鄭奎宏,戚曉昆,馬 林
多系統(tǒng)萎縮與帕金森病的鑒別診斷
鄭奎宏,戚曉昆,馬 林
闡述多系統(tǒng)萎縮與帕金森病的影像學(xué)鑒別診斷表現(xiàn),探討各種影像學(xué)檢查手段、磁共振各種成像序列在鑒別診斷中的作用,其中包括各種新的成像序列、成像方法(如磁敏感加權(quán)成像、彌散張量成像、磁共振波譜成像及經(jīng)顱超聲、單光子發(fā)射計(jì)算機(jī)斷層成像術(shù)、正電子發(fā)射計(jì)算機(jī)斷層顯像等)。
多系統(tǒng)萎縮;帕金森??;磁共振成像;影像學(xué)
帕金森病(Parkinson’s disease,PD)和多系統(tǒng)萎縮(multiple system atrophy,MSA)[1]同為退行性神經(jīng)系統(tǒng)疾病,其臨床癥狀經(jīng)常有重疊,甚至臨床表現(xiàn)常常相同或相似,如帕金森綜合征、自主神經(jīng)癥候等。這2類患者常常以運(yùn)動(dòng)癥狀起病,如運(yùn)動(dòng)遲緩、少動(dòng)強(qiáng)直、間歇性震顫和行走困難。MSA患者的中軸性運(yùn)動(dòng)障礙表現(xiàn)尤為突出,如構(gòu)音障礙、言語困難、姿勢異常、尿便障礙,而體位性低血壓常常導(dǎo)致暈厥和跌倒。然而,上述癥狀也常常見于PD患者中,單單依靠臨床癥狀及體征目前難以將這2類疾病區(qū)分開,尤其在疾病早期兩者在臨床上很難鑒別[2-4]。實(shí)際上臨床神經(jīng)病理尸檢研究顯示,MSA是PD誤診的最常見的原因[5]。準(zhǔn)確的診斷對患者的治療、預(yù)后以及研究非常重要、非常有意義。
近幾年來,隨著神經(jīng)影像技術(shù)的發(fā)展,其在鑒別診斷中的作用越來越受到普遍關(guān)注。腦部MRI在鑒別診斷中發(fā)揮了重要的作用[6]。多種神經(jīng)影像新技術(shù)、新序列也已經(jīng)應(yīng)用于神經(jīng)退行性疾病的研究中,其中包括磁敏感加權(quán)成像、彌散張量成像、磁共振波譜成像、多次激勵(lì)彌散加權(quán)序列以及短反轉(zhuǎn)時(shí)間的反轉(zhuǎn)恢復(fù)序列等[5-6]。這些研究普遍關(guān)注于殼核、黑質(zhì)、小腦以及腦橋的影像改變。最新的一項(xiàng)研究應(yīng)用磁共振彌散張量技術(shù)的各項(xiàng)參數(shù)以及徑線測量技術(shù),在鑒別MSA與PD中取得了較高的敏感性和特異性[7]。
作者著重闡述超聲、CT、MRI及核醫(yī)學(xué)在MSA與PD鑒別診斷中的影像表現(xiàn)與特點(diǎn),目的是為放射科醫(yī)生以及神經(jīng)科醫(yī)生提供一個(gè)有效的方法。
PD患者中,黑質(zhì)致密帶的多巴胺能神經(jīng)元變性導(dǎo)致紋狀體的多巴胺缺失是其病理學(xué)特征,下丘腦核也常常受累[8]。MSA患者中除了黑質(zhì)、紋狀體,腦橋、小腦、橋臂也明顯受累,病理上可以見到殼核、黑質(zhì)后側(cè)部、藍(lán)斑、下橄欖、腦橋核、小腦浦肯野細(xì)胞、脊髓中間外側(cè)柱神經(jīng)元進(jìn)行性缺失及膠質(zhì)增生,而丘腦、下丘腦核、丘尾狀核、蒼白球、齒狀核、前庭核、前角細(xì)胞及錐體束很少受累[9]。這些病理上的不同改變在影像學(xué)上并不一定能一一顯示,但是這些病理變化能夠提供關(guān)鍵影像改變的診斷要點(diǎn)。
磁共振可以精確評估腦內(nèi)的鐵沉積。目前常用的序列包括T2加權(quán)、T2?加權(quán)梯度回波以及磁敏感加權(quán)序列[10-12]。據(jù)報(bào)道各種神經(jīng)退行性疾病中鐵沉積的類型也有不同,黑質(zhì)、尾狀核、蒼白球、丘腦鐵沉積可見于PD、MSA患者以及正常人[10]。MSA患者殼核后部以及丘腦枕部鐵沉積明顯,是其鑒別診斷的主要區(qū)域[10,13-14]。PD患者的錐體外系癥狀嚴(yán)重程度與黑質(zhì)鐵沉積程度高度相關(guān)[15]。相關(guān)研究表明,PD患者使用磁敏感加權(quán)相位值定量測量黑質(zhì)的鐵沉積與PD綜合評分量表運(yùn)動(dòng)評分呈正相關(guān)[11-12]。