陳曉旭,曾文先
(西北農(nóng)林科技大學(xué)動(dòng)物科技學(xué)院,陜西楊凌712100)
特別報(bào)道
編者按
2017年《中國畜牧雜志》全面改版。為更好展示畜牧學(xué)領(lǐng)域的科技前沿,促進(jìn)學(xué)術(shù)交流,本刊特別邀請不同領(lǐng)域的專家或青年骨干,圍繞各自的研究領(lǐng)域,介紹自己、團(tuán)隊(duì)或國際研究機(jī)構(gòu)近幾年的研究成果、存在問題及研究展望,或就當(dāng)前的研究熱點(diǎn)問題進(jìn)行討論和評(píng)論。2017年第一期自副主編開始,將為讀者帶來相關(guān)綜述,希望能引發(fā)讀者對相關(guān)熱點(diǎn)、難點(diǎn)的思考,并進(jìn)行深入探討。
精子發(fā)生中miRNAs調(diào)控功能研究進(jìn)展
陳曉旭,曾文先*
(西北農(nóng)林科技大學(xué)動(dòng)物科技學(xué)院,陜西楊凌712100)
源源不斷的精子發(fā)生過程是雄性繁殖機(jī)能的基礎(chǔ)。精原干細(xì)胞(SSCs)持續(xù)不斷地自我更新和分化又是精子發(fā)生的基礎(chǔ)。精子發(fā)生起始于精原干細(xì)胞的分化,歷經(jīng)漫長的減數(shù)分裂后形成單倍體圓形精細(xì)胞。后者經(jīng)過變態(tài)發(fā)育過程,最終形成精子并釋放到曲細(xì)精管管腔中[1]。研究表明,成千上萬的基因參與了精子發(fā)生過程,然而如何實(shí)現(xiàn)對這些基因精確有效的調(diào)控還有待研究。MicroRNAs(miRNAs)作為一類長度為22 nt的單鏈非編碼小RNA,主要參與基因的轉(zhuǎn)錄后調(diào)控。近年來的研究表明,miRNAs參與調(diào)控雄性生殖細(xì)胞的增殖、分化以及凋亡。本文主要針對精子發(fā)生過程中miRNAs在睪丸不同細(xì)胞類型中的調(diào)控功能進(jìn)行綜述。
miRNAs的轉(zhuǎn)錄與其在基因組中的位置相關(guān)。在眾多miRNAs基因中,大約有一半的miRNAs位于基因的內(nèi)含子中,其轉(zhuǎn)錄調(diào)控與宿主基因一致或者不依賴于宿主基因。另外,部分miRNAs基因則成簇存在并共有相同的啟動(dòng)子,因此這些miRNAs基因具有相同的轉(zhuǎn)錄調(diào)控機(jī)制[2]。miRNAs基因轉(zhuǎn)錄成pri-miRNAs,經(jīng)過Drosha和DGCR8的加工并生成pre-miRNAs。這些pre-miRNAs會(huì)在EXP5-Ran·GTP復(fù)合物的作用下運(yùn)送至細(xì)胞質(zhì),進(jìn)一步被Dicer加工成雙鏈的RNA[3]。雙鏈的RNA會(huì)在AGO蛋白形成的miRNA誘導(dǎo)沉默復(fù)合體中進(jìn)一步成熟為具有生物學(xué)功能的miRNAs。miRNAs調(diào)控基因的表達(dá)主要通過堿基互補(bǔ)配對的方式誘導(dǎo)mRNA的降解或翻譯抑制。這種調(diào)控識(shí)別方式主要依賴于成熟miRNAs第2~8位堿基的種子序列,因此,1個(gè)miRNA可以調(diào)控多個(gè)基因,同樣的1個(gè)基因也可被多個(gè)miRNAs調(diào)控[4]。
最新的研究表明,N6-腺嘌呤甲基化修飾(m6A)參與調(diào)控miRNAs的生成。Alarcon等[5]報(bào)道,HNRNPA2B1能夠結(jié)合pri-miRNAs的m6A修飾位點(diǎn),并與DGCR8結(jié)合促進(jìn)pri-miRNAs的加工;當(dāng)細(xì)胞中缺少HNRNPA2B1或者m6A甲基化酶METTL3時(shí),會(huì)導(dǎo)致細(xì)胞中未加工的pri-miRNAs水平上升,并降低成熟miRNAs的表達(dá)水平。因此,miRNAs生成受到m6A的調(diào)控。同時(shí),miRNAs可以通過堿基互補(bǔ)配對的方式調(diào)控m6A修飾的形成。這種調(diào)控方式主要通過抑制METTL3與mRNA的結(jié)合,最終改變mRNA上的m6A修飾水平。m6A修飾水平的微妙變化能夠改變mRNA的穩(wěn)定性,從而調(diào)控基因的表達(dá)[6]。
