謝清陸李雙慶賀劍峰++陳福坤
文章編號:16726561(2016)06083514
摘要:大別造山帶是三疊紀華南陸塊俯沖于華北陸塊之下所形成的陸陸碰撞造山帶,在早白堊世發(fā)育強烈的碰撞后巖漿作用。侵位于宿松群高壓變質巖石中的大量中—基性脈巖是認識大陸板塊深俯沖過程的殼幔相互作用和折返過程中巖石圈構造響應的重要載體之一。報道了有關宿松地體中—基性脈巖的巖石學和地球化學研究結果,探討了其成因特征和源區(qū)演化。結果表明:中—基性脈巖總體具有安粗巖的性質,主量元素含量變化較大,SiO2質量分數(shù)介于4845%~6137%,偏基性脈巖具有偏高的MgO、Cr、Ni含量;所有脈巖樣品的微量元素和稀土元素組成均一,大離子親石元素和輕稀土元素相對富集,重稀土元素和高場強元素虧損;脈巖樣品都具有相對富集的同位素組成特征,包括較高的初始N(87Sr)/N(86Sr)值(0.706 3~0.710 9),較低的εNd(t)值 (-22.7~-15.1);初始Pb同位素比值也相對偏低,初始N(206Pb)/N(204Pb)值為15.858 5~17196 7,初始N(207Pb)/N(204Pb)值為15.207 2~15.332 1,初始N(208Pb)/N(204Pb)值為36.814 4~37.633 8, 這些特征暗示巖漿源區(qū)具有揚子板塊下地殼物質的顯著貢獻。總之,中—基性脈巖具有高Sr含量和低Y、Yb含量,與埃達克質巖組成類似,可能指示宿松地體早白堊世中—基性脈巖的形成與增厚的造山帶巖石圈拆沉及其和地幔的相互作用有關。
關鍵詞:地球化學;中—基性脈巖;早白堊世;SrNdPb同位素;殼幔相互作用;拆沉作用;宿松地體;揚子板塊;大別造山帶
中圖分類號:P588.13文獻標志碼:A
Geochemical Characteristics of Early Cretaceous Intermediatemafic Dykes in Susong Terrene of Dabie Orogenic Belt
XIE Qinglu1,2, LI Shuangqing1, HE Jianfeng1, CHEN Fukun1
(1. School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China;
2. Department of Navigation, Bengbu Naval Petty Officer Academy, Bengbu 233012, Anhui, China)
Abstract: Dabie orogenic belt is a typical continental collision belt by Triassic subduction and collision between Yangtze Block and North China Block. It is characterized by not only the largest exposure of Triassic ultrahighpressure metamorphic rocks in the world, but also the most profound occurrence of postcollisional Cretaceous igneous rocks. Early Cretaceous intermediatemafic dykes, intruding into highpressure metamorphic rocks of Susong terrene of Dabie orogenic belt, are important for understanding the process of mantlecrustal interaction during the deep subduction of the continental block and the tectonic respondence in the uplift. The petrological and geochemical characteristics of these intermediatemafic dykes were presented, and the petrogenesis and geological implications were discussed. The results show that the intermediatemafic dykes are mainly latite in composition; they have varied compositions in major elements (e.g., mass fractions of SiO2 are 48.45%61.37%), and basic dyke samples show relatively high mass fractions of MgO, Cr and Ni; all the dyke samples display homogeneous characteristics in trace element and rare earth element compositions, such as enrichment in large ion lithophile elements (LILE) and light rare earth elements (LREE), and obvious depletion in high field strength elements (HFSE, e.g., Nb, Zr and Ti) and heavy rare earth elements (HREE). Isotopic compositions indicate that magma sources of the intermediatemafic dykes are relatively enriched with the characteristics of initial N(87Sr)/N(86Sr)(0706 30710 9) and εNd(t) (-227-151); the initial Pb isotopic ratios are low with N(206Pb)/N(204Pb) of 15858 517196 7, N(207Pb)/N(204Pb)of 15207 215332 1, and N(208Pb)/N(204Pb) of 36814 437633 8, indicating the contribution of lower crustal materials of Yangtze Block. In general, the Early Cretaceous intermediatemafic dykes in Susong terrene have high Sr, low Y and Yb contents, being comparable to typical adakite, implying that the generation of these dykes would be related to the delamination of thickened orogenic lower crust and the relative interaction with upper mantle.