所以采用對鐵沉積敏感的 T2?加權(quán)梯度回波或者磁敏感加權(quán)序列分析、評價(jià)殼核后部以及丘腦枕部鐵沉積的類型,可以明顯提高PD和MSA的鑒別診斷準(zhǔn)確性。相關(guān)研究也表明,采用磁敏感加權(quán)序列定量測量黑質(zhì)鐵沉積與PD患者疾病嚴(yán)重程度也有相關(guān)性[12]。另一種分析、評價(jià)中腦鐵沉積的方法是經(jīng)顱超聲多普勒技術(shù),黑質(zhì)高回聲對診斷PD有較高的敏感性和特異性,而屏狀核高回聲更常見于MSA患者中[16]。然而一項(xiàng)研究表明,對于早期出現(xiàn)帕金森樣癥狀的患者經(jīng)顱超聲并沒有得到滿意的結(jié)果[17]。
T2加權(quán)殼核邊緣高信號位于殼核外側(cè)緣,正常人往往由于鐵沉積而呈現(xiàn)低信號,此高信號常常是神經(jīng)組織變性或膠質(zhì)增生導(dǎo)致的。據(jù)報(bào)道1.5 T磁共振此征象在MSA殼核型、PD患者及正常人群的鑒別診斷中具有100%的特異性和陽性預(yù)測值[18]。對正電子發(fā)射計(jì)算機(jī)斷層顯像(positron emission tomography,PET)研究顯示,該征象與殼核葡萄糖低代謝、突觸后多巴胺受體密度減低有相關(guān)性[19-20]。然而,其他研究也有PD患者具有此類征象的報(bào)道[21-22]。使用高場強(qiáng)MRI研究顯示,T2加權(quán)殼核邊緣高信號征正常人也可見到;此研究同樣發(fā)現(xiàn)殼核邊緣高信號征在高場強(qiáng)磁共振顯示的更加明顯,可能是由于化學(xué)位移偽影和截?cái)鄠斡霸斐傻腫23]。還有類似研究顯示,運(yùn)用液體衰減反轉(zhuǎn)恢復(fù)序列并同時(shí)出現(xiàn)殼核萎縮的征象時(shí),殼核邊緣高信號征對診斷MSA具有更高的特異性[20,24]。
腦橋十字形T2加權(quán)高信號被稱為腦橋十字征,其形成機(jī)制常常被認(rèn)為是腦橋中部的腦橋橫行纖維選擇性髓鞘脫失,而皮質(zhì)脊髓束相對保留所導(dǎo)致的[18]。目前大多數(shù)研究者認(rèn)為此征象是鑒別MSA與PD的具有高度特異性的征象之一。然而,此征象在脊髓小腦共濟(jì)失調(diào)等其他小腦變性疾病中也可見到[25]。腦橋十字征在繼發(fā)于脊髓小腦共濟(jì)失調(diào)的帕金森綜合征、血管炎、克-雅病患者中也有報(bào)道[26-28]。
如果某種病程中其腦組織中特定部位的容積出現(xiàn)萎縮,那么容積分析對此類疾病的診斷還是非常有幫助。磁共振可以通過多平面重建和薄層掃描,從3個(gè)方向上來測量萎縮的程度進(jìn)而判斷疾病的類型,以達(dá)到鑒別診斷的目的。通過運(yùn)用磁共振容積分析的各種信號采集技術(shù),可以獲得高分辨率的圖像、可以進(jìn)行三維重建;也可以采用三維采集技術(shù)獲得最小的各向同性的像素,進(jìn)而進(jìn)行可重復(fù)性半自動(dòng)數(shù)據(jù)分析,然而這類測量工作不僅耗費(fèi)額外的時(shí)間精力,而且對于相對比較繁忙的影像中心也難以實(shí)現(xiàn)。隨著近年來相關(guān)技術(shù)的進(jìn)步,全自動(dòng)分析軟件的出現(xiàn)解決了這個(gè)問題[29-30]。MSA患者相對于PD患者和正常人來說,其小腦、丘腦、殼核、腦干容積減小具有顯著性差異[7,30],臨床上用以鑒別MSA與PD十分有效。由于采用的各種容積分析方法有所不同,其絕對定量測量分析臨床應(yīng)用還非常困難。
