李瓏,柳維林,王志福,陶靜,陳立典
阿爾茨海默病腦內(nèi)小膠質(zhì)細(xì)胞的極化狀態(tài)及電針的影響研究進(jìn)展①
李瓏,柳維林,王志福,陶靜,陳立典
腦內(nèi)免疫細(xì)胞小膠質(zhì)細(xì)胞有兩種極化狀態(tài)M1和M2。M2狀態(tài)可吞噬β-淀粉樣蛋白、防止Tau蛋白過(guò)度磷酸化,還可清除部分病理產(chǎn)物。針刺發(fā)揮作用的機(jī)制可能與轉(zhuǎn)變小膠質(zhì)細(xì)胞的極化狀態(tài)有關(guān)。
阿爾茨海默??;小膠質(zhì)細(xì)胞;極化;電針;綜述
[本文著錄格式]李瓏,柳維林,王志福,等.阿爾茨海默病腦內(nèi)小膠質(zhì)細(xì)胞的極化狀態(tài)及電針的影響研究進(jìn)展[J].中國(guó)康復(fù)理論與實(shí)踐,2017,23(7):779-782.
CITED AS:Li L,Liu WL,Wang ZF,et al.Role of microglia polarization in Alzheimer's disease and association to electroacupuncture (review)[J].Zhongguo Kangfu Lilun Yu Shijian,2017,23(7):779-782.
阿爾茨海默病(Alzheimer disease,AD)是一種起病隱匿的神經(jīng)系統(tǒng)退行性疾病,多發(fā)生于65歲以上人群。該病以認(rèn)知功能及身體其他功能進(jìn)行性減退為主要特征,嚴(yán)重者喪失生活自理能力[1]。目前AD已成為繼心臟病、腫瘤、腦卒中后第4位死因[2]。根據(jù)2016年全球AD報(bào)告顯示,全世界現(xiàn)有癡呆患者4700萬(wàn),治療及照顧費(fèi)用8180億美元;預(yù)計(jì)到2050年,患病人數(shù)會(huì)超過(guò)1.31億[3]。AD是導(dǎo)致癡呆的重要病因之一,給家庭和社會(huì)帶來(lái)巨大負(fù)擔(dān),已成為重要的公共衛(wèi)生問(wèn)題。
AD以大腦神經(jīng)元損害為主要病理改變,公認(rèn)有兩大核心病理標(biāo)志,一是神經(jīng)元外β-淀粉樣蛋白(β-amyloid,Aβ)沉積,二是神經(jīng)元內(nèi)Tau蛋白過(guò)度磷酸化引起的神經(jīng)纖維纏結(jié)(neurofibrillary tangle,NFT)[4]。小膠質(zhì)細(xì)胞(microglia,MG)作為中樞神經(jīng)系統(tǒng)的免疫細(xì)胞,在疾病中表達(dá)為不同的極化狀態(tài),在AD病理變化中發(fā)揮重要作用。
AD的治療臨床上缺乏行之有效的藥物和治療方法,針刺作為一種多靶點(diǎn)、多通路的治療手段,在臨床上運(yùn)用廣泛。針刺可能通過(guò)多種機(jī)制發(fā)揮作用,調(diào)節(jié)小膠質(zhì)細(xì)胞功能。
小膠質(zhì)細(xì)胞起源于中胚層,主要存在于人體大腦和骨髓系統(tǒng)中,相當(dāng)于中樞神經(jīng)系統(tǒng)的巨噬細(xì)胞,在多種神經(jīng)退行性疾病中發(fā)揮抗原提呈、吞噬病原體、分泌多種細(xì)胞因子和修復(fù)神經(jīng)損傷的作用[5]。
小膠質(zhì)細(xì)胞對(duì)外界環(huán)境變化十分敏感,可針對(duì)多種微環(huán)境變化迅速作出反應(yīng)。在正常生理狀態(tài)下,小膠質(zhì)細(xì)胞缺乏吞噬功能,呈靜息態(tài),表現(xiàn)為細(xì)長(zhǎng)的分枝狀小細(xì)胞形態(tài),通過(guò)其分枝隨時(shí)監(jiān)測(cè)微環(huán)境變化,清除凋亡細(xì)胞和其他的碎片,具有“清道夫”的作用。