孫雨萌,左海奇,田野
動脈粥樣硬化(AS)以血管壁的慢性炎癥反應(yīng)為特征,其并發(fā)癥心肌梗死和腦卒中等是全球首要致死疾病。巨噬細(xì)胞是AS病變中最豐富的一類細(xì)胞,從AS病變形成到斑塊破裂的各個階段都起著重要作用。當(dāng)局部區(qū)域的血流處于非層流狀態(tài)時,血管內(nèi)皮功能障礙導(dǎo)致循環(huán)低密度脂蛋白(LDL)滲透到血管內(nèi)膜,高脂血癥患者尤為明顯,血管壁上LDL經(jīng)過氧化等修飾后激活內(nèi)皮細(xì)胞和固有免疫細(xì)胞,導(dǎo)致趨化因子和粘附分子表達(dá)增加,趨化循環(huán)中單核細(xì)胞在血管壁的粘附、滾動、跨內(nèi)皮遷移,導(dǎo)致內(nèi)膜單核細(xì)胞浸潤。單核細(xì)胞進入血管內(nèi)膜后,分化成巨噬細(xì)胞攝取修飾后的脂蛋白成為泡沫細(xì)胞。逐漸積累在內(nèi)皮的泡沫細(xì)胞凋亡,若凋亡的泡沫細(xì)胞沒有被及時清除,逐漸導(dǎo)致血栓和炎性壞死核心的形成。巨噬細(xì)胞通過分泌細(xì)胞因子和蛋白水解酶進一步加劇炎癥,導(dǎo)致斑塊穩(wěn)定性下降、破裂繼發(fā)血栓形成,引起缺血性事件如心肌梗死、中風(fēng)。這一觀點被認(rèn)為是損傷形成的重要機制。但最近有研究揭示了AS斑塊中巨噬細(xì)胞聚集的機制及功能。
1.1 骨髓和脾臟來源的循環(huán)單核細(xì)胞募集 在AS病變進展中,循環(huán)中的單核細(xì)胞向炎癥血管募集。在高膽固醇小鼠模型中,給予高脂飲食,Ly-6Chi單核細(xì)胞集群明顯增多,Ly-6Chi單核細(xì)胞粘附于活化的血管內(nèi)皮細(xì)胞、病灶轉(zhuǎn)變成巨噬細(xì)胞。Ly-6Chi CCR2+型單核細(xì)胞為斑塊內(nèi)巨噬細(xì)胞的主要前體細(xì)胞,其向斑塊募集主要取決于趨化因子受體CCR2、CCR5和CX3CR1的表達(dá)[1,2]以及內(nèi)皮細(xì)胞上各種粘附分子受體的表達(dá)[3]。骨髓產(chǎn)生的單核細(xì)胞一直被認(rèn)為是AS主要病變中單核細(xì)胞來源,并且高脂血癥以及高血糖能夠促進骨髓產(chǎn)生單核細(xì)胞[4,5]。有研究證實[6],趨化因子受體CCR2介導(dǎo)了骨髓來源的Ly-6Chi單核細(xì)胞游走。有研究提示造血干細(xì)胞(HSC)從骨髓遷移到脾臟進一步分化為成熟單核細(xì)胞,在粥樣硬化病變部位大量聚集[7]。與CCR2介導(dǎo)的機制不同,脾源性單核細(xì)胞募集依賴于血管緊張素Ⅱ 1型受體AT1[8],脾臟單核細(xì)胞受到血管緊張素II刺激后開始動員[9]。
1.2 巨噬細(xì)胞局部增殖 目前AS斑塊中巨噬細(xì)胞聚集的機制尚不明確。Robbins等[10]發(fā)現(xiàn)在病變部位固有巨噬細(xì)胞增殖約占87%,而循環(huán)招募巨噬細(xì)胞僅在疾病早期出現(xiàn)。AS病變形成過程中,隨著病變部位增大單核細(xì)胞募集不斷增多,同時,高血脂時單核細(xì)胞募集加強[11]。Sárka L等學(xué)者指出在病變早期巨噬細(xì)胞增殖活性較高,晚期則反之[12]。而且近來發(fā)現(xiàn)病變部位中一部分巨噬細(xì)胞是不能增殖的衰老細(xì)胞,可用藥物清除[13]。在損傷后以及AS斑塊中,小部分可塑血管平滑肌細(xì)胞(VSMC)廣泛增殖可導(dǎo)致其積聚[14-16]。