線性參數(shù)測量臨床應(yīng)用非常簡單、方便,很容易就可以在常規(guī)T2加權(quán)圖像上測量黑質(zhì)寬度、小腦中腳寬度、腦橋前后徑的值[31]。MSA患者腦橋、小腦區(qū)域明顯萎縮,其小腦中腳寬度、腦橋前后徑的值相對于PD患者顯著性減低,小腦中腳寬度小于14.6 mm對于MSA診斷具有100%特異性[7]。由于只有20%的PD患者M(jìn)RI可以見到異常信號,所以常規(guī)磁共振檢查對于鑒別PD患者與正常人作用非常有限[32-33]。有的研究對多系統(tǒng)萎縮帕金森型(multiple system atrophy-parkinsonian type,MSA-p)、PD組和健康對照組應(yīng)用磁共振T1加權(quán)成像對腦橋面積(pontine,P)、中腦面積(midbrain,M)、小腦中腳(middle cerebellar peduncle,MCP)寬度及小腦上腳(superior cerebellar peduncle,SCP)寬度進(jìn)行測量,通過計(jì)算P/M、MCP/ SCP、磁共振帕金森指數(shù)[(P/M)×(MCP/SCP)]等復(fù)合指標(biāo)來篩選最佳鑒別指標(biāo),研究發(fā)現(xiàn)P/M值可有助于診斷MSA-p,MSA-p患者P/M值顯著小于PD患者(P<0.001)及健康對照組(P<0.001)[34]。據(jù)報(bào)道,PD晚期患者的黑質(zhì)致密帶寬度顯著降低,但是其對于正常人的平均差異只有1 mm,臨床應(yīng)用非常困難[35]??v向研究結(jié)果顯示,在疾病早期MSA進(jìn)展明顯快于PD,MRI變化也更加顯著[36-37]。文獻(xiàn)回顧性分析表明,小腦中腳寬度、腦橋前后徑是最可靠的線性參數(shù)。
磁共振擴(kuò)散張量成像是有效評價(jià)髓鞘完整性的方法,運(yùn)用該技術(shù)可以定量分析神經(jīng)纖維的斷裂和缺失。神經(jīng)退行性疾病中部分神經(jīng)纖維中斷導(dǎo)致各方向水彌散增加,其各向異性分?jǐn)?shù)值降低而平均擴(kuò)散度增加。PD患者與正常人的擴(kuò)散張量成像參數(shù)分析研究表明,PD患者黑質(zhì)的各向異性分?jǐn)?shù)值顯著低于正常人,其殼核、尾狀核的各向異性分?jǐn)?shù)值也顯著低于正常人[38-40]。選取殼核作為感興趣區(qū)鑒別MSA與PD,其表觀擴(kuò)散系數(shù)值大于0.79×103mm2/ s的敏感性達(dá)到85%、特異性達(dá)到了89%[41]。相對于PD患者,MSA患者黑質(zhì)、殼核、腦橋的各向異性分?jǐn)?shù)值降低而平均擴(kuò)散度增加,然而這種差異非常小,限制了其作為PD生物學(xué)指標(biāo)的臨床應(yīng)用[42]。應(yīng)用擴(kuò)散張量成像能夠有效鑒別PD與MSA,MSA患者小腦、蒼白球特別是小腦中腳的表觀擴(kuò)散系數(shù)值或各向異性分?jǐn)?shù)值減低明顯,平均擴(kuò)散度增加明顯[43-45]。擴(kuò)散張量成像研究顯示,MSA患者的腦橋十字征異常改變比T2加權(quán)表現(xiàn)得異常累及的范圍更廣,其腦橋橫行纖維、皮質(zhì)脊髓束、腦橋、小腦各向異性分?jǐn)?shù)值明顯減低,平均擴(kuò)散度明顯增加,這些改變和神經(jīng)病理研究結(jié)果相一致[46]。另一種測量髓鞘化程度與軸索密度的方法是磁化傳遞成像,這種技術(shù)類似于擴(kuò)散張量技術(shù),可以對局部特定的感興趣區(qū)測量磁化傳遞率。1.5 T磁共振研究表明,MSA患者黑質(zhì)、殼核、蒼白球的磁化傳遞率相對PD患者明顯降低[47]。應(yīng)用于觀察腦部微結(jié)構(gòu)改變的研究結(jié)果的一致性表明,這2種技術(shù)具有較高的可靠性和準(zhǔn)確性。磁化傳遞成像、擴(kuò)散張量技術(shù)結(jié)合常規(guī)MRI技術(shù),通過全面的臨床評估,可以有效地避免臨床工作中對神經(jīng)退行性疾病的誤診。
磁共振波譜分析鑒別PD與MSA的相關(guān)文獻(xiàn)報(bào)道,其基于乙酰天冬氨酸(N-acetylaspartate,NAA)/膽堿復(fù)合物和NAA/肌酸復(fù)合物的比值測量方法得到的結(jié)果混亂、價(jià)值有限。有的研究應(yīng)用磁共振波譜來鑒別MSA-p、多系統(tǒng)萎縮小腦型、進(jìn)行性核上性麻痹(progressive supranuclear palsy,PSP)及PD,與PD相比較,MSA-p、PSP患者在蒼白球、殼核及豆?fàn)詈说腘AA值顯著降低[48]。有的研究運(yùn)用定量縮減方法顯示,MSA患者的蒼白球、殼核、屏狀核NAA值明顯減低;也有報(bào)道表明MSA、PD患者NAA值均下降,而基底節(jié)PD患者NAA值更接近正常[49-51]。