在非感染病理?xiàng)l件下,如神經(jīng)退行性疾病等,小膠質(zhì)細(xì)胞迅速激活為阿米巴形態(tài),增殖并遷移到損害部位,表現(xiàn)出強(qiáng)大的吞噬能力,其細(xì)胞表面受體的表達(dá)也隨之上調(diào),同時(shí)產(chǎn)生大量促炎因子,如腫瘤壞死因子α(tumor necrosis factor α,TNF-α)、干擾素γ(interferon γ,IFN-γ)、白細(xì)胞介素1(interleukin-1,IL-1)等,以及蛋白酶、活性氧等炎性介質(zhì),引發(fā)免疫炎性反應(yīng)。在中樞神經(jīng)系統(tǒng),各種炎性反應(yīng)和細(xì)胞凋亡構(gòu)成系列級(jí)聯(lián)病理變化,小膠質(zhì)細(xì)胞通過(guò)對(duì)這些物質(zhì)進(jìn)行調(diào)節(jié),發(fā)揮神經(jīng)保護(hù)和毒性損傷雙重作用。
目前認(rèn)為,小膠質(zhì)細(xì)胞存在M1和M2兩種極化狀態(tài)[6-8],類似于中醫(yī)學(xué)中的“陰”和“陽(yáng)”對(duì)立屬性的描述,這與小膠質(zhì)細(xì)胞受到不同的環(huán)境刺激有關(guān)。
在脂多糖(lipopolysaccharide,LPS)、INF-γ等因子的誘導(dǎo)下,小膠質(zhì)細(xì)胞會(huì)分泌一氧化氮(nitric oxide,NO)、TNF、IL-6和IL-lβ等促炎因子,可能加重組織損傷,這種狀態(tài)下的小膠質(zhì)細(xì)胞為M1極化狀態(tài),也稱為“經(jīng)典激活途徑(classical activation)”。在IL-4、IL-13的作用下,小膠質(zhì)細(xì)胞可分泌精氨酸酶(arginase,Arg)和IL-10等因子,具有促進(jìn)組織修復(fù)和血管再生作用,為“可選擇激活途徑(alternative activation)”,這種狀態(tài)下的小膠質(zhì)細(xì)胞為M2極化狀態(tài)[9]。
一般來(lái)說(shuō),M1是抵御各種損傷的第一道防線。但由于它在對(duì)入侵的病原體造成破壞的同時(shí),也釋放促炎癥因子、產(chǎn)生神經(jīng)毒性,常常在神經(jīng)元受損與急性炎癥之間建立惡性循環(huán)。
M2是抑制促炎免疫應(yīng)答、增加修復(fù)基因表達(dá)的狀態(tài),其拮抗炎癥反應(yīng)的作用主要與白介素家族中IL-4、IL-13、IL-10和轉(zhuǎn)化生長(zhǎng)因子-β(transforming growth factor-β,TGF-β)四種抗炎細(xì)胞因子有關(guān)。IL-4和IL-13發(fā)揮抗炎作用,抑制促炎細(xì)胞因子IL-8、IL-6和TNF-α的產(chǎn)生,減少NO釋放,防止脂多糖誘導(dǎo)的神經(jīng)元損傷。TGF-β是多效細(xì)胞因子,在AD中主要參與抑制小膠質(zhì)細(xì)胞功能[10]。此外,M2還可以增強(qiáng)胰島素樣生長(zhǎng)因子1(insulin-like growth factor 1,IGF-1)等神經(jīng)營(yíng)養(yǎng)因子的表達(dá),促進(jìn)神經(jīng)元生長(zhǎng)和炎癥恢復(fù)[11]。在清除凋亡細(xì)胞或髓磷脂碎片時(shí),有Arg1、甘露糖受體(CD206)等M2標(biāo)志物產(chǎn)生,幫助組織重建。這些神經(jīng)保護(hù)因子相互影響,共同作用,以對(duì)抗M1引起的炎癥反應(yīng)。
20世紀(jì)70年代以來(lái),人們逐漸認(rèn)識(shí)到小膠質(zhì)細(xì)胞是中樞神經(jīng)系統(tǒng)的免疫效應(yīng)細(xì)胞,參與炎癥和神經(jīng)損傷,是神經(jīng)退行性疾病的始動(dòng)因子和促進(jìn)因素[12-13]。在AD的病理過(guò)程中,小膠質(zhì)細(xì)胞M1和M2狀態(tài)對(duì)Aβ斑塊的清除、Tau過(guò)度磷酸化以及其他病理因素產(chǎn)生影響。
2.1 Aβ
