韓瑞芳
(河南工程學(xué)院,河南鄭州451191)
土石壩壩坡失穩(wěn)模糊風(fēng)險(xiǎn)分析
韓瑞芳
(河南工程學(xué)院,河南鄭州451191)
分析了土石壩壩坡失穩(wěn)的影響因素,建立了土石壩壩坡失穩(wěn)的模糊風(fēng)險(xiǎn)模型,探討了模型的求解方法。并以某土石壩失穩(wěn)風(fēng)險(xiǎn)評(píng)價(jià)為例,分析了該模型的應(yīng)用。
土石壩;壩坡失穩(wěn);模糊風(fēng)險(xiǎn);蒙特卡羅法;MATLAB
我國現(xiàn)有水庫大壩約8.6萬座,其中90%是土石壩。由于邊勘測、邊設(shè)計(jì)、邊施工等“三邊”工程的存在,以及后期運(yùn)行管理方面的不完善,造成大壩失事,給國家?guī)砭薮蟮慕?jīng)濟(jì)損失。近幾年,我國對病險(xiǎn)水庫進(jìn)行了大規(guī)模的除險(xiǎn)加固建設(shè),大中型水庫的安全狀況得到明顯改善。但是,仍有許多小型水庫存在安全隱患,大壩存在失事風(fēng)險(xiǎn)。在大壩失事事故中,壩坡失穩(wěn)引起的事故占總數(shù)的25%[1~2]。為合理安排除險(xiǎn)加固資金,有必要對壩坡失穩(wěn)進(jìn)行風(fēng)險(xiǎn)分析,為水庫大壩除險(xiǎn)加固提供依據(jù)。
現(xiàn)有風(fēng)險(xiǎn)分析是采用概率論與數(shù)理統(tǒng)計(jì)相結(jié)合的方法,分析各因素的隨機(jī)性,定量計(jì)算風(fēng)險(xiǎn)值的大小。在實(shí)際工程中,由于一些設(shè)計(jì)參數(shù)存在隨機(jī)性和模糊性,不可能得到各設(shè)計(jì)參數(shù)精確的均值。另外,大壩從穩(wěn)定狀態(tài)到失事狀態(tài)是漸變的過程,存在過渡區(qū)域的模糊性,即事件的失效準(zhǔn)則存在模糊性。客觀世界存在的隨機(jī)性和模糊性,使得人們不能準(zhǔn)確預(yù)測事件發(fā)生的概率。因此,在進(jìn)行壩坡失穩(wěn)風(fēng)險(xiǎn)分析中,應(yīng)同時(shí)考慮各風(fēng)險(xiǎn)因素的模糊性和隨機(jī)性,綜合運(yùn)用模糊數(shù)學(xué)的理論和方法,進(jìn)行模糊風(fēng)險(xiǎn)分析。
1.1壩坡失穩(wěn)的影響因素
壩體浸潤線抬高,雨水入滲,可引起土石壩下游壩坡滑坡。因此,庫水位、壩料參數(shù)、大壩結(jié)構(gòu)尺寸、施工質(zhì)量及后期運(yùn)行管理等都是影響土石壩滑坡風(fēng)險(xiǎn)的因素。在土石壩壩坡失穩(wěn)風(fēng)險(xiǎn)分析中,水位和壩料參數(shù)對其影響較大。水位是一個(gè)隨機(jī)變量。水位變化與水庫上游來水量、下泄量及水庫的防洪調(diào)度方案有關(guān),具有較大的不確定性。每一個(gè)水位的發(fā)生服從一定的概率分布。壩料參數(shù)指標(biāo)中,黏聚力c和內(nèi)摩擦角φ的變異性對壩坡風(fēng)險(xiǎn)的影響程度較大,土體容重γ的變異性對壩坡風(fēng)險(xiǎn)的影響很小。因此,只考慮c和φ的隨機(jī)特性影響,對土體容重γ按定值考慮。關(guān)于土體變異系數(shù)的選取,根據(jù)前人研究結(jié)果:黏聚力c為極值Ⅰ型分布,內(nèi)摩擦角φ為對數(shù)正態(tài)分布[3]。
1.2壩坡失穩(wěn)模糊風(fēng)險(xiǎn)模型的建立