Key words: geochemistry; intermediatemafic dyke; Early Cretaceous; SrNdPb isotope; curstmantle interaction; delamination; Susong terrene; Yangtze Block; Dabie orogenic belt
0引言
脈巖的廣泛出露代表地殼強烈伸展減薄的構造環(huán)境,對研究大陸動力學背景具有重要指示意義,特別是其中的基性脈巖包含豐富的幔源信息,可用來反演殼幔演化、巖石圈形成、源區(qū)示蹤等。大別造山帶是揚子板塊與華北板塊在三疊紀俯沖碰撞形成的,碰撞后在早白堊世發(fā)生了大規(guī)模的巖漿活動,并發(fā)育有大量中酸性及基性侵入體。前人分別從礦物學、年代學、巖石學和地球化學等方面對這些侵入體進行了研究,并取得了許多重要成果[111],但關于這些碰撞后巖漿巖的形成機制和巖漿來源尚有很大爭論:Jahn等認為其是俯沖的大陸地殼與虧損地幔發(fā)生混合作用的產物[1];趙子福等認為是俯沖的揚子板塊陸下巖石圈地幔部分熔融的產物[5]; 王世明等認為是揚子板塊俯沖中下陸殼和華北巖石圈地幔混合的產物[9];Xu等認為與下地殼的拆沉有關[11]。關于南大別宿松地體侵入體的研究相對較少,本文對南大別宿松地體兩個剖面共17個中—基性脈巖樣品開展巖石學和地球化學研究,探討其成因特征及巖漿源區(qū)演化,進而揭示并完善該地區(qū)的中生代基性巖形成時間和地球化學特征變化規(guī)律。
1地質背景和樣品描述
大別—蘇魯造山帶不僅是世界上出露面積最大的高壓—超高壓變質帶,而且也是陸陸碰撞之后早白堊世巖漿活動最為強烈的地區(qū)之一[12]。大別造山帶北接華北克拉通,南為揚子板塊,東側為郯城—廬江斷裂帶(該斷裂帶使蘇魯造山帶與大別造山帶之間向北位移約500 km),西側為商城—麻城斷裂帶(該斷裂帶使得西側的紅安造山帶與之區(qū)分開來)。大別造山帶由北到南以4個斷裂帶為界大致可以分為5個變質帶[圖1(a)]:北淮陽低溫/低壓片巖相變質帶、北大別高溫/超高壓麻粒巖相帶、中大別中溫/超高壓榴輝巖相帶、南大別低溫/超高壓榴輝巖相帶、宿松低溫/高壓藍片巖帶[13]。在大別造山帶的各個變質相帶都有中生代碰撞后巖漿巖出露,碰撞后巖漿巖主要形成于111~143 Ma,峰期在125~130 Ma。這些早白堊世中酸性、基性侵入體分布較廣,與晚中生代中酸性巖體密切共生,中—基性侵入體種類繁多,包括閃長質脈巖、輝綠(玢)巖、輝長巖等。脈巖走向以NEE向為主,部分呈NW向,在同位素組成上具有相似性,都表現(xiàn)出富集的特征[1115],表明該期巖漿事件既有大規(guī)模地殼部分熔融,也有深部地幔部分熔融。
圖件引自文獻[9]和[14],有所修改宿松地體位于揚子板塊北緣,出露于南大別低溫榴輝巖帶和前陸褶皺沖斷帶之間,與南大別低溫榴輝巖帶以太湖—馬廟斷裂為分界線,形成于新元古代揚子板塊北緣大規(guī)模拉張的陸內裂谷環(huán)境下。在大別造山帶的各個變質相帶都有中生代碰撞后巖漿巖出露,尤其以北大別和北淮陽的巖漿作用最為強烈,中生代巖漿巖主體為花崗巖,基性巖分布規(guī)模有限[15],相對于北大別地區(qū),南大別宿松地體中—基性脈巖較少,只有零星分布。本文樣品采自宿松地體小堯家—向坪村—小龍山剖面和王塘灣—安坪—焦耳嶺剖面[圖1(b)],代表性巖石的野外露頭和顯微照片見圖2。這些中—基性脈巖傾角較陡,與中酸性巖體密切共生,切割穿插圍巖巖體,界線清晰,圍巖主要為片麻狀花崗巖。中—基性脈巖樣品大多數(shù)粒度均勻,為中細粒結構,具有顏色較深的冷凝邊,主要礦物為斜長石、角閃石、黑云母等,部分樣品還含有少量輝石。單條脈巖寬度為10 cm到數(shù)米不等,局部地區(qū)脈體分布比較密集,大約10 m長的剖面可見3、4條脈體,顯示強烈的伸展張裂作用。由于這些脈巖樣品的結構及礦物組成類似,本文以樣品SS1401和SS1412為代表具體描述其巖石學特征。所有樣品的采樣位置及巖性特征見表1。
樣品SS1401采自安徽省太湖縣小龍山,主要礦物為斜長石(體積分數(shù)為40%~45%)、角閃石(25%~35%)、黑云母(約5%)等[圖2(d)],角閃石呈他形,粒度較小,分布均勻。脈巖野外產狀為塊狀,結構均一,呈灰黑色,圍巖為片麻巖,約35 m長剖面至少分布有4條脈巖,脈巖最小為05 m,大的有3~4 m。
樣品SS1412采自安徽省宿松縣王塘灣,鏡下具有輝長結構,主要礦物為斜長石(體積分數(shù)為35%~40%)、角閃石(20%~35%)、輝石(約7%)、黑云母(約5%)等[圖2(c)]。有些輝石蝕變嚴重,部分蝕變?yōu)榫G泥石,在顆粒邊緣仍可見未發(fā)生蝕變的輝石殘晶。脈巖野外產狀圍巖為花崗片麻巖,剖面至少分布有4條基性脈巖,其中2條較寬(約1 m),還有一條約01 m。粒度特征為部分細粒和部分粗粒,脈巖呈灰黑色。
2分析方法
全巖粉末樣品的制作在河北省廊坊市科大巖石礦物分選技術服務有限公司進行。選取約5 kg的巖石樣品經去污、風干,破碎至直徑為05~10 cm的碎塊后,挑選無包裹體和脈體且成分均一的小碎塊,采用無污染瑪瑙球磨技術將上述碎塊研磨至粒徑不高于200目(孔徑為0074 mm)的巖石粉末,以備進行元素和同位素分析。
2.1主量元素和微量元素
全巖主量元素分析由廣州澳實分析檢測有限公司分析完成。全巖微量元素分析在中國科學技術大學中國科學院殼幔物質與環(huán)境重點實驗室完成。準確稱取50 mg的全巖粉末,用蒸餾純化的HFHNO3溶液在聚四氟乙烯鋼套內膽瓶中180 ℃條件下加熱7 d分解巖石樣品;蒸干溶液后,再加入50% HNO3溶液加熱溶解樣品1 d;在ICPMS測試之前,溶解后的樣品加入1%HNO3溶液稀釋定容,并加入內標元素Rh。相對標準偏差在5%之內。具體分析測試流程見文獻[16]。
2.2SrNdPb同位素