2.1 Dicer條件性敲除模型鼠 Dicer條件性敲除模型鼠已被廣泛應(yīng)用于探究miRNAs在精子發(fā)生中的作用。Remero等[7]在出生前小鼠的原始精原細(xì)胞中敲除Dicer致使減數(shù)分裂異常、粗線期精母細(xì)胞凋亡、圓形精子減少以及精細(xì)胞形態(tài)異常。Koheron等[8]采用NGN3啟動(dòng)子驅(qū)動(dòng)的Cre重組酶在A型精原細(xì)胞中敲除Dicer,則導(dǎo)致圓形精子細(xì)胞缺失,精子發(fā)生嚴(yán)重受阻;在早期精原細(xì)胞中Dicer的敲除也表現(xiàn)類似結(jié)果;在單倍體精子中敲除Dicer導(dǎo)致延長型精子以及精細(xì)胞的形態(tài)呈現(xiàn)異常,這些結(jié)果均表明miRNAs在精子發(fā)生調(diào)控中有著重要作用。
2.2 miRNA在精原干細(xì)胞自我更新及分化中的作用 SSCs位于睪丸曲細(xì)精管基部的微環(huán)境中,其自我更新與分化的平衡是確保雄性動(dòng)物源源不斷產(chǎn)生精子的基礎(chǔ),并受到多種因子調(diào)控。神經(jīng)營養(yǎng)因子(GDNF)能夠作用于細(xì)胞表面的RET和GFRα1受體,激活PI3K/AKT或者SFK信號(hào)通路,調(diào)控SSCs的自我更新[9]。miRNAs也參與SSCs自我更新調(diào)控。研究表明,miR-20、miR-21、miR-34c-135a、miR -146a、miR-182、miR-183、miR -204、miR-465a-3p、miR-465b-3p、miR-465c-3p、miR-465c-5p、miR-544在SSCs中高豐度表達(dá)[10-11]。其中,miR-20、miR-21和 miR-106a能 夠 維 持 SSCs穩(wěn) 態(tài)。Moritoki等[12]研究表明,miR-135a通過轉(zhuǎn)錄因子FOXO1的表達(dá)變化改變細(xì)胞表面膜受體RET蛋白的表達(dá)水平,進(jìn)而調(diào)控SSCs的命運(yùn)。而miR-544及miR-224均能夠通過調(diào)控轉(zhuǎn)錄因子PLZF影響SSCs的自我更新[13-14]。另外,SSCs的增殖則受到miR-34c以及miR-204調(diào)控[15-16]。
研究表明,維甲酸能夠誘導(dǎo)精原細(xì)胞的分化與減數(shù)分裂起始。維甲酸能夠下調(diào)生殖細(xì)胞內(nèi)miR-146、let7家族、miR-17-92、miR-106b-25和 miR-221/222表達(dá)水平[17-19]。其中,敲除miR-17-92導(dǎo)致SSCs以及精原細(xì)胞數(shù)量減少,并造成精子發(fā)生受損[19]。過表達(dá)miR-221/222能夠抑制維甲酸誘導(dǎo)的精原細(xì)胞分化。此外,miR-34c靶向于NANOS并上調(diào)減數(shù)分裂相關(guān)基因,從而調(diào)控SSCs的分化和減數(shù)分裂過程[20]。
2.3 miRNA調(diào)控減數(shù)分裂以及精子變態(tài)發(fā)育 越來越多的證據(jù)表明miRNAs參與減數(shù)分裂的調(diào)控。miR-449 和miR-34b/c的表達(dá)水平均隨著減數(shù)分裂的開始而上調(diào)。由于miR-449和miR-34b/c的種子序列相同,它們在調(diào)控精子發(fā)生中的作用有重疊,因此只有同時(shí)敲除miR-449和miR-34b/c才能導(dǎo)致精子發(fā)生障礙[21]。同時(shí),miR-34b-5p能夠調(diào)控Cdk6的表達(dá)以調(diào)控減數(shù)分裂過程[22]。類似地,miR-18作為精母細(xì)胞中高豐度表達(dá)的miRNA,也通過調(diào)控Cdk6調(diào)控精子發(fā)生過程[23]。
精子發(fā)生中組蛋白依次被過渡蛋白(TPs)以及精蛋白(PRMs)替換是雄性生殖細(xì)胞特有的發(fā)育過程[24]。在減數(shù)分裂后期的生殖細(xì)胞中,TPs以及PRMs的精確表達(dá)是精子變態(tài)發(fā)育的先決條件。因此,為了確保這一過程準(zhǔn)確而有效地進(jìn)行,TPs和PRMs受到嚴(yán)格的轉(zhuǎn)錄后調(diào)控。現(xiàn)已證實(shí),miR-469能夠抑制粗線期精母細(xì)胞以及圓形精子中TP2和PRM2的表達(dá)[25],而miR-122a則是在生殖細(xì)胞后期高豐度表達(dá)且調(diào)控TP2基因的表達(dá)[26]。
