的增強(qiáng)。這表明miR-210在腫瘤細(xì)胞適應(yīng)缺氧中發(fā)揮重要作用,通過(guò)鐵硫簇代謝和自由基的產(chǎn)生下調(diào)線(xiàn)粒體功能[17]。缺氧下調(diào)肺癌細(xì)胞株A549中Dicer酶的表達(dá)。缺氧或敲除Dicer酶的表達(dá),miR-143的表達(dá)下調(diào)而miR-155的表達(dá)上調(diào),這提示Dicer酶參與缺氧導(dǎo)致miR-143和miR-155表達(dá)的改變。與此同時(shí),HK2的表達(dá)上調(diào),伴隨葡萄糖攝取和乳酸產(chǎn)生的增加。轉(zhuǎn)染miR-143抑制物產(chǎn)生同樣的效果。而轉(zhuǎn)染miR-155抑制物產(chǎn)生相反的作用。這表明缺氧下調(diào)miR-143和上調(diào)miR-155參與糖代謝,miR-143抑制糖代謝的過(guò)程,miR-155促進(jìn)糖代謝的過(guò)程[34]。
自噬有利于細(xì)胞在缺氧條件下的存活,越來(lái)越多的證據(jù)表明,miRNAs在調(diào)控自噬的發(fā)生過(guò)程中,大多為抑制自噬發(fā)生,也有少部分miRNAs能激活自噬。缺氧上調(diào)前列腺癌細(xì)胞中miR-96的表達(dá),miR-96通過(guò)抑制哺乳動(dòng)物mTOR促進(jìn)自噬。抑制miR-96能夠消除缺氧誘導(dǎo)的自噬。矛盾的是過(guò)表達(dá)miR-96到一定閾值,也能夠消除缺氧誘導(dǎo)的自噬。進(jìn)一步的研究表明,高水平的miR-96是通過(guò)下調(diào)自噬相關(guān)蛋白7(autophagy-related protein 7, ATG7)來(lái)抑制自噬。這證實(shí)miR-96調(diào)控缺氧誘導(dǎo)的自噬具有雙面性[18]。缺氧下調(diào)人神經(jīng)母細(xì)胞瘤細(xì)胞SKNSH、子宮頸癌細(xì)胞HeLa中miR-137的表達(dá)并抑制線(xiàn)粒體自噬,這是通過(guò)miR-137靶向調(diào)控促凋亡蛋白NIX(Bcl-2/E1B19kDa-interacting protein 3-like,NIX)和線(xiàn)粒體自噬受體FUNDC1(FUN14 domain containing 1,F(xiàn)UNDC1)來(lái)實(shí)現(xiàn)的[35]。缺氧誘導(dǎo)腫瘤細(xì)胞中miR-155表達(dá)的上調(diào)。過(guò)表達(dá)miR-155增加鼻咽癌細(xì)胞和宮頸癌細(xì)胞的自噬。而敲除內(nèi)源性的miR-155可逆轉(zhuǎn)缺氧誘導(dǎo)腫瘤細(xì)胞自噬這一進(jìn)程。miR-155靶向下調(diào)mTOR信號(hào)通路中RHEB、RTCTOR、RPS6KB2基因的表達(dá)。mTOR信號(hào)激活細(xì)胞增殖所需的合成代謝過(guò)程,并抑制分解代謝過(guò)程,包括自噬體形成[36]。
腫瘤細(xì)胞侵襲轉(zhuǎn)移在腫瘤遠(yuǎn)處轉(zhuǎn)移過(guò)程中起著重要作用,而miRNA對(duì)腫瘤細(xì)胞運(yùn)動(dòng)能力有顯著的調(diào)節(jié)作用。缺氧環(huán)境下miR-191增強(qiáng)乳腺癌細(xì)胞的侵襲和遷移能力。miR-191是轉(zhuǎn)化生長(zhǎng)因子β(transforming growth factor beta,TGFβ)信號(hào)通路的關(guān)鍵調(diào)節(jié)劑。它通過(guò)直接結(jié)合TGFβ或間接調(diào)控人抗原R(human antigen R,HuR)的水平,來(lái)誘導(dǎo)GFβ2的表達(dá),在缺氧誘導(dǎo)腫瘤細(xì)胞侵襲遷移中發(fā)揮作用。TGFβ途徑相關(guān)基因(如VEGFA,SMAD3,CTGF和BMP4)的水平在過(guò)表達(dá)miR-191的細(xì)胞中顯著增高[37]。肝癌組織中miR-210表達(dá)上調(diào)。缺氧環(huán)境下肝癌細(xì)胞中miR-210表達(dá)上調(diào)并且侵襲遷移能力增加。這是通過(guò)miR-210的一個(gè)靶基因液泡膜蛋白1(vacuole membrane protein 1,VMP1)實(shí)現(xiàn)的[38]。