1.3 VSMC分化為巨噬細(xì)胞樣細(xì)胞 之前研究發(fā)現(xiàn)AS病變中巨噬細(xì)胞和VSMC共表達(dá)細(xì)胞標(biāo)記物[17],最近研究表明[18],病變部位高達(dá)50%細(xì)胞為表達(dá)平滑肌細(xì)胞標(biāo)志物的巨噬細(xì)胞。但該研究并不能確定這些細(xì)胞是源于VSMC標(biāo)記物上調(diào)還是VSMCs轉(zhuǎn)化為巨噬細(xì)胞。Feil等[15]研究表明在AS晚期,通過他莫昔芬誘導(dǎo)的Cre重組酶的表達(dá),VSMC失標(biāo)記并轉(zhuǎn)化為克隆擴增的VSMC源性的類巨噬細(xì)胞。但Shankman等[16]指出,VSMC在AS斑塊中發(fā)揮重要作用,同時敲除KLF4的VSMC表型在病變中也發(fā)揮重要作用。體外實驗證實[19],高膽固醇可誘導(dǎo)VSMC轉(zhuǎn)變?yōu)榫奘杉?xì)胞樣細(xì)胞。這些VSMC源性的巨噬細(xì)胞樣細(xì)胞有著與骨髓源性巨噬細(xì)胞不同的轉(zhuǎn)錄譜,且無經(jīng)典巨噬細(xì)胞功能[20]。
1.4 大動脈固有巨噬細(xì)胞和局部分化巨噬細(xì)胞 正常動脈壁存在固有巨噬細(xì)胞和樹突狀細(xì)胞。研究表明小鼠動脈壁含有兩種不同來源的固有巨噬細(xì)胞,即CX3CR1+胚胎前體和出生后骨髓來源的單核細(xì)胞,這類血管中的巨噬細(xì)胞通過自我更新補充感染時的消耗來維持穩(wěn)態(tài)[21]。除了動脈壁固有巨噬細(xì)胞,一些研究提出在小鼠主動脈外膜上存在一定數(shù)量的巨噬細(xì)胞祖細(xì)胞,可局部分化促進AS中巨噬細(xì)胞的聚集[22]。
胚胎發(fā)育過程中,來源于干細(xì)胞的組織固有巨噬細(xì)胞概念的提出對傳統(tǒng)單核細(xì)胞轉(zhuǎn)化為巨噬細(xì)胞的模式提出挑戰(zhàn)[23]。特定組織的巨噬細(xì)胞來源于各種不同前體細(xì)胞,如卵黃囊源性祖細(xì)胞胚胎造血干細(xì)胞或成人造血干細(xì)胞來源的單核細(xì)胞[23]。分析巨噬細(xì)胞來源、動脈固有巨噬細(xì)胞和巨噬細(xì)胞前體細(xì)胞對AS防治意義重大。
1.5 巨噬細(xì)胞與斑塊消退 逆轉(zhuǎn)小鼠高膽固醇血癥,斑塊中的巨噬細(xì)胞減少同時斑塊也減小[24]。將AS或肝臟X受體(LXR)缺失的小鼠動脈移植到野生型小鼠體內(nèi),斑塊消退,趨化因子受體CCR7表達(dá)[25]。此外,van等進一步提出,損傷部位的巨噬細(xì)胞能夠表達(dá)軸突導(dǎo)向因子及其受體等,抑制巨噬細(xì)胞遷移出病變部位,促進斑塊進展[26]。另有研究提出[24],受損部位巨噬細(xì)胞的消退主要由CCR7介導(dǎo)。