近年來的醫(yī)學(xué)影像技術(shù)進(jìn)步使評估突觸前多巴胺轉(zhuǎn)運(yùn)功能以及定量測量多巴胺終端丟失成為可能。多巴胺轉(zhuǎn)運(yùn)蛋白(dopamine transporter,DAT)可以反映患者多巴胺能神經(jīng)元的活性,在一些神經(jīng)系統(tǒng)變性病中,通過123I-β-CIT單光子發(fā)射計(jì)算機(jī)斷層成像術(shù)(single-photon emission computed tomography,SPECT)、PET研究發(fā)現(xiàn),多巴胺能的丟失能實(shí)現(xiàn)可視化,MSA-p、PD、PSP患者均存在123I-β-CIT攝取減少,反映紋狀體DAT的密度減低?;谂R床診斷的有關(guān)報(bào)道結(jié)果顯示,根據(jù)SPECT放射性核素分布對稱性程度可以鑒別MSA與PD,MSA患者核素分布更加對稱、多巴胺結(jié)合降低更加明顯[52-54]。有研究通過應(yīng)用不同的示蹤劑對MSA、PD、PSP組患者和健康對照組進(jìn)行DAT及D2受體顯像發(fā)現(xiàn),3組患者殼核后部DAT均明顯低于健康對照組,3組間差異無統(tǒng)計(jì)學(xué)意義,提示3種疾病均存在突觸前病變,病變程度無明顯差異[54]。一項(xiàng)基于組織病理學(xué)診斷MSA與PD的相關(guān)研究得到的結(jié)果卻相反,MSA患者多巴胺受體核素分布比 PD更加不對稱[55]。另一項(xiàng)研究也報(bào)道MSA與PD的多巴胺受體核素分布沒有顯著性差異[56]。有研究采用相同的方法比較了PD患者與MSA患者多巴胺能神經(jīng)元的貯備情況,發(fā)現(xiàn)2組紋狀體DAT密度下降一致,PD患者的D2受體密度未見下降,而75%的MSA-p患者D2受體密度下降,因此認(rèn)為D2受體密度下降有助于診斷MSA[57]。從上述有關(guān)研究結(jié)果的不一致性可以看出,SPECT多巴胺受體顯像鑒別MSA與PD并不是一個(gè)可靠的方法。缺乏明確的鑒別MSA與PD的影像證據(jù)、檢查費(fèi)昂貴、多巴胺受體核素?cái)z取率低下、較高的放射劑量和較高的技術(shù)要求使得多巴胺受體顯像臨床應(yīng)用前景暗淡。
PET是一種功能成像方法,靜息態(tài)腦的放射性18F標(biāo)志的葡萄糖顯像已經(jīng)被歐洲核醫(yī)學(xué)協(xié)會批準(zhǔn)用于臨床鑒別 PD與不典型帕金森綜合征[58]。放射性18F標(biāo)志的葡萄糖顯像PET通過顯示腦局部葡萄糖代謝情況來評估神經(jīng)元活動(dòng),異常代謝網(wǎng)絡(luò)如小腦、內(nèi)側(cè)丘腦、殼核后部、尾狀核、下丘腦區(qū)、邊緣系統(tǒng)以及額葉的下部與外側(cè)部區(qū)域,PD患者葡萄糖攝取明顯高于MSA患者;其代謝網(wǎng)絡(luò)缺陷區(qū)主要累及丘腦外側(cè)區(qū)、后聯(lián)合皮質(zhì)以及頂葉下部[59-60]。有應(yīng)用放射性18F標(biāo)志的葡萄糖PET顯像進(jìn)行研究,發(fā)現(xiàn)MSA患者雙側(cè)殼核及小腦代謝活性減低;PD患者紋狀體區(qū)的葡萄糖代謝相對保留[61]。
臨床癥狀與體征并結(jié)合MRI可以明顯提高臨床鑒別PD與MSA的準(zhǔn)確性,PD患者的MRI檢查少有明顯異常改變;而MSA則有更多更明顯的影像異常特征,如腦橋十字征、殼核低信號及腦橋、蒼白球、小腦萎縮;磁敏感加權(quán)成像、線性測量、容積分析以及擴(kuò)散張量、磁化傳遞成像的異常改變正是上述異常征象的直接反映。沒有某一個(gè)影像學(xué)征象可以單獨(dú)具有高度敏感性與特異性,綜合上述影像學(xué)征象并應(yīng)用決策圖表能夠進(jìn)一步提高診斷的準(zhǔn)確性[7]。
[1]Holshouser BA,Tong KA,Ashwal S,et al.Prospective longitudinal protonmagnetic resonance spectroscopic imaging in adult traumatic brain injury[J].JMagn Reson Imaging,2006,24(1):33-40.