盡管大量的miRNAs會(huì)在精子變態(tài)發(fā)育過程中丟失,但是精子中殘余的miRNAs同樣具有重要功能。miR-34c參與受精卵第1次分裂過程[27],而精子中miR-424/322的表達(dá)紊亂誘導(dǎo)精子中雙鏈分子的斷裂[28]。通過探究弱精子癥患者與正常人中精子表達(dá)的差異,人們確定了一些潛在的可作為不孕標(biāo)記的miRNAs。以miR-151a-5p為例,miR-151a-5p在弱精子癥患者中高表達(dá)且參與線粒體的生物學(xué)功能[29]。
2.4 miRNA在睪丸體細(xì)胞中的功能 精子發(fā)生同樣依靠睪丸體細(xì)胞的參與,來源于支持細(xì)胞和間質(zhì)細(xì)胞的細(xì)胞因子能夠調(diào)控精子發(fā)生過程。因此,miRNAs對睪丸體細(xì)胞的調(diào)控也可影響精子發(fā)生過程。有研究指出,激素可誘導(dǎo)支持細(xì)胞miRNAs的表達(dá)水平變化,從而改變支持細(xì)胞的狀態(tài)。例如雌二醇可誘導(dǎo)支持細(xì)胞miR-17和miR-1285的表達(dá)變化,從而調(diào)控支持細(xì)胞的增殖[30-31]。這種對于支持細(xì)胞增殖的調(diào)控也可通過miR-133b[32]和miR-762[33]的表達(dá)變化實(shí)現(xiàn)。睪丸間質(zhì)細(xì)胞主要負(fù)責(zé)雄激素的生成,促黃體生成素(LH)誘導(dǎo)的雄激素生成過程會(huì)受到miRNAs的調(diào)控。miR-140-5p/3p能夠控制小鼠睪丸間質(zhì)細(xì)胞的數(shù)量,miR-140-5p/3p的缺失會(huì)導(dǎo)致間質(zhì)細(xì)胞數(shù)量的增加[34]。
總的來說,miRNA通過調(diào)控支持細(xì)胞以及間質(zhì)細(xì)胞的發(fā)育與功能,為SSCs的自我更新和分化創(chuàng)造了一個(gè)合適的微環(huán)境,為SSCs提供了結(jié)構(gòu)以及營養(yǎng)支持。因此,睪丸體細(xì)胞中miRNAs同樣在精子發(fā)生過程中有著重要的作用。
精確而有效地調(diào)控基因表達(dá)是精子發(fā)生正常進(jìn)行的先決條件。研究證實(shí),miRNAs在特定的細(xì)胞類型或精子發(fā)生階段中表達(dá),然而其中大部分miRNAs在精子發(fā)生中的功能還未闡明。第一,將來的研究可借助單細(xì)胞測序的方法,可更為準(zhǔn)確地揭示特定生殖細(xì)胞類型中miRNAs的表達(dá)特點(diǎn)。條件性敲除技術(shù)以及CRISPR/Ca9技術(shù)的出現(xiàn)將能夠進(jìn)一步加快關(guān)于miRNAs功能的研究。第二,miRNAs在睪丸組織體細(xì)胞中的表達(dá)特點(diǎn)和作用還有待進(jìn)一步闡明。睪丸體細(xì)胞中的miRNAs能否以旁分泌的方式分泌到SSCs微環(huán)境中,miRNAs能否調(diào)控睪丸體細(xì)胞生長因子的分泌進(jìn)而影響生殖細(xì)胞發(fā)育,都需要進(jìn)一步探究。第三,轉(zhuǎn)錄因子既能夠調(diào)控SSCs的自我更新,也能夠調(diào)控SSCs的分化,然而miRNAs調(diào)控轉(zhuǎn)錄因子表達(dá)的作用機(jī)制還需更深入研究。第四,m6A能夠調(diào)控pri-miRNAs的加工,這為探究miRNAs生成調(diào)控和作用機(jī)制拓展了新的視野。在將來的研究中,探究生殖細(xì)胞發(fā)育中RNA表觀修飾的變化將為更深刻地理解精子發(fā)生提供理論基礎(chǔ)。最后,一些miRNAs已經(jīng)被篩選為雄性不育的標(biāo)記分子,闡明不孕不育患者中miRNAs標(biāo)記分子的致病機(jī)理將有助于為男性不育提供新的療法??傊?,揭示這些問題將有助于更為深刻地認(rèn)識(shí)和理解miRNAs在精子發(fā)生中的生物學(xué)作用。
[1]Rathke C, Baarends W M, Awe S,et al. Chromatin dynamics during spermiogenesis[J]. Biochim Biophys Acta, 2014,1839:155-168.