2.1 炎癥細(xì)胞因子和蛋白酶的產(chǎn)生 在損傷部位,巨噬細(xì)胞通過產(chǎn)生促炎因子及趨化因子來募集免疫細(xì)胞,參與炎癥反應(yīng)。斑塊中巨噬細(xì)胞表達(dá)促炎因子能夠加速AS進展,如腫瘤壞死因子-α(TNF-α)[27]和白介素-18(IL-18)[28]等。在Apoe-/-小鼠中,骨髓細(xì)胞白介素-1α(IL- 1α)和白介素-1β(IL-1β)表達(dá)缺失,導(dǎo)致AS損傷及炎癥減輕[29]。骨髓細(xì)胞過表達(dá)趨化因子CCL2增加巨噬細(xì)胞在病變聚集,提示白細(xì)胞趨化因子促進斑塊炎癥進展[30]。此外,AS斑塊中的巨噬細(xì)胞也能產(chǎn)生抗炎因子,白介素-13(IL-13)表達(dá)下降可加重斑塊炎癥及損傷[31]。
AS病變處蛋白水解程度與斑塊易損和破裂相關(guān),損傷處巨噬細(xì)胞蛋白水解活性較高,導(dǎo)致斑塊易損和破裂[32]。Apoe-/-小鼠中證實病變晚期的巨噬細(xì)胞過表達(dá)基質(zhì)金屬蛋白酶-9(MMP-9),進而導(dǎo)致斑塊易損性增加[32]。而Ldlr-/-小鼠骨髓源性巨噬細(xì)胞未表達(dá)基質(zhì)金屬蛋白酶-14(MMP-14),導(dǎo)致膠原含量增加、斑塊穩(wěn)定,這提示巨噬細(xì)胞表達(dá)的MMP-14與易損斑塊形成相關(guān)[33]。
2.2 泡沫細(xì)胞的形成 巨噬細(xì)胞源性泡沫細(xì)胞在血管內(nèi)皮形成。巨噬細(xì)胞胞內(nèi)脂質(zhì)積聚程度反映了胞外脂質(zhì)攝取和逆向脂質(zhì)運輸之間的平衡。巨噬細(xì)胞通過各種清道夫受體吞噬修飾后的低密度脂蛋白(LDL),例如清道夫受體A1(MSR1)、LDL受體相關(guān)蛋白1(LRP-1)以及凝集素樣氧化低密度脂蛋白受體1(LOX-1)[34]。高脂飼料喂養(yǎng)的Ldlr-/-小鼠LRP-1缺乏導(dǎo)致膽固醇在巨噬細(xì)胞聚集減少,但血液中血脂的積累并未減少,表明LRP-1減少AS損傷部位泡沫細(xì)胞形成[35]。抑制泡沫細(xì)胞形成與CD36及MSR1缺乏相關(guān)。研究指出抑制Apoe-/-小鼠CD36或MSR1表達(dá)時,盡管膽固醇在巨噬細(xì)胞的積聚減少,但仍有泡沫細(xì)胞聚集,提示脂質(zhì)攝取替代途徑可以彌補CD36或MSR1的缺失[36]。除了對脂質(zhì)攝取的調(diào)節(jié)作用,MSR1在AS病變晚期對巨噬細(xì)胞聚集也起重要作用[10]。表達(dá)于AS斑塊巨噬細(xì)胞的黏附分子受體CD146,通過增加CD36內(nèi)化進一步促進氧化低密度脂蛋白的積聚。此外,CD146也能促進巨噬細(xì)胞在病變部位固定[37]。
巨噬細(xì)胞膽固醇流出依賴于ATP結(jié)合盒轉(zhuǎn)運蛋白(ABC)ABCA1和ABCG1[38]。ABCA1和ABCG1相關(guān)的膽固醇流出途徑不僅能調(diào)節(jié)泡沫細(xì)胞形成,還能夠抑制造血干/祖細(xì)胞(HSPC)增殖和動員[39,40],Acba1-/-Abcg1-/-小鼠造血干/組細(xì)胞過度增殖,白細(xì)胞增多,髓外造血增加,引起免疫細(xì)胞在病變部位聚集。