土石壩壩體失穩(wěn)的極限狀態(tài)方程為:Z=R-L=0。當(dāng)R>L時(shí),壩體失穩(wěn);當(dāng)R<L時(shí),壩體穩(wěn)定。由于壩料參數(shù)在實(shí)際工程中的取值出現(xiàn)偏差,壩體由穩(wěn)定狀態(tài)發(fā)展到失穩(wěn)是一個(gè)漸變的過程,存在失效準(zhǔn)則的模糊性。因而,引入一模糊數(shù)∈表示其漸變過程??紤]各設(shè)計(jì)變量和失效準(zhǔn)則的模糊性,建立土石壩壩體失穩(wěn)模糊風(fēng)險(xiǎn)模型,如式(1)所示。
式中:FL(h)為相應(yīng)于某一水位時(shí)滑動(dòng)力矩大于抗滑力矩的概率;μz為系統(tǒng)的狀態(tài)變量Z對系統(tǒng)失事這一模糊事件的隸屬度;μR、μL分別為R、L的隸屬度函數(shù);fH(h)為壩上游水位概率密度函數(shù)。
蒙特卡羅法(MC)是風(fēng)險(xiǎn)分析計(jì)算中常用的一種方法,它計(jì)算簡便,而且精度能滿足要求。本文采用此方法計(jì)算風(fēng)險(xiǎn)概率。
為快速、簡便、高精度地產(chǎn)生隨機(jī)數(shù),利用MAT-LAB強(qiáng)大的數(shù)值計(jì)算功能,直接產(chǎn)生極值Ⅰ型分布、對數(shù)正態(tài)分布的隨機(jī)數(shù)[4~5]。
對于式(1)的求解,由模糊數(shù)學(xué)水平截集的概念引入α水平截集后,將模糊集合轉(zhuǎn)化為經(jīng)典集合[3],由此可得如式(2)~式(4)的模糊風(fēng)險(xiǎn)表達(dá)式。
由式(2)和式(3)可以看出,將各模糊量模糊化后,對其直接積分求解很困難。因此,本文采用離散化數(shù)值方法求解。設(shè)水庫運(yùn)行最低水位為h1,最高水位為h2,則式(2)和式(3)可以變?yōu)槭剑?)和式(6)。
根據(jù)式(5)和式(6),要求出土石壩壩體失穩(wěn)的模糊風(fēng)險(xiǎn),需要計(jì)算和。
ΔFH()的計(jì)算既可通過對庫水位的長系列監(jiān)測資料進(jìn)行統(tǒng)計(jì)分析,獲得庫水位的概率分布特性,也可根據(jù)文獻(xiàn)[6],用概率演算法進(jìn)行水庫調(diào)節(jié)計(jì)算,通過概率組合得出水位概率曲線。
根據(jù)大壩工程理論,壩坡穩(wěn)定極限狀態(tài)方程可表示為式(7)。
3.1基本資料
某均質(zhì)土石壩最大壩高為40.0m,壩頂寬為5.5m,上游邊坡自上而下分別為:1∶2.4、1∶2.6、1∶3.2,在高程267.5 m和275.6 m處,各設(shè)2 m寬的平臺(tái);下游邊坡自上而下分別為:1∶2.4、1∶3、1∶3.6、1∶2.5,在高程258.6m處,設(shè)2m寬的平臺(tái),在高程268.9m和279.2m處,各設(shè)1.5m寬的平臺(tái)。壩體材料物理力學(xué)指標(biāo)如表1所示,隨機(jī)變量的統(tǒng)特征如表2所示。
表1 壩料參數(shù)物理力學(xué)特性表T ab.1 Dam material parameter physical mechanics properties
表2 隨機(jī)變量特性表T ab.2 Random variable properties
3.2壩坡失穩(wěn)模糊風(fēng)險(xiǎn)計(jì)算
利用壩坡失穩(wěn)模糊風(fēng)險(xiǎn)方法,計(jì)算其在不同水平截集時(shí)的總模糊風(fēng)險(xiǎn)概率,計(jì)算結(jié)果如表3所示。
表3 壩坡失穩(wěn)破壞模糊風(fēng)險(xiǎn)計(jì)算結(jié)果T ab.3 Fuzzy risk calculation resu lts of dam slope instability