[2]Stefanova N,Bücke P,Duerr S,et al.Multiple system atrophy:an update[J].Lancet Neurol,2009,8(12):1172-1178.
[3]Horimoto Y,Aiba I,Yasuda T,et al.Longitudinal MRI study of multiple system atrophy--when do the findings appear,and what’s the course?[J].J Neurol,2002,249 (7):847-854.
[4]Ramli N,Nair SR,Ramli NM,et al.Differentiating multiplesystem atrophy from Parkinson’s disease[J].Clin Rad,2015,70(5):555-564.
[5]Oikawa H,Sasaki M,Tamakawa Y,et al.The substantia nigra in Parkinson disease:proton density-weighted spinecho and fast short inversion time inversion-recovery MR findings[J].AJNR Am J Neuroradiol,2002,23(10):1747-1756.
[6]Adachi M,Hosoya T,Haku T,et al.Evaluation of the substantia nigra in patients with Parkinsonian syndrome accomplished using multishot diffusion-weighted MR imaging [J].AJNR Am JNeuroradiol,1999,20(8):1500-1506.
[7]Nair SR,Tan LK,Mohd Ram li N,et al.A decision tree for differentiating multiple system atrophy from Parkinson’s disease using 3-T MR imaging[J].Eur Radiol,2013,23 (6):1459-1466.
[8]Obeso JA,Rodriguez-Oroz MC,Benitez-Temino B,et al. Functional organization of the basal ganglia:therapeutic implications for Parkinson’s disease[J].Mov Disord,2008,23 (Suppl 3):S548-S559.
[9]Wenning GK,Tison F,Ben Shlomo Y,et al.Multiple system atrophy:a review of 203 pathologically proven cases[J]. Mov Disord,1997,12(2):133-147.
[10]Wang Y,Butros SR,Shuai X,et al.Different iron-deposition patterns of multiple system atrophy with predominant parkinsonism and idiopathetic Parkinson diseases demonstrated by phase-corrected susceptibility-weighted imaging[J].AJNR Am JNeuroradiol,2012,33(2):266-273.
[11]Zhang J,Zhang Y,Wang J,et al.Characterizing iron deposition in Parkinson’s disease using susceptibility-weighted imaging:an in vivo MR study[J].Brain Res,2010,1330: 124-130.