在AS病變晚期巨噬細(xì)胞增殖被激活。與增殖型巨噬細(xì)胞相比,病變部位也存在失去增殖能力的細(xì)胞即衰老細(xì)胞。研究指出內(nèi)膜上的巨噬細(xì)胞源性衰老泡沫細(xì)胞參與AS的整個過程[17]。高脂飼料喂養(yǎng)的Ldlr-/-小鼠中,主動脈弓部血管內(nèi)膜巨噬細(xì)胞源性泡沫細(xì)胞衰老標(biāo)志物高表達(dá),藥物清除這些細(xì)胞后,TNF-α、血管粘附分子-1(VCAM-1)和單核細(xì)胞趨化蛋白-1(MCP-1)表達(dá)下降。在AS病變部位,有研究發(fā)現(xiàn)約20%的巨噬細(xì)胞源性泡沫細(xì)胞表達(dá)衰老標(biāo)記物,衰老的巨噬細(xì)胞增加了炎性細(xì)胞因子和基質(zhì)金屬蛋白酶的表達(dá),清除衰老細(xì)胞能抑制疾病進展、促進斑塊穩(wěn)定[13]。巨噬細(xì)胞在血脂水平正常后消退斑塊和炎癥[24]。
3.1 胞葬和自噬 胞葬是免疫沉默時通過巨噬細(xì)胞吞噬來清除凋亡細(xì)胞并且是維持自身免疫耐受的過程[41],有研究表明巨噬細(xì)胞的胞葬能力與AS的發(fā)生發(fā)展相關(guān)[42]。研究證實[43],MFGE8橋接凋亡細(xì)胞膜表達(dá)的磷脂酰絲氨酸(PS)和巨噬細(xì)胞上的αvβ3/β5整合素,并且免疫細(xì)胞特異性缺失MFG-E8AS的Ldlr-/-小鼠AS病變和壞死增加。最近有研究提出巨噬細(xì)胞表面MER-Tk裂解能夠在AS病變中減少胞葬作用,而Ldlr-/-小鼠抗MER-TK裂解可促進胞葬作用、減少壞死[44]。在巨噬細(xì)胞表達(dá)的T細(xì)胞免疫球蛋白黏蛋白域蛋白-1(TIM-1)或TIM-4可以識別凋亡細(xì)胞上PS,Ldlr-/-小鼠中TIM-1或TIM-4表達(dá)受到抑制[45],或補體C1q基因缺乏,均減少凋亡細(xì)胞的清除,導(dǎo)致AS損傷加重[46]。凋亡細(xì)胞還能夠表達(dá)“別吃我”信號,如CD47,其能夠通過與巨噬細(xì)胞表面受體SIRPα結(jié)合阻止胞葬作用,且近來發(fā)現(xiàn)在AS小鼠模型中通過單克隆抗體競爭中和CD47能減少損傷形成、促進胞葬作用[47]。提示,胞葬可作為AS重要的治療靶點。并且,巨噬細(xì)胞吞噬凋亡細(xì)胞促進了抗炎作用,其高表達(dá)抗炎因子白介素-10(IL-10)、轉(zhuǎn)錄生長因子-β(TGF-β)并減少促炎因子白介素-12(IL-12)和轉(zhuǎn)錄生長因子-α(TNF-α)的表達(dá)[48]。此外,凋亡細(xì)胞被吞噬觸發(fā)其表達(dá)LXR依賴的MER-TK進一步促進胞葬作用[49]。
自噬可誘導(dǎo)斑塊巨噬細(xì)胞氧化應(yīng)激和內(nèi)質(zhì)網(wǎng)應(yīng)激,若自噬相關(guān)-5基因(Atg-5)缺乏,斑塊巨噬細(xì)胞凋亡和壞死則增加。并且,Atg-5缺乏時凋亡細(xì)胞不能有效通過巨噬細(xì)胞胞葬作用被清除[50]。這些結(jié)果提示巨噬細(xì)胞自噬在晚期AS中起保護作用。綜上所述,了解巨噬細(xì)胞在血管炎癥和動脈粥樣硬化中的功能和具體機制,為疾病的治療提供新思路。需不斷深入研究巨噬細(xì)胞以及其在AS中的具體作用。
[1] Swirski FK,Libby P,Aikawa E,et al. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata[J]. J Clin Invest,2007,117(1):195-205.