根據(jù)工程運(yùn)行情況,建議選取α=0.5的模糊風(fēng)險(xiǎn)值作為失穩(wěn)風(fēng)險(xiǎn)度,即
在土石壩壩坡失穩(wěn)風(fēng)險(xiǎn)分析中,影響壩坡穩(wěn)定的因素包括降雨、庫水位、壩料參數(shù)、壩體尺寸及施工質(zhì)量等。其中,許多因素具有隨機(jī)性和模糊性等不確定性,若只考慮因素的隨機(jī)性進(jìn)行風(fēng)險(xiǎn)分析,不能準(zhǔn)確地確定壩坡的穩(wěn)定狀況。本文綜合考慮各因素的隨機(jī)性和模糊性,建立壩坡失穩(wěn)模糊風(fēng)險(xiǎn)模型,進(jìn)行模糊風(fēng)險(xiǎn)分析,并初步探討了其求解方法。與傳統(tǒng)的風(fēng)險(xiǎn)分析方法相比較,該方法考慮了模糊性,風(fēng)險(xiǎn)值為一個(gè)區(qū)間值。該區(qū)間中不同的值表示不同程度的風(fēng)險(xiǎn)。因此,其風(fēng)險(xiǎn)確定值更合理、更符合工程實(shí)際。
[1]麻榮永.土石壩風(fēng)險(xiǎn)分析方法及應(yīng)用[M].北京:科學(xué)出版社,2004:1-10.
[2]李清富,龍少江.土壩壩坡失穩(wěn)風(fēng)險(xiǎn)分析[J].水利水電技術(shù),2006(5):41-44.
[3]劉明偉,何光春.基于蒙特卡羅法的土坡穩(wěn)定可靠度分析[J].重慶建筑大學(xué)學(xué)報(bào),2001(5):96-99.
[4]石博強(qiáng).MATLAB數(shù)學(xué)計(jì)算范例教程[M].北京:中國鐵道出版社,2004:101-160.
[5]劉吉印,麻榮永.水庫優(yōu)化調(diào)度防洪庫容的計(jì)算方法[J].河海大學(xué):水電專輯,1990(12):65-68.
[6]朱元生,王道席.水庫安全設(shè)計(jì)與垮壩風(fēng)險(xiǎn)[J].水利水電科技進(jìn)展,1995(1):17-20.
[7]姚耀武,陳東偉.土坡穩(wěn)定可靠度分析[J].巖土工程學(xué)報(bào),1994(2):80-87.
[責(zé)任編輯楊明慶]
Fuzzy Risk Analysis on Earth and Rockfill Dam Slope Instability
HAN Rui-fang
(Henan University of Engineering,Zhengzhou 451191,Henan,China)
In this paper,it analyzes the influence factors of earth and rockfill dam slope instability,establishes the fuzzy risk model of slope instability and discusses the method of solving this model.And taking the earth and rockfill dam instability risk assessment as an example,it analyzes the application of this model.
Earth and rockfill dam;dam slope instability;fuzzy risk;Monte Carlo method;MATLAB
TV641
A
1008-486X(2016)02-0005-03
2016-02-01
韓瑞芳(1979-),女,河南安陽人,工程師,主要從事水工結(jié)構(gòu)工程方面的工作。