全巖SrNdPb同位素分析在中國科學技術大學中國科學院殼幔物質與環(huán)境重點實驗室完成。稱取約100 mg樣品,置于Teflon溶樣罐中,加入約3 mL HF溶液和2、3滴HClO4溶液,輕微搖晃溶樣罐使樣品和酸混合均勻,加蓋并擰緊,于電熱板上加熱至約125 ℃,放置7 d以溶解樣品;樣品溶解后,首先進行Pb同位素分離,采用裝有AG1x8樹脂的陽離子交換柱;分離Sr和稀土元素(REE)時,采用裝有AG50Wx8陽離子交換樹脂的交換柱;最后進行Nd分離和純化,采用充填有HDEHP萃淋樹脂的離子交換柱。同位素比值測量在德國Finnigan公司生產的MAT262型固體源熱電離質譜計(TIMS)上完成。詳細化學流程和同位素比值測試見文獻[17]~[19]。
3結果分析
3.1主量元素和微量元素組成
對宿松地體17個中—基性脈巖樣品進行主量元素和微量元素分析,結果見表2。樣品燒失量為123%~570%。為了能夠系統(tǒng)地對比中—基性脈巖的組成特點,減少蝕變的影響,將燒失量(LOI)扣除后,元素含量(質量分數(shù),下同)重新計算并歸一至100%。宿松地體中—基性脈巖SiO2含量為4845%~6137%(表2)。
由于Na2O和K2O等活動性元素可能受到蝕變作用的影響,所以傳統(tǒng)的TAS 圖解不適合用于樣品分類,本文采用Zr/TiNb/Y圖解(圖3)。
從圖3可以看出,中—基性脈巖總體上落入安粗巖的范圍,其他主要元素含量也顯示較大的變化范圍,MgO、Fe2OT3、CaO和Na2O含量分別為298%~914%、497%~923%、193%~785%和281%~498%。同時,這些樣品具有較高的Al2O3含量(1243%~1604%) 以及偏堿性特征(w(Na2O)+w(K2O)=497%~812%)。Mg#值介于52~66,其中大多數(shù)樣品的Mg#值低于60,暗示其可能經歷了不同程度的巖漿結晶分異[20],或者受到不同程度的地殼混染。哈克圖解(圖4)顯示,MgO含量與Cr、Ni含量具有正相關關系,而與Al2O3、K2O含量呈負相關關系,暗示在成巖過程中存在橄欖石、單斜輝石等礦物的分離結晶作用[2223]。
在原始地幔標準化微量元素蛛網圖[圖5(a)]中,宿松地體中—基性脈巖富集大離子親石元素(LILE)和輕稀土元素(LREE),虧損高場強元素(HFSE, 如Nb、Zr、Hf、Ti),與島弧型火山巖微量元素蛛網圖類似。中—基性脈巖樣品稀土元素總含量變化范圍較大((163~314)×10-6),各樣品球粒隕石標準化稀土元素配分模式比較一致[圖5(b)],具有強烈的輕稀土元素富集、重稀土元素(HREE)
虧損的右傾型特征;輕、重稀土元素分異明顯(w(La)N /w(Yb)N=18~49),顯示其具有埃達克質巖的特征;Eu異常不明顯(Eu/Eu*值為0.880~1022),表明早期的結晶礦物沒有或很少含斜長石。微量元素含量變化范圍較大,可能是結晶分異演化的結果,Cr、Ni、Ba、Rb和Sr含量分別為(83~708)×10-6、(29~184)×10-6、(866~3 604)×10-6、(34~91)×10-6和(589~1 082)×10-6。
3.2SrNdPb同位素組成
宿松地體中—基性脈巖樣品SrNdPb同位素分析結果見表3。謝清陸等得到這些中—基性脈巖侵位時代約為130 Ma[2526],因此,計算得到相關脈巖樣品初始Sr同位素比值((N(87Sr)/N(86Sr))i)為0706 3~0710 9,其中樣品SS1404和SS1405的(N(87Sr)/N(86Sr))i值明顯偏大,分別為0710 0和0710 9;脈巖樣品的Nd同位素相對富集,εNd(t)值顯著偏低(-227~-151) (圖6),Nd模式年齡(19~33 Ga)顯示其具有古元古代甚至太古代的特征。
碰撞后鎂鐵質巖數(shù)據引自文獻[1]、[2]、[15]、[27]和[28];崆嶺片麻巖、北大別片麻巖、揚子板塊中生代基性巖引自文獻[2]和[29]~[36];N(87Sr)/N(86Sr)(t)為年齡t對應的Sr同位素比值,t=130 Ma
圖6(N(87Sr)/N(86Sr))(t)εNd(t)圖解
Fig.6Diagram of (N(87Sr)/N(86Sr))(t)εNd(t)
宿松地體中—基性脈巖樣品初始Pb同位素比值(N(206Pb)/N(204Pb))i值為15.858 5~17.196 7,(N(207Pb)/N(204Pb))i值為15.207 2~15332 1,(N(208Pb)/N(204Pb))i值為36814 4~37633 8。本文研究的宿松地體樣品與北大別基性脈巖的Pb同位素組成[27]基本一致。在(N(207Pb)/N(204Pb))i(N(206Pb)/N(204Pb))i圖解[圖7(a)]上,宿松地體中—基性脈巖樣品落在地球參考線(Geochron)左側,北半球參考線(NHRL)上方,大別地區(qū)碰撞后鎂鐵質巖和北大別片麻巖具有一致的Pb同位素組成。在(N(208Pb)/N(204Pb))i(N(206Pb)/N(204Pb))i圖解[圖7(b)]中,宿松地體脈巖表現(xiàn)出類似特征。
4討論
4.1地殼混染和成因
基性脈巖被認為是拉張背景下幔源巖漿活動的產物,巖漿在上升侵位或巖漿房中,通常會受到一定程度的地殼混染作用影響[3750]。宿松地體中—基性脈巖樣品主量元素和微量元素組成具有較大的變化范圍(表2),偏鎂鐵質樣品具有較低的SiO2[KG-30x]含量(最低為4845%),較高的MgO含量(最高為914%)、Ni[KG-20x]含量(最高為184×10-6)和Cr含量(最高為708×
碰撞后鎂鐵質巖數(shù)據引自文獻[1]、[2]、[15]、[27]和[28];北大別片麻巖、揚子板塊中生代基性巖數(shù)據引自文獻[51]~[57];Pb同位素演化線數(shù)據引自文獻[58]
圖7初始Pb同位素組成圖解
Fig.7Diagram of Initial Pb Isotopic Compositions