[2] Tacke F. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques[J]. J Clin Invest,2007,117(1):185-94.
[3] Gerhardt T. Monocyte trafficking across the vessel wall[J]. Cardiovasc Res,2015,107(3):321-30.
[4] Nagareddy P,Murphy A,Stirzaker R,et al. Hyperglycemia Promotes Myelopoiesis and Impairs the Resolution of Atherosclerosis[J]. Cell Metab,2013,17(5):695.
[5] Soehnlein O,Swirski FK. Hypercholesterolemia links hematopoiesis with atherosclerosis[J]. Trends Endocrinol Metab,2013,24(3):129-36.
[6] Serbina NV,Pamer EG. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2[J]. Nat Immunol,2006,7(3):311-7.
[7] Robbins CS,Chudnovskiy A,Rauch PJ,et al. Extramedullary Hematopoiesis Generates Ly-6Chigh Monocytes That Infiltrate Atherosclerotic Lesions[J]. Circulation,2012,125(2):364-74.
[8] Swirski FK,Nahrendorf M,Etzrodt M,et al. Identification of Splenic Reservoir Monocytes and Their Deployment to Inflammatory Sites[J].Science,2009,325(5940):612.
[9] Mellak S,Oufella HA,Esposito B,et al. Angiotensin II Mobilizes Spleen Monocytes to Promote the Development of Abdominal Aortic Aneurysm in Apoe-/- Mice[J]. Arterioscler Thromb Vasc Biol,2015,35(2):378.
[10] Robbins CS,Hilgendorf I,Weber GF,et al. Local proliferation dominates lesional macrophage accumulation in atherosclerosis[J].Nat Med,2013,19(9):1166-72.
[11] Swirski FK,Pittet MJ,Kircher MF,et al. Monocyte accumulation in mouse atherogenesis is progressive and proportional to extent of disease[J]. Proc Natl Acad Sci U S A,2006,103(27):10340-5.
[12] ?árka L,Gabriel G,Jean-Claude C,et al. Characterization of Proliferating Lesion-Resident Cells During All Stages of Atherosclerotic Growth:[J]. J Am Heart Assoc,2016,5(8):e003945.
[13] Childs BG,Baker DJ,Wijshake T,et al. Senescent intimal foam cells are deleterious at all stages of atherosclerosis[J]. Science,2016,354(6311):472.
[14] Chappell J,Harman JL,Narasimhan VM,et al. Extensive proliferation of a subset of differentiated, yet plastic, medial vascular smooth muscle cells contribute to neointimal formation in mouse injury and atherosclerosis models[J]. Circ Res,2016,119(12):1313-23.
[15] Feil S,Fehrenbacher B,Lukowski R,et al. Transdifferentiation of Vascular Smooth Muscle Cells to Macrophage-Like Cells During Atherogenesis[J]. Circ Res,2014,115(7):662-7.