[2]Ramalingam P, Palanichamy J K, Singh A,et al. Biogenesis of intronic miRNAs located in clusters by independent transcription and alternative splicing[J]. RNA, 2014,20:76-87.
[3]Yi R, Qin Y, Macara I G,et al. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs[J]. Genes Dev, 2003,17:3011-3016.
[4]Pasquinelli A E. NON-CODING RNA MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship[J]. Nat Rev Genet, 2012, 13:271-282.
[5]Alarcon C R, Lee H, Goodarzi H,et al. N6-methyladenosine marks primary microRNAs for processing[J]. Nature,2015, 519:482-485.
[6]Alarcon C R, Goodarzi H, Lee H,et al. HNRNPA2B1 Is a mediator of m(6)A-dependent nuclear RNA processing events[J]. Cell, 2015, 162:1299-1308.
[7]Romero Y, Meikar O, Papaioannou M D,et al. Dicer1 depletion in male germ cells leads to infertility due to cumulative meiotic and spermiogenic defects[J]. PLoS One, 2011, 6: (10):e25241.
[8]Korhonen H M, Meikar O, Yadav R P,et al. Dicer is required for haploid male germ cell differentiation in mice[J]. PLoS One, 2011, 6:e24821.
[9]Oatley J M, Avarbock M R, Brinster R L. Glial cell linederived neurotrophic factor regulation of genes essential for self-renewal of mouse spermatogonial stem cells is dependent on src family kinase signaling[J]. J Biological Chem, 2007, 282:25842-25851.
[10]Niu Z Y, Goodyear S M, Rao S,et al. MicroRNA-21 regulates the self-renewal of mouse spermatogonial stem cells[J]. Proc Natl Acad Sci U S A, 2011,108:12740-12745.
[11]He Z P, Jiang J J, Kokkinaki M,et al. MiRNA-20 and mirna-106a regulate spermatogonial stem cell renewal at the post-transcriptional level via targeting STAT3 and Ccnd1[J]. Stem Cells, 2013, 31:2205-2217.
[12]Moritoki Y, Hayashi Y, Mizuno K,et al. Expression profiling of microRNA in cryptorchid testes: miR-135a contributes to the maintenance of spermatogonial stem cells by regulating FoxO1[J]. J Urol, 2014, 191:1174-1180.