10-6),表明其來自于地幔源區(qū);但這些中—基性脈巖同時表現(xiàn)出明顯的地殼物質組成特征,如堿含量(w(Na2O)+w(K2O)值最高為812%)偏高,大離子親石元素和輕稀土元素明顯富集,NbTa等高場強元素虧損。另外,較高的全巖(N(87Sr)/N(86Sr))i值(0706 3~0710 9)和明顯偏低的εNd(t)值(-227~-151)暗示著古老的地殼物質對這些中—基性脈巖的形成具有一定影響。地殼物質對幔源巖漿的作用一般有兩種可能:一種是巖漿源區(qū)富集所致,即巖漿源區(qū)存在因俯沖或其他機制進入地幔的陸殼物質;另一種是巖漿上升過程中遭受了強烈的地殼物質混染[9]。宿松地體中—基性脈巖樣品地球化學組成相對均一,尤其是微量元素蛛網圖和稀土元素配分模式基本一致(圖5),同位素組成也相對均一(圖6、7),說明巖漿在上升過程中地殼混染作用不大。具體來說,在微量元素組成上,Th、U相對La具有虧損特征,并且脈巖樣品Rb、Th、U含量基本都小于上地殼(Rb含量為84×10-6,Th含量為10.5×10-6,U含量為27×10-6)[59],由此可認為中、上地殼的混染作用不明顯[60]。另外,下地殼具有相對偏低的Ba和Sr含量(分別為390×10-6和350×10-6) [61],但隨著MgO含量的升高,脈巖樣品Ba和Sr含量并沒有表現(xiàn)出明顯降低,并且相對于下地殼都具有偏高的Ba含量(高達3 604×10-6)和Sr含量(高達1 082×10-6)。在同位素特征上,隨著地殼物質的混入,巖石SiO2含量增加,N(87Sr)/N(86Sr)值增高,εNd(t)值降低,而宿松地體中—基性脈巖樣品在SiO2(N(87Sr)/N(86Sr))i圖解[圖8(a)]和SiO2εNd(t) 圖解[圖8(b)]上并沒有顯示明顯相關關系,表明巖漿上升過程中地殼混染作用的影響不大。
t=130 Ma
圖8SiO2(N(87Sr)/N(86Sr))(t)圖解和SiO2εNd(t)圖解
Fig.8Diagrams of SiO2(N(87Sr)/N(86Sr))(t) and SiO2εNd(t)
宿松地體巖石地球化學特征應是其地幔源區(qū)組成的反映,該地幔源區(qū)可能受到了俯沖或者拆沉等作用的影響而具有富集的特征?;詭r漿在上升過程中經歷了一定程度以橄欖石和單斜輝石為主的分離結晶作用,而在La/SmLa圖解[圖9(a)]上,脈巖樣品表現(xiàn)出明顯的正相關關系,暗示宿松地體中—基性脈巖的成巖方式可能以部分熔融為主。大多數(shù)脈巖樣品具有偏高的SiO2含量(4845%~6137%),表現(xiàn)出高鎂埃達克質巖的特征,例如較低的Y含量((12~21)×10-6)、較高的Sr含量((617~1 082)×10-6)、偏高的w(Sr)/w(Y)值(3272~8483)以及相對較高的Mg#值(52~66)。
圖9La/SmLa圖解和(La/Yb)NYbN圖解
Fig.9Diagrams of La/SmLa and (La/Yb)NYbN
非俯沖環(huán)境下的高鎂埃達克質巖一般形成于加厚下地殼的拆沉及其與地幔的相互作用。實驗巖石學結果顯示,下伏地幔受到榴輝巖化下地殼拆沉的影響,部分熔融可產生安山質到玄武質熔體,并且這些熔體具有強烈的下地殼組成特征,而脈巖中偏基性樣品表現(xiàn)出明顯虧損地幔來源的特征,如較高的w(Nb)/w(Y)值、偏低的w(Sr)/w(Rb)值和w(Zr)/w(Rb)值,這可能是榴輝巖化下地殼拆沉過程中軟流圈地幔發(fā)生減壓部分熔融的結果[11]。因此,這些中—基性脈巖應該是拆沉下地殼熔體所交代富集地幔的部分熔融產物,熔融產生的熔體經歷了一定程度的分離結晶。
4.2源區(qū)特征和富集過程
大別地區(qū)出露有大量晚中生代鎂鐵質—超鎂鐵質侵入體,無論是巖體還是脈巖,它們都呈現(xiàn)出同位素明顯富集的特征[9]。其物質組成通常來自富集的地幔源區(qū),但具體的富集過程還存在很多爭議,主要有兩種觀點:①三疊紀時期揚子板塊與華北板塊碰撞過程中揚子板塊的俯沖作用;②早白堊世時期俯沖碰撞后,加厚下地殼的拆沉作用。Jahn等認為早白堊世北大別地區(qū)鎂鐵質—超鎂鐵質巖石形成于三疊紀陸陸碰撞過程中深俯沖的大陸地殼所交代的地幔橄欖巖部分熔融[1]。Zhao等認為北大別地區(qū)的這些鎂鐵質—超鎂鐵質巖石是深俯沖的揚子板塊巖石圈自身部分熔融所形成的[44]。Wang等認為北大別地區(qū)出露的基性脈巖源區(qū)應是被俯沖的揚子板塊改造的華北巖石圈地幔[27]。但是,大量針對大別造山帶超高壓變質巖的研究發(fā)現(xiàn),三疊紀華北板塊和揚子板塊俯沖、碰撞和折返過程非常迅速,俯沖板片在地幔中滯留時間較短,進而脫出的板片流體量相對有限,可能并不能交代大范圍的地幔部分。另外,大別造山帶鮮有同碰撞巖漿作用,三疊紀俯沖、碰撞過程中板片流體對上覆巖石圈的影響有限。而另一方面,Nelson等大量研究證實,造山帶巖石圈拆沉與巖漿作用有著密切關系[6266],巖石圈拆沉作用可導致地殼抬升和下地殼大規(guī)模熔融。三疊紀揚子板塊與華北板塊的俯沖、碰撞造成大別造山帶地殼加厚,但地球物理學資料表明現(xiàn)今大別造山帶沒有山根,因此,三疊紀以來可能發(fā)生過巖石圈拆沉,而拆沉的時間應該在早白堊世,幾乎與大規(guī)模巖漿活動同時[8]。Wang等提出大別造山帶富集的地幔源區(qū)應與榴輝巖化的下地殼拆沉作用相關[38,41],而大別造山帶東部大量分布的高鎂埃達克質巖為這一觀點提供了更多證據。
宿松地體中—基性脈巖除了樣品SS1404和SS1405(可能受到地殼混染影響)外,SrNdPb同位素組成比較集中,與大別地區(qū)碰撞后鎂鐵質巖石[12,15,2728]基本一致,都落入北大別片麻巖的組成范圍(圖6、7),而北大別通常被認為是華南大陸巖石圈地幔北緣[48]或者俯沖華南陸殼的中下地殼[4950]。針對這些脈巖樣品開展鋯石年代學工作,發(fā)現(xiàn)其中存在大量年老的繼承性鋯石[25],年齡組成與揚子板塊記錄的典型構造巖漿事件具有對應關系,說明宿松地體具有揚子板塊屬性的同時,中—基性脈巖的源區(qū)含有大量陸殼物質。另外,這些脈巖樣品具有較高的Sr含量和相對較低的Y、Yb含量,虧損重稀土元素且Eu負異常不明顯,具有偏中性的SiO2含量和較高的Al2O3含量,Mg#值相對偏高,這和明顯的高鎂埃達克質巖組成特征相似[圖9(b)、表2],暗示其源區(qū)應該有加厚下地殼物質的混入。綜合這些中—基性脈巖中強烈的加厚地殼特征和偏高的MgO、Cr、Ni含量等,筆者認為它們應該是造山帶增厚的巖石圈地幔和下地殼拆沉后,在軟流圈烘烤下發(fā)生部分熔融,并于130 Ma左右上升侵位形成的。當然,在此過程中軟流圈的虧損物質是否參與其中,以及中—基性脈巖與大別地區(qū)其他碰撞后巖漿巖的相互關系等問題還需要進一步研究和探討。