Krutilina等[19]通過(guò)熒光素酶報(bào)告基因系統(tǒng)和免疫共沉淀實(shí)驗(yàn)證實(shí)HIF-1α是miR-18a的一個(gè)靶基因。調(diào)節(jié)miR-18a的表達(dá)通過(guò)作用于靶向基因HIF-1α顯著影響缺氧相關(guān)基因的表達(dá)及卵巢癌細(xì)胞的體外侵襲遷移能力。進(jìn)一步采用MDA-MB-231細(xì)胞株建立原位異種移植的乳腺癌轉(zhuǎn)移性模型研究miR-18a在自發(fā)性肺轉(zhuǎn)移中的作用。結(jié)果發(fā)現(xiàn)外源性miR-18a的表達(dá)抑制原發(fā)腫瘤的生長(zhǎng)和降低肺轉(zhuǎn)移的發(fā)生,而抑制miR-18a的表達(dá)則增加原發(fā)腫瘤的生長(zhǎng)和肺轉(zhuǎn)移的發(fā)生。缺氧狀態(tài)下,卵巢癌細(xì)胞中miR-199a的表達(dá)水平下調(diào)而HIF-1α表達(dá)上調(diào)。miR-199a與HIF-1α mRNA的3’-UTR結(jié)合,直接調(diào)節(jié)其表達(dá)。miR-199a高表達(dá)下調(diào)卵巢癌細(xì)胞中HIF-1α的表達(dá)水平,降低卵巢癌細(xì)胞侵襲遷移能力[39]。Song等[40]研究表明,缺氧環(huán)境下,胰腺癌組織中miR-191與HIF-1α表達(dá)都上調(diào),HIF-1α可能與miR-191啟動(dòng)序列結(jié)合,調(diào)控其表達(dá)。他們通過(guò)對(duì)20例miR-191表達(dá)正常與21例miR-191高表達(dá)患者的研究發(fā)現(xiàn),miR-191的表達(dá)和胰腺癌的侵襲、轉(zhuǎn)移等密切相關(guān),胰腺癌中miR-191的高表達(dá)預(yù)示著較差的預(yù)后。在胰腺癌中HIF-1α的表達(dá)增高,與miR-191的5’側(cè)翼序列缺氧反應(yīng)元件相結(jié)合,啟動(dòng)miR-191的轉(zhuǎn)錄。趙源源等[20]采用基因芯片分別測(cè)試了20 例高分化、60 例中分化和30 例低分化肝細(xì)胞癌(hepatocellular carcinoma,HCC)組織樣本中miRNA 表達(dá)譜。結(jié)果發(fā)現(xiàn),12種miRNA(miR-221, miR-18a, miR-18b, MiR-423-5p,miR-455-3p,miR-1914,miR-100,miR-215,miR-122,let-7b,miR-22,miR-99a)表達(dá)水平存在顯著差異,miR-221,miR-18a,miR-18b,miR-423-5p在低分化組織中表達(dá)高于高分化組織,8 種miRNA(miR-455-3p,miR-1914,miR-100,miR-215,miR-122,let-7b,miR-22,miR-99a) 在低分化組織中表達(dá)低于高分化組織,尤其是miR-18b 在低分化組織中表達(dá)水平顯著高于高分化組織。此外,miR-18b 高表達(dá)者在行肝癌切除術(shù)后其無(wú)復(fù)發(fā)生存期較miR-18b 低表達(dá)者明顯縮短,提示可根據(jù)miRNA 的表達(dá)情況判斷HCC 的分化程度以及miR-18b 可作為HCC 進(jìn)展中重要的診斷和預(yù)后判斷的指標(biāo)[20]。
缺氧改變腫瘤細(xì)胞的生物學(xué)行為,包括腫瘤細(xì)胞增殖與凋亡、新生血管形成、代謝、自噬、侵襲與轉(zhuǎn)移等,而miRNA在其中發(fā)揮重要作用。缺氧微環(huán)境下腫瘤細(xì)胞中miRNA的改變,以調(diào)控mRNA翻譯的方式調(diào)節(jié)靶基因表達(dá),進(jìn)而發(fā)揮癌基因或抑癌基因樣作用。闡明miRNA在腫瘤中的作用將有助于更加全面深入地認(rèn)識(shí)腫瘤發(fā)生、發(fā)展的分子機(jī)制,為腫瘤的治療奠定基礎(chǔ)。但還有很多問(wèn)題亟待解決,如缺氧在腫瘤細(xì)胞中的調(diào)控目標(biāo)是單一的miRNA還是缺氧相關(guān)miRNA(Hypoxia-regulated microRNA, HRM)網(wǎng)絡(luò)?特定腫瘤是否有其特異的HRM表達(dá)譜?多個(gè)HRM作用于同一個(gè)靶基因時(shí)其協(xié)調(diào)作用機(jī)制如何?總之,深入探討HRM在腫瘤生物學(xué)行為改變中的作用,將為進(jìn)一步研究腫瘤的臨床藥物治療奠定基礎(chǔ)。