Aβ是淀粉樣蛋白前體蛋白(β-amyloid precursor protein, APP)在早老素-1(presenilin-1,PS1)的幫助下,被蛋白水解酶α、β和γ水解變性后形成的,首先形成淀粉樣蛋白原纖維和寡聚體,隨后逐漸堆積形成老年斑。Aβ的形成、累積和降解貫穿AD的整個(gè)病理過(guò)程,也是導(dǎo)致腦內(nèi)神經(jīng)元功能障礙的重要原因。
淀粉樣斑塊吸引小膠質(zhì)細(xì)胞在其附近聚集,而小膠質(zhì)細(xì)胞的吞噬能力可能與Aβ斑塊數(shù)量和年齡有關(guān)[14]。促炎癥細(xì)胞因子,如IFN-γ、IL-1β和TNF-α等表達(dá)增多,可能降低M2對(duì)Aβ的吞噬能力,并可能促使其轉(zhuǎn)變?yōu)榇龠M(jìn)炎癥反應(yīng)的M1型。
少量Aβ即可激活小膠質(zhì)細(xì)胞,使其胞體變大,轉(zhuǎn)變?yōu)榘⒚装蜆泳奘杉?xì)胞形態(tài),迅速到達(dá)斑塊周圍清除Aβ,發(fā)揮神經(jīng)保護(hù)作用[15-16];隨著Aβ的增多,小膠質(zhì)細(xì)胞被過(guò)度激活,吞噬功能減弱,同時(shí)釋放IL-1β、TNF-α等促炎癥因子,產(chǎn)生神經(jīng)興奮毒性,反而加快Aβ沉積[17-18]。研究顯示,腦內(nèi)注射IL-4和IL-13可以減少APP23小鼠腦內(nèi)Aβ斑塊沉積,改善其認(rèn)知功能,同時(shí)伴有Arg1和M2型表型的表達(dá)上調(diào)[19]。Weekman等[20]對(duì)APP/PS1轉(zhuǎn)基因小鼠行雙側(cè)顱內(nèi)腺相關(guān)病毒注射,在小鼠4月齡時(shí)成功誘導(dǎo)出M1表型,在6月齡時(shí)發(fā)現(xiàn)小膠質(zhì)細(xì)胞轉(zhuǎn)變?yōu)榛旌媳硇停橛械矸蹣拥鞍壮恋碓龆?。這可能表示在AD的病理改變中,M1和M2兩種極化狀態(tài)受不同刺激或年齡的影響,相互轉(zhuǎn)化、協(xié)同作用,共同導(dǎo)致AD的病情發(fā)展。
2.2 Tau磷酸化
Tau蛋白是微管相關(guān)蛋白的一種。正常大腦中,Tau蛋白的主要功能是與微管蛋白結(jié)合,促進(jìn)微管的形成;與微管結(jié)合,維持其穩(wěn)定性,并誘導(dǎo)微管成束。AD患者腦內(nèi)Tau蛋白含量高于健康人群,且呈過(guò)度磷酸化狀態(tài);過(guò)度磷酸化的Tau蛋白是大腦神經(jīng)纖維變性的主要因素,也是NFTs的主要成分。研究表明,NFTs在AD患者大腦皮層的形成數(shù)量與患者認(rèn)知功能下降的程度呈正相關(guān)[21]。
無(wú)論是NFTs形成早期[22]還是晚期[23],其周圍均能檢測(cè)到活化的小膠質(zhì)細(xì)胞。在突變型人Tau蛋白轉(zhuǎn)基因小鼠中,也發(fā)現(xiàn)小膠質(zhì)細(xì)胞的活化與過(guò)度磷酸化的Tau蛋白沉積相關(guān)[24]。研究顯示,Tau寡聚體體外誘導(dǎo)花生四烯酸,可增加小膠質(zhì)細(xì)胞亞硝酸鹽和促炎細(xì)胞因子IL-6的產(chǎn)生[25]。在Tau結(jié)構(gòu)變態(tài)的早期,一些促炎細(xì)胞因子,如IL-1、IL-6、TNF-α和fractalkine (CX3CL1)可修飾Tau磷酸化模式,并改變Tau蛋白的結(jié)構(gòu)和功能[26];破壞CX3CR1(一種抗炎CX3CL1受體),能增強(qiáng)小膠質(zhì)細(xì)胞的促炎活化,加速NFTs的形成[27]。在老化過(guò)程中,神經(jīng)元釋放Tau蛋白,可引起小膠質(zhì)細(xì)胞過(guò)度激活。在P301L Tau突變小鼠身上發(fā)現(xiàn),活化的小膠質(zhì)細(xì)胞具有從M2型轉(zhuǎn)變?yōu)镸1型的傾向,在這個(gè)過(guò)程中,Tau-微管蛋白激酶-1(Tau-tubulin kinase-1,TTBK1)有重要作用[28]。骨髓細(xì)胞觸發(fā)受體2(triggering receptor expressed on myeloid cells 2,TREM2)過(guò)度表達(dá)可以誘導(dǎo)小膠質(zhì)細(xì)胞極化為M2型,抑制神經(jīng)炎癥反應(yīng),從而防止Tau蛋白的過(guò)度磷酸化,減少大腦神經(jīng)病理?yè)p害,改善小鼠空間認(rèn)知功能障礙[21]。