5結語
(1)大別造山帶宿松地體早白堊世中—基性脈巖主要具有安粗巖的性質。主量元素含量變化較大,SiO2含量介于4845%~6137%,Mg#值相對較高,基性端元具有偏高的MgO、Cr、Ni含量,指示其幔源特征。脈巖樣品原始地幔標準化微量元素蛛網圖和球粒隕石標準化稀土元素配分模式均一,大離子親石元素和輕稀土元素相對富集,重稀土元素和高場強元素虧損,指示其具有島弧型特征。中—基性脈巖的形成主要是地幔源區(qū)部分熔融的結果,原始巖漿在上升過程中沒有受到明顯的地殼混染,在巖漿演化早期曾經歷了一定程度分離結晶作用。
(2)宿松地體中—基性脈巖SrNdPb同位素組成相對富集,源區(qū)中揚子板塊下地殼物質的貢獻顯著。脈巖整體具有高Sr含量和低Y、Yb含量,與高鎂埃達克質巖組成類似,其形成是增厚的造山帶巖石圈拆沉并與地幔相互作用的結果。
中國科學技術大學侯振輝和肖平在分析測試中提供了幫助,在此一并致謝。
參考文獻:
References:
[1]JAHN B M,WU F Y,LO C H,et al.Crustmantle Interaction Induced by Deep Subduction of the Continental Crust:Geochemical and SrNd Isotopic Evidence from Postcollisional Maficultramafic Intrusions of the Northern Dabie Complex,Central China[J].Chemical Geology,1999,157(1/2):119146.
[2]李曙光,聶永紅,HART S R,等.俯沖陸殼與上地幔的相互作用:Ⅱ.大別山同碰撞鎂鐵—超鎂鐵巖的Sr,Nd同位素地球化學[J].中國科學:D輯,地球科學,1998,28(1):1822.
LI Shuguang,NIE Yonghong,HART S R,et al.Interaction Between Subducted Continental Crust and Upper Mantle:Ⅱ.Sr and Nd Isotopic Geochemistry of Syncollisional Maficultramafic Rocks of Dabie Orogen Belt[J].Science in China:Series D,Earth Sciences,1998,28(1):1822.
[3]李曙光,洪吉安,李惠民,等.大別山輝石巖輝長巖體的鋯石UPb年齡及其地質意義[J].高校地質學報,1999,5(3):351355.
LI Shuguang,HONG Jian,LI Huimin,et al.UPb Zircon Ages of the Pyroxenitegabbro Intrusions in Dabie Mountains and Their Geological Implications[J].Geological Journal of China Universities,1999,5(3):351355.
[4]陳道公,汪相,DELOULE E,等.北大別輝石巖成因:鋯石微區(qū)年齡和化學組成[J].科學通報,2001,46(7):586590.
CHEN Daogong,WANG Xiang,DELOULE E,et al.Zircon SIMS Ages and Chemical Composition from Northern Dabie Terrain:Its Implication for Pyroxenite Genesis[J].Chinese Science Bulletin,2001,46(7):586590.
[5]趙子福,鄭永飛,魏春生,等.大別山沙村和椒子巖基性—超基性巖鋯石UPb定年、元素和碳氧同位素地球化學研究[J].高校地質學報,2003,9(2):139162.
ZHAO Zifu,ZHENG Yongfei,WEI Chunsheng,et al.Zircon UPb Age,Elemental and Isotope Geochemistry of Mesozoic Maficultramafic Rocks at Shacun and Jiaoziyan in North Dabie[J].Geological Journal of China Universities,2003,9(2):139162.
[6]謝智,鄭永飛,閆峻,等.大別山沙村中生代A型花崗巖和基性巖的源區(qū)演化關系[J].巖石學報,2004,20(5):11751184.
XIE Zhi,ZHENG Yongfei,YAN Jun,et al.Source Evolution Relationship Between Atype Granites and Mafic Rocks from Shacun in Dabieshan[J].Acta Petrologica Sinica,2004,20(5):11751184.
[7]ZHAO Z F,ZHENG Y F,WEI C S,et al.Postcollisional Granitoids from the Dabie Orogen in China:Zircon UPb Age,Element and O Isotope Evidence for Recycling of Subduced Continental Crust[J].Lithos,2007,93(3/4):248272.