[12]Reiter E,Mueller C,Pinter B,et al.Dorsolateral nigral hyperintensity on 3.0T susceptibility-weighted imaging in neurodegenerative Parkinsonism[J].Mov Disord,2015,30(8): 1068-1076.
[13]Hingwala DR,Kesavadas C,Thomas B,et al.Susceptibility weighted imaging in the evaluation ofmovement disorders [J].Clin Radiol,2013,68(6):338-348.
[14]Vymazal J,Righini A,Brooks RA,et al.T1 and T2 in the brain of healthy subjects,patients with Parkinson disease,and patientswith multiple system atrophy:relation to iron content[J].Radiology,1999,211(2):489-495.
[15]Jin L,Wang J,Jin H,et al.Nigral iron deposition occurs acrossmotor phenotypes of Parkinson’s disease[J].Eur J Neurol,2012,19(7):969-976.
[16]Behnke S,Berg D,Naumann M,et al.Differentiation of Parkinson’s disease and atypical Parkinsonian syndromes by transcranial ultrasound[J].JNeurol Neurosurg Psychiatry,2005,76(3):423-425.
[17]Bouwmans AE,Vlaar AM,MessWH,etal.Specificity and sensitivity of transcranial sonography of the substantia nigra in the diagnosis of Parkinson’s disease:prospective cohort study in 196 patients[J].BMJOpen,2013,3(4): e002613.
[18]Schrag A,Kingsley D,Phatouros C,et al.Clinical usefulness ofmagnetic resonance imaging inmultiple system atrophy[J].J Neurol Neurosurg Psychiatry,1998,65(1): 65-71.
[19]Antonini A,Leenders KL,Vontobel P,et al.Complementary PET studies of striatalneuronal function in the differential diagnosis betweenmultiple system atrophy and Parkinson’s disease[J].Brain,1997,120(Pt12):2187-2195.
[20]Gilman S,Koeppe RA,Junck L,et al.Patterns of cerebral glucosemetabolism detected with positron emission tomography differ inmultiple system atrophy and olivopontocerebellar atrophy[J].Ann Neurol,1994,36(2):166-175.
[21]Ito S,ShiraiW,Hattori T.Evaluating posterolateral linearization of the putaminal margin with magnetic resonance imaging to diagnose the Parkinson variant ofmultiple system atrophy[J].Mov Disord,2007,22(4):578-581.
[22]Seppi K,Schocke MF,Mair KJ,et al.Progression of putaminal degeneration in multiple system atrophy:a serial diffusion MR study[J].Neuroimage,2006,31(1):240-245.
[23]Lee WH,Lee CC,Shyu WC,et al.Hyperintense putaminal rim sign is nota hallmark ofmultiple system atrophy at3T [J].AJNR Am JNeuroradiol,2005,26(9):2238-2242.
[24]Block SA,Bakshi R.FLAIR MRIof striatonigral degeneration[J].Neurology,2001,56(9):1200.
[25]Bhattacharya K,Saadia D,Eisenkraft B,et al.Brain magnetic resonance imaging in multiple-system atrophy and Parkinson disease:a diagnostic algorithm[J].Arch Neurol,2002,59(5):835-842.
[26]Muqit M,Mort D,Miszkiel K,et al.“Hot cross bun”sign in a patientwith parkinsonism secondary to presumed vasculitis[J].JNeurol Neurosurg Psychiatry,2001,71(4): 565-566.
[27]Lee YC,Liu CS,Wu HM,etal.The‘hot cross bun’sign in the patients with spinocerebellar ataxia[J].Eur JNeurol,2009,16(4):513-516.
[28]Soares-Fernandes JP,Ribeiro M,Machado A.“Hot cross bun”sign in variant Creutzfeldte-Jakob disease[J].ANJR Am JNeuroradiol,2009,30(3):E37.
[29]Fischl B,Salat DH,Busa E,et al.Whole brain segmentation:automated labeling of neuroanatomical structures in the human brain[J].Neuron,2002,33(3):341-355.
[30]Han X,Jovicich J,Salat D,et al.Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength,scanner upgrade and manufacturer[J].Neuroimage,2006,32(1):180-194.
[31]Messina D,Cerasa A,Condino F,et al.Patterns of brain atrophy in Parkinson’s disease,progressive supranuclear palsy and multiple system atrophy[J].Parkinsonism Relat Disord,2011,17(3):172-176.