作者聲明:本文第一作者對(duì)于研究和撰寫(xiě)的論文出現(xiàn)的不端行為承擔(dān)相應(yīng)責(zé)任。
利益沖突:本文全部作者均認(rèn)同文章無(wú)相關(guān)利益沖突;
學(xué)術(shù)不端:本文在初審、返修及出版前均通過(guò)中國(guó)知網(wǎng)(CNKI)科技期刊學(xué)術(shù)不端文獻(xiàn)檢測(cè)系統(tǒng)學(xué)術(shù)不端檢測(cè);
同行評(píng)議:經(jīng)同行專(zhuān)家雙盲外審,達(dá)到刊發(fā)要求。
[1] Yang Y, Sun M, Wang L, et al. HIFs, angiogenesis, and cancer[J]. J Cell Biochem, 2013, 114(5):967-974.
[2] Dhani N, Fyles A, Hedley D, et al. The clinical significance of hypoxia in human cancers[J]. Semin Nucl Med, 2015, 45(2): 110-121.
[3] Song Z, Ren H, Gao S, et al. The clinical significance and regulation mechanism of hypoxia-inducible factor-1 and miR-191 expression in pancreatic cancer[J]. Tumour Biol, 2014, 35(11):11319-11328.
[4] Won C, Kim BH, Yi EH, et al. Signal transducer and activator of transcription 3-mediated CD133 up-regulation contributes to promotion of hepatocellular carcinoma[J]. Hepatology, 2015, 62(4):1160-1173.
[5] Wu S, Sun C, Tian D, et al. Expression and clinical significances of Beclin1, LC3 and mTOR in colorectal cancer[J]. Int J Clin Exp Pathol, 2015, 8(4):3882-3891.
[6] Multhoff G, Radons J, Vaupel P. Critical role of aberrant angiogenesis in the development of tumor hypoxia and associated radioresistance[J]. Cancers (Basel), 2014, 6(2): 813-828.
[7] Rebucci M, Michiels C. Molecular aspects of cancer cell resistance to chemotherapy[J]. Biochem Pharmacol, 2013, 85(9): 1219-1226.
[8] Wang JQ, Wu KJ. Epigenetic regulation of epithelial-mesenchymal transition by hypoxia in cancer: targets and therapy[J]. Curr Pharm Des, 2015, 21(10):1272-1278.
[9] Rankin EB, Giaccia AJ. Hypoxic control of metastasis[J]. Science, 2016, 352(6282):175-180.
[10]Michiels C, Tellier C, Feron O. Cycling hypoxia: a key feature of the tumor microenvironment[J]. Biochim Biophys Acta, 2016, 1866(1):76-86.