[8]李全忠,謝智,徐夕生,等.大別造山帶早白堊世基性巖的同位素特征及下地殼物質對巖漿源區(qū)的貢獻[J].巖石學報,2008,24(8):17711781.
LI Quanzhong,XIE Zhi,XU Xisheng,et al.The Isotopic Characteristics of the Early Cretaceous Mafic Rocks from Dabie Orogenic Belt and the Contribution of the Lower Crust to the Magma Source [J].Acta Petrologica Sinica,2008,24(8):17711781.
[9]王世明,馬昌前,王琳燕,等.大別山早白堊世基性脈巖SHRIMP鋯石UPb定年、地球化學特征及成因[J].地球科學,2010,35(4):572584.
WANG Shiming,MA Changqian,WANG Linyan,et al.SHRIMP Zircon UPb Dating,Geochemistry and Genesis of Early Cretaceous Basic Dykes from the Dabie Orogen[J].Earth Science,2010,35(4):572584.
[10]XU H J,MA C Q,YE K.Early Cretaceous Granitoids and Their Implications for the Collapse of the Dabie Orogen,Eastern China:SHRIMP Zircon UPb Dating and Geochemistry[J].Chemical Geology,2007,240(3/4):238259.
[11]XU H J,MA C Q,SONG Y R,et al.Early Cretaceous Intermediatemafic Dykes in the Dabie Orogen,Eastern China:Petrogenesis and Implications for Crustmantle Interaction[J].Lithos,2012,154:8399.
[12]MA C Q,LI Z C,EHLERS C,et al.A Postcollisional Magmatic Plumbing System:Mesozoic Granitoid Plutons from the Dabieshan Highpressure and Ultrahighpressure Metamorphic Zone,Eastcentral China[J].Lithos,1998,45(1/2/3/4):431456.
[13]ZHENG Y F,ZHOU J B,WU Y B,et al.Lowgrade Metamorphic Rocks in the DabieSulu Orogenic Belt:A Passivemargin Accretionary Wedge Deformed During Continent Subduction[J].International Geology Review,2005,47(8):851871.
[14]石永紅,王次松,康濤,等.安徽省宿松變質雜巖巖石學特征和鋯石UPb年齡研究[J].巖石學報,2012,28(10):33893402.
SHI Yonghong,WANG Cisong,KANG Tao,et al.Petrological Characteristics and Zircon UPb Age for Susong Metamorphic Complex Rocks in Anhui Province[J].Acta Petrologica Sinica,2012,28(10):33893402.
[15]戴立群.秦嶺—紅安—大別造山帶早白堊世碰撞后鎂鐵質火成巖地球化學研究[D].合肥:中國科學技術大學,2014.
DAI Liqun.A Geochemical Study of Early Cretaceous Postcollisional Mafic Igneous Rocks from the QinlingHonganDabie Orogens[D].Hefei:University of Science and Technology of China,2014.
[16]侯振輝,王晨香.電感耦合等離子體質譜法測定地質樣品中35種微量元素[J].中國科學技術大學學報,2007,37(8):940944.
HOU Zhenhui,WANG Chenxiang.Determination of 35 Trace Elements in Geological Samples by Inductively Coupled Plasma Mass Spectrometry[J].Journal of University of Science and Technology of China,2007,37(8):940944.
[17]CHEN F,HEGNER E,TODT W.Zircon Ages and Nd Isotopic and Chemical Compositions of Orthogneisses from the Black Forest,Germany:Evidence for a Cambrian Magmatic Arc[J].International Journal of Earth Sciences,2000,88(4):791802.
[18]CHEN F,SIEBEL W,SATIR M,et al.Geochronology of the Karadere Basement (NW Turkey) and Implications for the Geological Evolution of the Istanbul Zone[J].International Journal of Earth Sciences,2002,91(3):469481.
[19]CHEN F K,LI X H,WANG X L,et al.Zircon Ages and NdHf Isotopic Composition of the Yunnan Tethyan Belt,Southwestern China[J].International Journal of Earth Sciences,2007,96(6):11791194.
[20]LANGMUIR C H,BENDER J F,BENCE A E,et al.Petrogenesis of Basalts from the Famous Area:MidAtlantic Ridge[J].Earth and Planetary Science Letters,1977,36(1):133156.
[21]WINCHESTER J A,F(xiàn)LOYD P A.Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements[J].Chemical Geology,1977,20:325343.
[22]QI Q,TAYLOR L A,ZHOU X.Petrology and Geochemistry of an Unusual Tridymitehercynite Xenolith in Tholeiite from Southeastern China[J].Mineralogy and Petrology,1994,50(4):195207.
[23]劉燊,胡瑞忠,趙軍紅,等.膠北晚中生代煌斑巖的巖石地球化學特征及其成因研究[J].巖石學報,2005,21(3):947958.
LIU Shen,HU Ruizhong,ZHAO Junhong,et al.Geochemical Characteristics and Petrogenetic Investigation of the Late Mesozoic Lamprophyres of Jiaobei,Shandong Province[J].Acta Petrologica Sinica,2005,21(3):947958.
[24]SUN S S,MCDONOUGH W F.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes[J].Geological Society,London,Specical Publications,1989,42:313345.
[25]謝清陸,李雙慶,方博文,等.大別造山帶宿松地體中—基性脈巖鋯石年齡及其地質意義[J].地球科學與環(huán)境學報,2016,38(3):318333.
XIE Qinglu,LI Shuangqing,F(xiàn)ANG Bowen,et al.Zircon Ages and Geological Significances of Intermediatemafic Dykes in Susong Terrene of Dabie Orogenic Belt[J].Journal of Earth Sciences and Environment,2016,38(3):318333.
[26]謝清陸.大別造山帶宿松地體中—基性脈巖的成因和演化:鋯石UPb年代學和地球化學證據[D].合肥:中國科學技術大學,2016.
XIE Qinglu.Origin and Evolution of Mafic Dike Rocks in the Susong Orogenic Belt in the Dabie Orogenic Belt:Evidence from Zircon UPb Geochronology and Geochemistry[D].Hefei:University of Science and Technology of China,2016.