2.3 其他病理因素
除了兩大主要病理產(chǎn)物外,小膠質(zhì)細(xì)胞還可以減少神經(jīng)元損傷和突觸丟失,減少認(rèn)知功能障礙的發(fā)生。小膠質(zhì)細(xì)胞可以釋放諸如TGF-β的生物活性物質(zhì),以支持組織修復(fù);同時(shí)抑制損傷和膠質(zhì)細(xì)胞瘢痕形成,從而發(fā)揮神經(jīng)保護(hù)作用。小膠質(zhì)細(xì)胞也釋放神經(jīng)生長(zhǎng)因子,減少擴(kuò)張性損傷和抑制形成新的病變,幫助突觸再生。在AD早期,小膠質(zhì)細(xì)胞活化通過(guò)降解Aβ、修復(fù)損傷細(xì)胞、調(diào)節(jié)神經(jīng)免疫炎癥反應(yīng),發(fā)揮神經(jīng)保護(hù)作用;后期小膠質(zhì)細(xì)胞被過(guò)度激活,Aβ清除能力降低,分泌大量神經(jīng)炎性因子,產(chǎn)生神經(jīng)興奮毒性,導(dǎo)致膽堿能神經(jīng)元損傷[29]。研究發(fā)現(xiàn),脊髓神經(jīng)損傷時(shí),小膠質(zhì)細(xì)胞被迅速誘導(dǎo)為M1型,并在損傷部位持續(xù)表達(dá),妨礙成體感覺(jué)軸突的再生[30]。
針刺因其副作用小而療效確切,受到越來(lái)越多醫(yī)學(xué)工作者和患者青睞,已廣泛應(yīng)用于心血管疾病、精神疾病和各種急慢性疼痛[31]。針刺可以有效改善AD患者認(rèn)知功能障礙,提高患者日常生活能力[32]。本課題組前期研究顯示,電針可顯著提高AD早期(4月齡)APP/PS1雙轉(zhuǎn)基因小鼠的認(rèn)知功能[33-34];電針預(yù)處理可以抑制腦缺血損傷大鼠小膠質(zhì)細(xì)胞活化,降低TNF-α、IL-1β和IL-6的表達(dá),改善其運(yùn)動(dòng)功能[35]。
大量研究證實(shí),電針可調(diào)節(jié)小膠質(zhì)細(xì)胞功能[36-37]。電針內(nèi)關(guān)、曲池和地機(jī)穴可抑制大腦中動(dòng)脈缺血大鼠小膠質(zhì)細(xì)胞Toll樣受體4/核轉(zhuǎn)錄因子-κB信號(hào)通路活性,海馬區(qū)神經(jīng)元數(shù)量增多[38];電針顯著緩解機(jī)械性痛覺(jué)過(guò)敏,可能與p38絲裂原活化蛋白激酶的磷酸化表達(dá)降低,從而抑制神經(jīng)性疼痛中小膠質(zhì)細(xì)胞的活化有關(guān)[39];電針還可能通過(guò)下調(diào)IFN的過(guò)度表達(dá),降低P2X4受體表達(dá)[40],抑制IL-1β的產(chǎn)生[41],并促進(jìn)神經(jīng)營(yíng)養(yǎng)因子-3的神經(jīng)保護(hù)作用等,對(duì)小膠質(zhì)細(xì)胞產(chǎn)生影響。
小膠質(zhì)細(xì)胞作為中樞神經(jīng)系統(tǒng)中的免疫細(xì)胞,與神經(jīng)炎癥的發(fā)展密切相關(guān),在AD的神經(jīng)病理變化中起至關(guān)重要的作用。在不同時(shí)期和不同刺激下表現(xiàn)為M1、M2兩種極化狀態(tài)。大量研究證明,針刺可以有效調(diào)節(jié)小膠質(zhì)細(xì)胞功能。推測(cè)針刺也可能調(diào)節(jié)小膠質(zhì)細(xì)胞的極化狀態(tài),減少腦內(nèi)Aβ沉積,抑制Tau過(guò)度磷酸化,防止神經(jīng)損害,從而改善認(rèn)知功能。值得進(jìn)一步研究。
[1]Chouraki V,Seshadri S.Genetics of Alzheimer's disease[J]. Adv Genet,2014,87:245-294.