[16] Shankman LS,Gomez D,Cherepanova OA,et al. KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis[J]. Nat Med,2015,21(6):628-37.[17] Andreeva ER,Pugach IM,Orekhov AN. Subendothelial smooth muscle cells of human aorta express macrophage antigen in situ and in vitro[J]. Atherosclerosis,1997,135(1):19-27.
[18] Allahverdian S,Chehroudi AC,Mcmanus BM,et al. Contribution of intimal smooth muscle cells to cholesterol accumulation and macrophage-like cells in human atherosclerosis[J]. Circulation,2014,131(3):1551-9.
[19] Rong JX,Shapiro M,Trogan E,et al. Transdifferentiation of mouse aortic smooth muscle cells to a macrophage-like state after cholesterol loading[J]. Proc Natl Acad Sci USA,2003, 100(23):13531-6.
[20] Vengrenyuk Y,Nishi H,Long X,et al. Cholesterol Loading Reprograms the MicroRNA-143/145-Myocardin Axis to Convert Aortic Smooth Muscle Cells to a Dysfunctional Macrophage-Like Phenotype[J].Arter Thromb Vasc Biol,2015,35(3):535-46.
[21] Ensan S,Li A,Besla R,et al. Self-renewing resident arterial macrophages arise from embryonic CX3CR1(+) precursors and circulating monocytes immediately after birth[J]. Nat Immunol,2015,17(2):159.
[22] Psaltis PJ,Puranik AS,Spoon DB,et al. Characterization of a resident population of adventitial macrophage progenitor cells in postnatal vasculature[J]. Circ Res,2014,115(3):364-75.
[23] Ginhoux F,Guilliams M. Tissue-Resident Macrophage Ontogeny and Homeostasis[J]. Immunity,2016,44(3):439-49.
[24] Potteaux S,Gautier EL,Hutchison SB,et al. Suppressed monocyte recruitment drives macrophage removal from atherosclerotic plaques of Apoe-/- mice during disease regression[J]. J Clin Invest,2011,121(5):2025.
[25] Feig JE,Pinedatorra I,Sanson M,et al. LXR promotes the maximal egress of monocyte-derived cells from mouse aortic plaques during atherosclerosis regression[J]. J Clin Invest,2010,120(12):4415-24.
[26] van Gils JM,Derby MC,Fernandes LR,et al. The neuroimmune guidance cue netrin-1 promotes atherosclerosis by inhibiting the emigration of macrophages from plaques[J]. Nat Immunol,2012,13(2):136-43.
[27] Ohta H,Wada H,Niwa T,et al. Disruption of tumor necrosis factoralpha gene diminishes the development of atherosclerosis in ApoE-deficient mice[J]. Atherosclerosis,2005,180(1):11-7.
[28] Whitman SC,Ravisankar P,Daugherty A. Interleukin-18 enhances atherosclerosis in apolipoprotein E(-/-) mice through release of interferon-gamma[J]. Circ Res,2002,90(2):34-8.
[29] Kamari Y,Shaish A,Shemesh S,et al. Reduced atherosclerosis and inflammatory cytokines in apolipoprotein-E-deficient mice lacking bone marrow-derived interleukin-1α[J]. Biochem Biophys Res Commun,2011,405(2):197-203.
[30] Aiello RJ,Bourassa PAK,Lindsey S,et al. Monocyte Chemoattractant Protein-1 Accelerates Atherosclerosis in Apolipoprotein E-Deficient Mice[J]. Arterioscler Thromb Vasc Biol,1999,19(6):1518-25.
[31] Cardiloreis L,Gruber S,Schreier SM,et al. Interleukin-13 protects from atherosclerosis and modulates plaque composition by skewing the macrophage phenotype[J]. Embo Mol Med,2012,4(10):1072-86.
[32] Silvestreroig C,de Winther MP,Weber C,et al. Atherosclerotic plaque destabilization: mechanisms, models, and therapeutic strategies[J].Circ Res,2014,114(1):214-26.