[11]Koch CJ, Evans SM. Optimizing hypoxia detection and treatment strategies[J]. Semin Nucl Med, 2015, 45(2): 163-176.
[12]Tuna M, Machado AS, Calin GA. Genetic and epigenetic alterations of microRNAs and implications for human cancers and other diseases[J]. Genes Chromosomes Cancer, 2016, 55(3): 193-214.
[13]Nallamshetty S, Chan SY, Loscalzo J. Hypoxia: a master regulator of microRNA biogenesis and activity[J]. Free Radic Biol Med, 2013, 64(5): 20-30.
[14]Semenza GL. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy[J]. Trends Pharmacol Sci, 2012, 33(4): 207-214.
[15]Blick C, Ramachandran A, Wigfield S, et al. Hypoxia regulates FGFR3 expression via HIF-1α and miR-100 and contributes to cell survival in non-muscle invasive bladder cancer[J]. Br J Cancer, 2013, 109(1): 50-59.
[16]Kim JH, Lee KS, Lee DK, et al. Hypoxia-responsive microRNA-101 promotes angiogenesis via heme oxygenase-1/vascular endothelial growth factor axis by targeting cullin 3[J]. Antioxid Redox Signal, 2014, 21(18): 2469-2482.
[17]Favaro E, Ramachandran A, Mccormick R, et al. MicroRNA-210 regulates mitochondrial free radical response to hypoxia and krebs cycle in cancer cells by targeting iron sulfur cluster protein ISCU[J]. PLoS One, 2010, 5(4): e10345.
[18]Ma Y, Yang HZ, Dong BJ, et al. Biphasic regulation of autophagy by miR-96 in prostate cancer cells under hypoxia[J]. Oncotarget, 2014, 5(19): 9169-9182.
[19]Krutilina R, Sun W, Sethuraman A, et al. MicroRNA-18a inhibits hypoxia-inducible factor 1α activity and lung metastasis in basal breast cancers[J]. Breast Cancer Res, 2014, 16(4): R78.
[20]趙源源,李 華,吳敬波,等.microRNA 在肝癌發(fā)生發(fā)展及診治中的作用[J].腫瘤預(yù)防與治療,2015,28(1):45-48.
[21]Qin Q, Furong W, Baosheng L. Multiple functions of hypoxiaregulated miR-210 in cancer[J]. J Exp Clin Cancer Res, 2014, 33: 50.
[22]Wu F, Huang W, Wang X. microRNA-18a regulates gastric carcinoma cell apoptosis and invasion by suppressing hypoxia-inducible factor-1α expression[J]. Exp Ther Med, 2015, 10(2): 717-722.
[23]Hua Z, Lv Q, Ye W, et al. MiRNA directed regulation of VEGF and other angiogenic factors under hypoxia[J]. PLoS One, 2006, 1(1): e116.
[24]Lin SC, Wang CC, Wu MH, et al. Hypoxia-enduced microRNA-20a expression increases ERK phosphorylation and angiogenic gene expression in endometriotic stromal cells[J]. J Clin Endocrinol Metab, 2012, 97(8): E1515-1523.
[25]Cascio S, D’andrea A, Ferla R, et al. miR-20b modulates VEGF expression by targeting HIF-1 alpha and STAT3 in MCF-7 breast cancer cells[J]. J Cell Physiol, 2010, 224(1): 242-249.
[26]Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system[J]. Nat Med, 2003, 9(6): 677-684.
[27]Madanecki P, Kapoor N, Bebok Z, et al. Regulation of angiogenesis by hypoxia: the role of microRNA[J]. Cell Mol Biol Lett, 2013, 18(1): 47-57.
[28]Yamakuchi M, Lotterman CD, Bao C, et al. P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis[J]. Proc Natl Acad Sci USA, 2010, 107(14):6334-6339.
[29]Kong W, He L, Richards EJ, et al. Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple-negative breast cancer[J]. Oncogene, 2014, 33(6): 679-689.
[30]Shi ZM, Wang J, Yan Z, et al. MiR-128 inhibits tumor growth and angiogenesis by targeting p70S6K1[J]. PLoS One, 2012, 7(3): e32709.