[2]Tramutola A,Lanzillotta C,Perluigi M,et al.Oxidative stress, protein modification and Alzheimer disease[J].Brain Res Bull,2016.[Epub ahead of print].
[3]Herrera AC,Prince M,Knapp M,et al.World Alzheimer Report 2016:Improving Healthcare for People with Dementia. Coverage,Quality and Costs Now and in the Future[R].London:Alzheimer's Disease International,2016.
[4]Calsolaro V,Edison P.Neuroinflammation in Alzheimer's disease:Current evidence and future directions[J].Alzheimers Dement,2016,12(6):719-732.
[5]Fu R,Shen Q,Xu P,et al.Phagocytosis of microglia in the central nervous system diseases[J].Mol Neurobiol,2014,49(3):1422-1434.
[6]Ponomarev ED,Maresz K,Tan Y,et al.CNS-derived interleukin-4 is essential for the regulation of autoimmune inflammation and induces a state of alternative activation in microglial cells[J].J Neurosci,2007,27(40):10714-10721.
[7]Kawanokuchi J,Shimizu K,Nitta A,et al.Production and functions of IL-17 in microglia[J].J Neuroimmunol,2008,194 (1-2):54-61.
[8]Czeh M,Gressens P,Kaindl AM.The Yin and Yang of microglia[J].Dev Neurosci,2011,33(3-4):199-209.
[9]Tang Y,Le W.Differential roles of M1 and M2 microglia in neurodegenerative diseases[J].Mol Neurobiol,2016,53(2):1181-1194.
[10]Boche D,Cunningham C,Docagne F,et al.TGFbeta1 regulates the inflammatory response during chronic neurodegeneration[J].Neurobiol Dis,2006,22(3):638-650.
[11]Suh HS,Zhao ML,Derico L,et al.Insulin-like growth factor 1 and 2(IGF1,IGF2)expression in human microglia:differential regulation by inflammatory mediators[J].J Neuroinflammation,2013,10(1):37.
[12]Hoozemans JJ,Rozemuller AJ,van Haastert ES,et al.Neuroinflammation in Alzheimer's disease wanes with age[J].J Neuroinflammation,2011,8(1):171.
[13]Lee CY,Tse W,Smith JD,et al.Apolipoprotein E promotes β-amyloid trafficking and degradation by modulating microglial cholesterol levels[J].J Biol Chem,2012,287(3):2032-2044.