[33] Schneider F,Sukhova GK,Aikawa M,et al. Matrix Metalloproteinase-14 Deficiency in Bone Marrow-Derived Cells Promotes Collagen Accumulation in Mouse Atherosclerotic Plaques[J]. Circulation,2008,117(7):931-9.
[34] Tabas I,Bornfeldt KE. Macrophage Phenotype and Function in Different Stages of Atherosclerosis[J]. Circ Res,2016,118(4):653.
[35] Lillis AP,Muratoglu SC,Au DT,et al. LDL Receptor-Related Protein-1 (LRP1) Regulates Cholesterol Accumulation in Macrophages[J]. Plos One,2015,10(6):e0128903.
[36] Moore KJ,Kunjathoor VV,Koehn SL,et al. Loss of receptor-mediated lipid uptake via scavenger receptor A or CD36 pathways does not ameliorate atherosclerosis in hyperlipidemic mice[J]. J Clin Invest,2005,115(8):2192-201.
[37] Luo Y,Duan H,Qian Y,et al. Macrophagic CD146 promotes foam cell formation and retention during atherosclerosis:[J]. Cell Research,2017,27(3):352-72.
[38] Yvancharvet L,Nan W,Tall AR. Role of HDL, ABCA1, and ABCG1 Transporters in Cholesterol Efflux and Immune Responses[J].Arterioscler Thromb Vasc Biol,2010,30(2):139.
[39] Westerterp M,Gourion-Arsiquaud S,Murphy AJ,et al. Regulation of hematopoietic stem and progenitor cell mobilization by cholesterol efflux pathways[J]. Cell Stem Cell,2012,11(2):195.
[40] Yvancharvet L,Pagler T,Gautier EL,et al. ATP-Binding Cassette Transporters and HDL Suppress Hematopoietic Stem Cell Proliferation[J]. Science,2010,328(5986):1689-93.
[41] Green DR,Oguin TH,Martinez J. The clearance of dying cells: table for two[J]. Cell Death & Differentiation,2016,23(6):915-26.
[42] Vré EAV,Aitoufella H,Tedgui A,et al. Apoptotic Cell Death and Efferocytosis in Atherosclerosis[J]. Arterioscler Thromb Vasc Biol,2012,32(4):887-93.
[43] Aitoufella H,Kinugawa K,Zoll J,et al. Lactadherin deficiency leads to apoptotic cell accumulation and accelerated atherosclerosis in mice[J]. Circulation,2007,115(16):2168-77.
[44] Cai B,Thorp EB,Doran AC,et al. MerTK receptor cleavage promotes plaque necrosis and defective resolution in atherosclerosis[J]. J Clin Invest,2017,127(2):564.
[45] Foks AC,Engelbertsen D,Kuperwaser F,et al. Blockade of Tim-1 and Tim-4 Enhances Atherosclerosis in Low-Density Lipoprotein Receptor-Deficient Mice[J]. Arterioscler Thromb Vasc Biol,2016,36(3):456-65.
[46] Bhatia VK,Yun S,Leung V,et al. Complement C1q reduces early atherosclerosis in low-density lipoprotein receptor-deficient mice[J].Am J Pathol,2007,170(1):416-26.
[47] Kojima Y,Volkmer JP,Mckenna K,et al. CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis[J]. Nature,2016,536(7614):86.
[48] Chung EY,Kim SJ,Ma XJ. Regulation of cytokine production during phagocytosis of apoptotic cells[J]. Cell Research,2006,16(2):154.
[49] Agonzalez N,Bensinger SJ,Hong C,et al. Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR[J]. Immunity,2009,31(2):245.
[50] Liao X,Sluimer JC,Wang Y,et al. Macrophage autophagy plays a protective role in advanced atherosclerosis[J]. Cell Metab,2012,15(4):545-53.