[31]He J, Jing Y, Li W, et al. Roles and mechanism of miR-199a and miR-125b in tumor angiogenesis[J]. PLoS One, 2013, 8(2): e56647.
[32]Justus CR, Sanderlin EJ, Yang LV. Molecular connections between cancer cell metabolism and the tumor microenvironment[J]. Int J Mol Sci, 2015, 16(5): 11055-11086.
[33]Yang X, Cheng Y, Li P, et al. Lentiviral sponge for miRNA-21 diminishes aerobic glycolysis in bladder cancer T24 cells via the PTEN/PI3K/AKT/mTOR axis[J]. Tumour Biol, 2015, 36(1): 383-391.
[34]Yao M, Wang X, Tang Y, et al. Dicer mediating the expression of miR-143 and miR-155 regulates hexokinase II associated cellular response to hypoxia[J]. Am J Physiol Lung Cell Mol Physiol, 2014, 307(11): L829-837.
[35]Li W, Zhang X, Zhuang H, et al. MicroRNA-137 is a novel hypoxia-responsive microRNA that inhibits mitophagy via regulation of two mitophagy receptors FUNDC1 and NIX[J]. J Biol Chem, 2014, 289(15): 10691-10701.
[36]Wan G, Xie W, Liu Z, et al. Hypoxia-induced MIR155 is a potent autophagy inducer by targeting multiple players in the MTOR pathway[J]. Autophagy, 2014, 10(1): 70-79.
[37]Nagpal N, Ahmad HM, Chameettachal S, et al. HIF-inducible miR-191 promotes migration in breast cancer through complex regulation of TGFβ-signaling in hypoxic microenvironment[J]. Sci Rep, 2015, 5: 9650.
[38]Ying Q, Liang L, Guo W, et al. Hypoxia-inducible microRNA-210 augments the metastatic potential of tumor cells by targeting vacuole membrane protein 1 in hepatocellular carcinoma[J]. Hepatology, 2011, 54(6): 2064-2075.
[39]Joshi HP, Subramanian IV, Schnettler EK, et al. Dynamin 2 along with microRNA-199a reciprocally regulate hypoxia-inducible factors and ovarian cancer metastasis[J]. Proc Natl Acad Sci USA, 2014, 111(14): 5331-5336.
[40]Song Z,Ren H,Gao S,et al. The clinical significance and regulation mechanism of hypoxia-inducible factor-1 and miR-191 expression in pancreatic cancer[J]. Tumour Biol, 2014, 35(11):11319-11328.
Progress of Research on the microRNA in Hypoxia-induced Biological Behavior Changes of Tumors*
Zhu Guanghui1,2, Liu Haijun1,2, Zhang Xueli1,2
(1.DepartmentofGeneralSurgery,FengxianHospitalofSouthernMedicalUniversity,Shanghai201499,China; 2.DepartmentofGeneralSurgery,ShanghaiFengxianDistrictCentralHospital,Shanghai201499,China)
Hypoxia is an important feature of the tumor microenvironment. Hypoxia microenvironment plays an important role in biological behavior changes of tumors, including tumor cell proliferation and apoptosis, angiogenesis, metabolism, autophagy, invasion, and metastasis, etc. microRNA is an endogenous single-stranded non-coding RNA fragments with a length of 19 to 24 nt, binding to the target mRNA 3′-untranslated region ( 3′-UTR), to adjust the gene expression through the regulation of mRNA translation. It is an important regulatory factor in hypoxia-induced biological behavior changes of tumors. This article provides a review of the regulation mechanism of microRNA in the biological behavior changes of tumors under hypoxia microenvironment.
Hypoxia; Neoplasm; microRNA
2016- 03- 09
2016- 12- 31
*國(guó)家自然科學(xué)基金資助項(xiàng)目(編號(hào):81402377)
朱光輝(1982-),男,博士研究生,主治醫(yī)師,主要從事消化道腫瘤的基礎(chǔ)與臨床研究。
△張學(xué)利(1966-),主任醫(yī)師,E-mail: lejing1996@aliyun.com
R730.231
A
10.3969/j.issn.1674- 0904.2017.01.012