[14]Mawuenyega KG,Sigurdson W,Ovod V,et al.Decreased clearance of CNS beta-amyloid in Alzheimer's disease[J].Science,2010,330(6012):1774.
[15]Lambertsen KL,Clausen BH,Babcock AA,et al.Microglia protect neurons against ischemia by synthesis of tumor necrosis factor[J].J Neurosci,2009,29(5):1319-1330.
[16]Yanagisawa D,Kitamura Y,Takata K,et al.Possible involvement of P2X7 receptor activation in microglial neuroprotection against focal cerebral ischemia in rats[J].Biol Pharm Bull 2008,31(6):1121-1130.
[17]Lue LF,Kuo YM,Beach T,et al.Microglia activation and anti-inflammatory regulation in Alzheimer's disease[J].Mol Neurobiol,2010,41(2):115-128.
[18]Krabbe G,Halle A,Matyash V,et al.Functional impairment of microglia coincides with beta-amyloid deposition in mice with Alzheimer-like pathology[J].PLoS One,2013,8(4):e60921.
[19]Kawahara K,Suenobu M,Yoshida A,et al.Intracerebral microinjection of interleukin-4/interleukin-13 reduces β-amyloid accumulation in the ipsilateral side and improves cognitive deficits in young amyloid precursor protein 23 mice[J].Neuroscience,2012,207:243.
[20]Weekman EM,Sudduth TL,Abner EL,et al.Transition from an M1 to a mixed neuroinflammatory phenotype increases amyloid deposition in APP/PS1 transgenic mice[J].J Neuroinflammation,2014,11:127.
[21]Jiang T,Zhang YD,Chen Q,et al.TREM2 modifies microglial phenotype and provides neuroprotection in P301S tau trans-genic mice[J].Neuropharmacology,2016,105:196-206.
[22]Sheng JG,Mrak RE,Griffin WS.Glial-neuronal interactions in Alzheimer disease:progressive association of IL-1α+microglia and S100β+astrocytes with neurofibrillary tangle stages[J].J Neuropathol Exp Neurol,1997,56(3):285-290.
[23]Sheffield LG,Marquis JG,Berman NE.Regional distribution of cortical microglia parallels that of neurofibrillary tangles in Alzheimer's disease[J].Neurosci Lett,2000,285(3):165-168.
[24]Yoshiyama Y,Higuchi M,Zhang B,et al.Synapse loss and microglial activation precede tangles in a P301S Tauopathy mouse model[J].Neuron,2007,53(3):337-351.
[25]Morales I,Jiménez JM,Mancilla M,et al.Tau oligomers and fibrils induce activation of microglial cells[J].J Alzheimers Dis,2013,37(4):849-856.
[26]Zilka N,Kazmerova Z,Jadhav S,et al.Who fans the flames of Alzheimer's disease brains?Misfolded tau on the crossroad of neurodegenerative and inflammatory pathways[J].J Neuroinflammation,2012,9(1):47.
[27]Bhaskar K,Konerth M,Kokikocochran ON,et al.Regulation of tau pathology by the microglial fractalkine receptor[J].Neuron,2010,68(1):19-31.
[28]Asai H,Ikezu S,Woodbury ME,et al.Accelerated neurodegeneration and neuroinflammation in transgenic mice expressing P301L tau mutant and tau-tubulin kinase 1[J].Am J Pathol,2014,184(3):808-818.
[29]左麗君,張巍.神經(jīng)免疫炎癥與阿爾茨海默病[J].中華臨床醫(yī)師雜志(電子版),2013,7(14):163-165.
[30]Kigerl KA,Gensel JC,Ankeny DP,et al.Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord[J].J Neurosci,2009,29(43):13435-13444.
[31]Huang KY.Asystematic review and meta-analysis of acupuncture for improving learning and memory ability in animals[J]. BMC ComplementAltern Med,2016,16(1):297.
[32]Zhou J,Peng W,Xu M,et al.The effectiveness and safety of acupuncture for patients with Alzheimer disease:a systematic review and meta-analysis of randomized controlled trials[J]. Medicine(Baltimore),2015,94(22):e933.