[27]WANG Y J,F(xiàn)AN W M,PENG T P,et al.Nature of the Mesozoic Lithospheric Mantle and Tectonic Decoupling Beneath the Dabie Orogen,Central China:Evidence from 40Ar/39Ar Geochronology,Elemental and SrNdPb Isotopic Compositions of Early Cretaceous Mafic Igneous Rocks[J].Chemical Geology,2005,220(3/4):165189.
[28]CHEN J F,JAHN B M.Crustal Evolution of Southeastern China:Nd and Sr Isotopic Evidence[J].Tectonophysics,1998,284:101133.
[29]JAHN B M.Geochemical and Isotopic Characteristics of UHP Eclogites and Ultramafic Rocks of the Dabie Orogen:Implications for Continental Subduction and Collisional Tectonics[M]∥HACKER B R,LIOU J G.When Continents Collide:Geodynamics and Geochemis Try of Ultrahighpressure Rocks.Dordrecht:Kluwer Academic Publishers,1998:203239.
[30]楊祝良,沈渭洲,陶奎元,等.浙閩沿海早白堊世玄武巖鍶、釹、鉛同位素特征:古老富集型地幔的證據[J].地質科學,1999,34(1):5968.
YANG Zhuliang,SHEN Weizhou,TAO Kuiyuan,et al.Sr,Nd and Pb Isotopic Characteristics of Early Cretaceous Basaltic Rocks from the Coast of Zhejiang and Fujian:Evidences for Ancient Enriched Mantle Source[J].Scientia Geologica Sinica,1999,34(1):5968.
[31]廖群安,王京名,薛重生,等.江西廣豐白堊系盆地中兩類玄武巖的特征及其與盆地演化的關系[J].巖石學報,1999,15(1):116123.
LIAO Qunan,WANG Jingming,XUE Chongsheng,et al.The Characteristics of Two Kinds Basalts in Cretaceous Basin and Their Relations with the Basins Evolution in Guangfeng District,Jiangxi Province[J].Acta Petrologica Sinica,1999,15(1):116123.
[32]徐夕生,周新民,OREILLY S Y,等.中國東南部下地殼物質與花崗巖成因探索[J].巖石學報,1999,15(2):217223.
XU Xisheng,ZHOU Xinmin,OREILLY S Y,et al.Exploration for the Lower Crustal Materials and Granite Genesis in Southeast China[J].Acta Petrologica Sinica,1999,15(2):217223.
[33]鄭祥身,金成偉,翟明國,等.北大別灰色片麻巖原巖性質的探討:SmNd同位素年齡及同位素成分特點[J].巖石學報,2000,16(2):194198.
ZHENG Xiangshen,JIN Chengwei,ZHAI Mingguo,et al.Approach to the Source of the Gray Gneisses in North Dabie Terrain:SmNd Isochron Age and Isotope Composition[J].Acta Petrologica Sinica,2000,16(2):194198.
[34]CHEN J F,YAN J,XIE Z,et al.Nd and Sr Isotopic Compositions of Igneous Rocks from the Lower Yangtze Region in Eastern China:Constraints on Sources[J].Physics and Chemistry of the Earth,Part A:Solid Earth and Geodesy,2001,26(9/10):719731.
[35]郭新生,陳江峰,張巽,等.桂東南富鉀巖漿雜巖的Nd同位素組成:華南中生代地幔物質上涌事件[J].巖石學報,2001,17(1):1927.
GUO Xinsheng,CHEN Jiangfeng,ZHANG Xun,et al.Nd Isotopic Ratios of Kenriched Magmatic Complexes from Southeastern Guangxi Province:Implications for Upwelling of the Mantle in Southeastern China During the Mesozoic[J].Acta Petrologica Sinica,2001,17(1):1927.
[36]李獻華,周漢文,劉穎,等.粵西陽春中生代鉀玄質侵入巖及其構造意義:Ⅱ.微量元素和SrNd同位素地球化學[J].地球化學,2001,30(1):5765.
LI Xianhua,ZHOU Hanwen,LIU Ying,et al.Mesozoic Shoshonitic Intrusives in the Yangchun Basin,Western Guangdong and Their Tectonic Significance:Ⅱ.Trace Elements and SrNd Isotopes[J].Geochimica,2001,30(1):5765.
[37]HE Y S,LI S G,HOEFS J,et al.Postcollisional Granitoids from the Dabie Orogen:New Evidence for Partial Melting of a Thickened Continental Crust[J].Geochimica et Cosmochimica Acta,2011,75(13):38153838.
[38]WANG Q,WYMAN D A,XU J F,et al.Early Cretaceous Adakitic Granites in the Northern Dabie Complex,Central China:Implications for Partial Melting and Delamination of Thickened Lower Crust[J].Geochimica et Cosmochimica Acta,2007,71(10):26092636.
[39]XU H J,MA C Q,YE K.Early Cretaceous Granitoids and Their Implications for Collapse of the Dabie Orogen,Eastern China:SHRIMP Zircon UPb Dating and Geochemistry[J].Chemical Geology,2007,240(3/4):238259.
[40]XU H J,MA C Q,ZHANG J F,et al.Early Cretaceous LowMg Adakitic Granites from the Dabie Orogen,Eastern China:Petrogenesis and Implications for Destruction of the Overthickened Lower Continental Crust[J].Gondwana Research,2013,23(1):190207.
[41]HUANG F,LI S G,DONG F,et al.Recycling of Deeply Subducted Continental Crust in the Dabie Mountains,Central China[J].Lithos,2007,96(1/2):151169.
[42]XU H J,MA C Q,ZHANG J F.Generation of Early Cretaceous HighMg Adakitic Host and Enclaves by Magma Mixing,Dabie Orogen,Eastern China[J].Lithos,2012,142/143:182200.
[43]ZHANG C,MA C Q,HOLTZ F.Origin of HighMg Adakitic Magmatic Enclaves from the Meichuan Pluton,Southern Dabie Orogen (Central China):Implications for Delamination of the Lower Continental Crust and Meltmantle Interation[J].Lithos,2010,119(3/4):467484.
[44]ZHAO Z F,ZHENG Y F,WEI C S,et al.Zircon UPb Age,Element and CO Isotope Geochemistry of Postcollisional Maficultramafic Rocks from the Dabie Orogen in Eastcentral China[J].Lithos,2005,83(1/2):128.