[32]Sitburana O,Ondo WG.Brain magnetic resonance imaging (MRI)in parkinsonian disorders[J].Parkinsonism Relat Disord,2009,15(3):165-174.
[33]Seppi K,PoeweW.Brainmagnetic resonance imaging techniques in the diagnosis of parkinsonian syndromes[J].Neuroimaging Clin North Am,2010,20(1):29-55.
[34]Quattrone A,Nicoletti G,Messina D,et al.MR imaging index for differentiation of progressive supranuclear palsy from Parkinson disease and the Parkinson variantofmultiple system atrophy[J].Radiology,2008,246(1):214-221.
[35]Sohmiya M,Tanaka M,Aihara Y,et al.Structural changes in the midbrain with aging and Parkinson’s disease:an MRIstudy[J].Neurobiol Aging,2004,25(4):449-453.
[36]Hauser TK,Luft A,SkalejM,etal.Visualization and quantification of disease progression in multiple system atrophy [J].Mov Disord,2006,21(10):1674-1681.
[37]Reginold W,Lang AE,Marras C,et al.Longitudinal quantitative MRI in multiple system atrophy and progressive supranuclear palsy[J].Parkinsonism Relat Disord,2014,20(2):222-225.
[38]Vaillancourt DE,Spraker MB,Prodoehl J,et al.High-resolution diffusion tensor imaging in the substantia nigra of de novo Parkinson disease[J].Neurology,2009,72(16):1378-1384.
[39]Chan LL,Rumpel H,Yap K,et al.Case control study of diffusion tensor imaging in Parkinson’s disease[J].JNeurol Neurosurg Psychiatry,2007,78(12):1383-1386.
[40]Yoshikawa K,Nakata Y,Yamada K,et al.Early pathological changes in the parkinsonian brain demonstrated by diffusion tensor MRI[J].J Neurol Neurosurg Psychiatry,2004,75(3):481-484.
[41]Umemura A,Oeda T,Hayashi R,et al.Diagnostic accuracy of apparent diffusion coefficient and 123I-metaiodobenzylguanidine for differentiation ofmultiple system atrophy and Parkinson’s disease[J].PloSOne,2013,8(4):e61066.
[42]Schwarz ST,AbaeiM,Gontu V,etal.Diffusion tensor imaging of nigral degeneration in Parkinson’s disease:a region-of-interest and voxel-based study at3 T and systematic review with meta-analysis[J].Neuroimage Clin,2013,3(10):481-488.
[43]Tsukamoto K,Matsusue E,Kanasaki Y,et al.Significance of apparent diffusion coefficient measurement for the differential diagnosis ofmultiple system atrophy,progressive supranuclear palsy,and Parkinson’s disease:evaluation by 3.0-TMR imaging[J].Neuroradiology,2012,54(9):947-955.
[44]Ito M,Watanabe H,KawaiY,etal.Usefulness of combined fractional anisotropy and apparent diffusion coefficient values for detection of involvement in multiple system atrophy[J].JNeurol Neurosurg Psychiatry,2007,78(7):722-728.
[45]Nilsson C,Markenroth Bloch K,Brockstedt S,et al.Tracking the neurodegeneration of parkinsonian disordersd--a pilot study[J].Neuroradiology,2007,49(2):111-119.
[46]Loh KB,Rahmat K,Lim SY,et al.A hot cross bun sign from diffusion tensor imaging and tractography perspective [J].Neurol India,2011,59(2):266-269.
[47]Eckert T,Sailer M,Kaufmann J,et al.Differentiation of idiopathic Parkinson’s disease,multiple system atrophy,progressive supranuclear palsy,and healthy controls usingmagnetization transfer imaging[J].Neuroimage,2004,21(1): 229-235.
[48]Guevara CA,Blain CR,Stahl D,et al.Quantitativemagnetic resonance spectroscopic imaging in Parkinson’s disease,progressive supranuclear palsy and multiple system atrophy[J].Eur JNeurol,2010,17(9):1193-1202.
[49]Clarke CE,Lowry M.Basal ganglia metabolite concentrations in idiopathic Parkinson’s disease and multiple system atrophymeasured by proton magnetic resonance spectroscopy[J].Eur JNeurol,2000,7(6):661-665.