[33]陳吉祥,吳羽楠,鄭雅媗,等.電針百會(huì)穴對(duì)APP/PS1雙轉(zhuǎn)基因小鼠學(xué)習(xí)記憶及腦源性神經(jīng)營(yíng)養(yǎng)因子表達(dá)的影響[J].中國(guó)康復(fù)理論與實(shí)踐,2015,21(6):642-647.
[34]吳羽楠,陳吉祥,陶靜,等.電針百會(huì)對(duì)APP/PS1轉(zhuǎn)基因小鼠學(xué)習(xí)記憶能力及Tau蛋白磷酸化的影響[J].中國(guó)康復(fù)醫(yī)學(xué)雜志,2015,30(5):432-436.
[35]Liu W,Wang X,Yang S,et al.Electroacupunctre improves motor impairment via inhibition of microglia-mediated neuroinflammationinthesensorimotorcortexafterischemic stroke[J].Life Sci,2016,151:313-322.
[36]Chen Y,Zhou J,Li J,et al.Electroacupuncture pretreatment prevents cognitive impairment induced by limb ischemia-reperfusion via inhibition of microglial activation and attenuation of oxidative stress in rats[J].Brain Res,2012,1432(1):36-45.
[37]樓志來(lái),俞國(guó)堯.電針對(duì)缺血再灌注大鼠腦內(nèi)小膠質(zhì)細(xì)胞活化的影響[J].湖南中醫(yī)雜志,2014,30(11):165-167.
[38]Han B,Lu Y,Zhao H,et al.Electroacupuncture modulated the inflammatory reaction in MCAO rats via inhibiting the TLR4/ NF-κB signaling pathway in microglia[J].Int J Clin Exp Pathol,2015,8(9):11199-11205.
[39]Liang Y,Du JY,Qiu YJ,et al.Electroacupuncture attenuates spinal nerve ligation-induced microglial activation mediated by p38 mitogen-activated protein kinase[J].Chin J Integr Med, 2016,22(9):704-713.
[40]Chen XM,Xu J,Song JG,et al.Electroacupuncture inhibits excessive interferon-γ evoked up-regulation of P2X4 receptor in spinal microglia in a CCI rat model for neuropathic pain[J]. Br JAnaesth,2015,114(1):150-157.
[41]Tu W,Wang W,Xi H,et al.Regulation of neurotrophin-3 and interleukin-1β and inhibition of spinal glial activation contribute to the analgesic effect of electroacupuncture in chronic neuropathic pain states of rats[J].Evid Based Complement Alternat Med,2015,2015:642081.
Role of Microglia Polarization inAlzheimer's Disease andAssociation to Electroacupuncture(review)
LI Long,LIU Wei-lin,WANG Zhi-fu,TAO Jing,CHEN Li-dian
College of Rehabilitation Medicine,Fujian University of Traditional Chinese Medicine,Fuzhou,Fujian 350122, China
CHEN Li-dian.E-mail:fjtcm1958@sina.com
There are two phenotypes of microglia,M1 and M2.Microglia in M2 polarization may associate with the phagorytosis of beta-amyloid and inhibition of Tau hyperphosphorylation,as well as in other pathology.Electroacupuncture can impact the phenotypes of microglia,which may play a role in the treatment forAlzheimer's disease.
Alzheimer's disease;microglia;phenotypes;electroacupuncture;review
R749.1
A
1006-9771(2017)07-0779-04
2017-02-14
2017-03-10)
10.3969/j.issn.1006-9771.2017.07.008
福建省康復(fù)技術(shù)協(xié)同創(chuàng)新中心課題(No.755010017-協(xié)同)。
福建中醫(yī)藥大學(xué)康復(fù)醫(yī)學(xué)院,福建福州市350122。作者簡(jiǎn)介:李瓏(1992-),女,漢族,重慶市人,碩士研究生,主要研究方向:神經(jīng)康復(fù)與認(rèn)知科學(xué)研究。通訊作者:陳立典(1963-),男,漢族,福建政和縣人,博士,教授,博士研究生導(dǎo)師,主要研究方向:神經(jīng)康復(fù)與認(rèn)知科學(xué)研究。E-mail:fjtcm1958@sina.com。