[45]THANG H Y,ZHENG J P,YU C M.Age and Composition of the Rushan Intrusive Complex in the Northern Sulu Orogeny,Eastern China:Petrogenesis and Lithospheric Mantle Evolution[J].Geological Magazine,2009,146(2):199215.
[46]GUO F,F(xiàn)AN W M,WANG Y J,et al.Origin of Early Cretaceous Calcalkaline Lamprophyres from the Sulu Orogeny in Eastern China:Implications for Enrichment Processes Beneath Continental Collisional Belt[J].Lithos,2004,78:291305.
[47]LIU S,HU R,GAO S,et al.UPb Zircon Age,Geochemical and SrNdPbHf Isotopic Constraints on Age and Origin of Alkaline Intrusions and Associated Mafic Dikes from Sulu Orogenic Belt,Eastern China[J].Lithos,2008,106:365379.
[48]趙子福,鄭永飛.俯沖大陸巖石圈重熔:大別—蘇魯造山帶中生代巖漿巖成因[J].中國科學:D輯,地球科學,2009,39(7):888909.
ZHAO Zifu,ZHENG Yongfei.Remelting of Subducted Continental Lithosphere:Petrogenesis of Mesozoic Magmatic Rocks in the DabieSulu Orogenic Belt[J].Science in China:Series D,Earth Sciences,2009,39(7):888909.
[49]劉貽燦,李曙光.俯沖陸殼內部的拆離和超高壓巖石的多板片差異折返:以大別—蘇魯造山帶為例[J].科學通報,2008,53(18):21532165.
LIU Yican,LI Shuguang.Detachment Within Subducted Continental Crust and Multislice Successive Exhumation of Ultrahighpressure Metamorphic Rocks:Evidence from the DabieSulu Orogenic Belt[J].Chinese Science Bulletin,2008,53(18):21532165.
[50]ZHAO Z F,ZHENG Y F,WEI C S,et al.Zircon UPb Ages,Hf and O Isotopes Constrain the Crustal Architecture of the Ultrahighpressure Dabie Orogen in China[J].Chemical Geology,2008,253(3/4):222242.
[51]ZHANG H F,GAO S,ZHONG Z Q,et al.Geochemical and SrNdPb Isotopic Compositions of Cretaceous Granitoids:Constraints on Tectonic Framework and Crustal Structure of the Dabieshan Ultrahighpressure Metamorphic Belt,China[J].Chemical Geology,2002,186(3/4):281299.
[52]YANG J H,CHUNG S L,ZHAI M G,et al.Geochemical and SrNdPb Isotopic Compositions of Mafic Dikes from the Jiaodong Peninsula,China:Evidence for Veinplusperidotite Melting in the Lithospheric Mantle[J].Lithos,2004,73(3/4):145160.
[53]ZHANG H F,SUN M.Geochemistry of Mesozoic Basalts and Mafic Dikes,Southeastern North China Craton,and Tectonic Implications[J].International Geology Review,2002,44(4):370382.
[54]ZHANG H F,SUN M,ZHOU X H,et al.Mesozoic Lithosphere Destruction Beneath the North China Craton:Evidence from Major,Traceelement and SrNdPb Isotope Studies of Fangcheng Basalts[J].Contributions to Mineralogy and Petrology,2002,144(2):241254.
[55]張理剛.東亞巖石圈塊體地質[M].北京:科學出版社,1995.
ZHANG Ligang.Block Geology of Asian lithosphere[M].Beijing:Science Press,1995.
[56]閆峻,陳江峰,喻鋼,等.長江中下游晚中生代基性巖的鉛同位素特征:富集地幔的證據[J].高校地質學報,2003,9(2):195206.
YAN Jun,CHEN Jiangfeng,YU Gang,et al.Pb Isotopic Characteristics of Late Mesozoic Mafic Rocks from the Lower Yangtze Region:Evidence for Enriched Mantle[J].Geological Journal of China Universities,2003,9(2):195206.
[57]LI S G,WANG C X,DONG F,et al.Common Pb of UHP Metamorphic Rocks from the CCSD Project (1005 000 m) Suggesting Decoupling Between the Slices Within Subducting Continental Crust and Multiple Thin Slab Exhumation[J].Tectonophysics,2009,475(2):308317.
[58]ZARTMAN R E,DOE B R.Plumbotectonic:The Model[J].Tectonophysics,1981,75(1/2):135162.
[59]RUDNICK R L,GAO S.Composition of the Continental Crust[J].Treatise on Geochemistry,2003,3:164.
[60]TAYLOR S R,MCLENNAN S M.The Continental Crust:Its Composition and Evolution[M].Oxford:Blackwell Scientific Publications,1985.
[61]RUDNICK R L.Making Continental Crust[J].Nature,1995,378:571578.
[62]NELSON K D.Are Crustal Thickness Variations in Old Mountain Belts Like the Appalachians a Consequence of Lithospheric Delamination?[J].Geology,1992,20(6):498502.
[63]SACKS P E,SECOR JR D T.Delamination in Collisional Orogens[J].Geology,1990,18(10):9991002.
[64]KAY R W,KAY S M.Delamination and Delamination Magmatism[J].Tectonophysics,1993,219(1/2/3):177189.
[65]高山,張本仁,金振民,等.秦嶺—大別造山帶下地殼拆沉作用[J].中國科學:D輯,地球科學,1999,29(6):532541.
GAO Shan,ZHANG Benren,JIN Zhenmin,et al.Lower Crustal Delamination in the QinlingDabie Orogenic Belt[J].Science in China:Series D,Earth Sciences,1999,29(6):532541.
[66]李超,陳衍景.東秦嶺—大別地區(qū)中生代巖石圈拆沉的巖石學證據評述[J].北京大學學報:自然科學版,2002,38(3):431441.
LI Chao,CHEN Yanjing.A Review on Petrologic Evidences for Mesozoic Lithosphere Delamination in East QinlingDabie Mountains[J].Acta Scicentiarum Naturalium Universities Pekinensis,2002,38(3):431441.