[50]Davie CA,Wenning GK,Barker GJ,et al.Differentiation of multiple system atrophy from idiopathic Parkinson’s disease using proton magnetic resonance spectroscopy[J]. Ann Neurol,1995,37(2):204-210.
[51]Watanabe H,F(xiàn)ukatsu H,Katsuno M,et al.Multiple regional 1H-MR spectroscopy in multiple system atrophy:NAA/ Cr reduction in pontine base as a valuable diagnostic marker[J].JNeurol Neurosurg Psychiatry,2004,75(1):103-109.
[52]Varrone A,Marek KL,Jennings D,et al.[(123)I]beta-CIT SPECT imaging demonstrates reduced density of striatal dopamine transporters in Parkinson’s disease and multiple system atrophy[J].Mov Disord,2001,16(6):1023-1032.
[53]Knudsen GM,Karlsborg M,Thomsen G,et al.Imaging of dopamine transporters and D2 receptors in patients with Parkinson’s disease andmultiple system atrophy[J].Eur J Nucl Med Mol Imaging,2004,31(12):1631-1638.
[54]Kim YJ,Ichise M,Ballinger JR,et al.Combination of dopamine transporter and D2 receptor SPECT in the diagnostic evaluation of PD,MSA,and PSP[J].Mov Disord,2002,17(2):303-312.
[55]Perju-Dumbrava LD,Kovacs GG,Pirker S,etal.Dopamine transporter imaging in autopsy-confirmed Parkinson’s disease and multiple system atrophy[J].Mov Disord,2012,27(1):65-71.
[56]PirkerW,Asenbaum S,Hauk M,et al.Imaging serotonin and dopamine transporterswith 123I-beta-CIT SPECT:binding kinetics and effects of normal aging[J].JNucl Med,2000,41(1):36-44.
[57]Plotkin M,Amthauer H,Klaffke S,et al.Combined 123IFP-CIT and 123I-IBZM SPECT for the diagnosis of parkinsonian syndromes:study on 72 patients[J].J Neural Transm,2005,112(5):667-692.
[58]Varrone A,Asenbaum S,Vander Borght T,et al.European Association of Nuclear Medicine Neuroimaging Committee. EANM procedure guidelines for PET brain imaging using [18F]FDG,version 2[J].Eur JNucl Med Mol Imaging,2009,36(12):2103-2110.
[59]Garraux G,Phillips C,Schrouff J,et al.Multiclass classification of FDG PET scans for the distinction between Parkinson’s disease and atypical parkinsonian syndromes[J]. Neuroimage Clin,2013,2(6):883-893.
[60]Teune LK,Bartels AL,de Jong BM,et al.Typical cerebral metabolic patterns in neurodegenerative brain diseases[J]. Mov Disord,2010,25(14):2395-2404.
[61]Tang CC,Poston KL,Eckert T,et al.Differential diagnosis of parkinsonism:a metabolic imaging study using pattern analysis[J].Lancet Neurol,2010,9(2):149-158.
Differentiating m ultip le-system atrophy from Parkinson’s disease
ZHENG Kuihong1,2,QIXiaokun3,MA Lin1
(1.Department of Radiology,Chinese PLA General Hospital,Beijing 100853,China;2.Department of Radiology,Navy General Hospital,Beijing 100048,China;3.Department of Neurology,Navy General Hospital,Beijing 100048,China)
It is to illustrate the differentiating features ofmultiple-system atrophy from Parkinson’s disease at differentmodality,in particular,magnetic resonance imaging(MRI).The new advanced MRI in the differentiation will be discussed,including newermethods and new sequences,such as susceptibility-weighted sequences,diffusion tensor imaging,magnetic resonance spectroscopy,transcranial ultrasound,single-photon emission computed tomography,and positron emission tomography.
Multiple system atrophy(MSA);Parkinson’s disease(PD);Magnetic resonance imaging(MRI);Imaging
R445.2;R742.5
A
2095-3097(2017)02-0116-06
10.3969/j.issn.2095-3097.2017.02.014
2016-12-12 本文編輯:徐海琴)
首都臨床特色應(yīng)用研究專項(xiàng)(Z151100004015017)
100853北京,解放軍總醫(yī)院放射科(鄭奎宏,馬 林);100048北京,海軍總醫(yī)院放射科(鄭奎宏),神經(jīng)內(nèi)科(戚曉昆)
馬 林,Email:cjr.malin@vip.163.com