[13]Song W, Mu H, Wu J,et al. miR-544 regulates dairy goat male germline stem cell self-renewal via targeting PLZF[J]. J Cell Biochem, 2015, 116:2155-2165.
[14]Cui N, Hao G, Zhao Z,et al. MicroRNA-224 regulates selfrenewal of mouse spermatogonial stem cells via targeting DMRT1[J]. J Cell Mol Med, 2016, 20(8):1503-1512.
[15]Li M, Yu M, Liu C,et al. miR-34c works downstream of p53 leading to dairy goat male germline stem-cell (mGSCs)apoptosis[J]. Cell Prolif, 2013, 46:223-231.
[16]Niu B W, Wu J, Mu H L,et al. miR-204 regulates the proliferation of dairy goat spermatogonial stem cells via targeting to sirt1[J]. Rejuvenation Res, 2016, 19:120-130.
[17]Huszar J M, Payne C J. MicroRNA 146 (Mir146) modulates spermatogonial differentiation by retinoic acid in mice[J].Biol Reprod, 2013, 88:15.
[18]Tong M H, Mitchell D, Evanoff R,et al. Expression of Mirlet7 family microRNAs in response to retinoic acidinduced spermatogonial differentiation in mice[J]. Biol Reprod, 2011, 85:189-197.
[19]Tong M H, Mitchell D A, McGowan S D,et al. Two miRNA clusters, Mir-17-92 (Mirc1) and Mir-106b-25(Mirc3), are involved in the regulation of spermatogonial differentiation in mice[J]. Biol Reprod, 2012, 86:72.
[20]Yu M, Mu H, Niu Z,et al. miR-34c enhances mouse spermatogonial stem cells differentiation by targeting Nanos2[J]. J Cell Biochem, 2014, 115:232-242.
[21]Bao J, Li D, Wang L,et al. MicroRNA-449 and microRNA-34b/c function redundantly in murine testes by targeting E2F transcription factor-retinoblastoma protein (E2F-pRb)pathway[J]. J Biol Chem, 2012, 287:21686-21698.
[22]Smorag L, Zheng Y, Nolte J,et al. MicroRNA signature in various cell types of mouse spermatogenesis: Evidence for stage-specifically expressed miRNA-221, -203 and -34b-5p mediated spermatogenesis regulation[J]. Biol Cell,2012, 104:677-692.
[23]Bjork J K, Sandqvist A, Elsing A N,et al. miR-18, a member of Oncomir-1, targets heat shock transcription factor 2 in spermatogenesis[J]. Development, 2010,137:3177-3184.
[24]Kleene K C. Patterns, mechanisms, and functions of translation regulation in mammalian spermatogenic cells[J]. Cytogenet Genome Res, 2003, 103:217-224.
[25]Dai L S, Tsai-Morris C H, Sato H,et al. Testis-specific miRNA-469 Up-regulated in gonadotropin-regulated testicular RNA helicase (GRTH/DDX25)-null mice silences transition protein 2 and protamine 2 messages at sites within coding region implications of its role in germ cell development[J]. J Biol Chem, 2011, 286:44306-44318.
[26]Yu Z R, Raabe T, Hecht N B. MicroRNA Mirn122a reduces expression of the posttranscriptionally regulated germ cell transition protein 2 (Tnp2) messenger RNA (mRNA) by mRNA cleavage[J]. Biol Reprod, 2005, 73:427-433.
[27]Liu W M, Pang R T, Chiu P C,et al. Sperm-borne microRNA-34c is required for the first cleavage division in mouse[J]. Proc Natl Acad Sci U S A, 2012,109:490-494.
[28]Zhao K, Chen Y, Yang R,et al. miR-424/322 is downregulated in the semen of patients with severe DNA damage and may regulate sperm DNA damage[J]. Reprod Fertil Dev, 2015, 28(10) 1598-1607.
[29]Zhou R, Wang R, Qin Y,et al. Mitochondria-related miR-151a-5p reduces cellular ATP production by targeting CYTB in asthenozoospermia[J]. Sci Rep, 2015, 5:17743.
[30]Kumar N, Srivastava S, Burek M,et al. Assessment of estradiol-induced gene regulation and proliferation in an immortalized mouse immature Sertoli cell line[J]. Life Sci, 2016, 148:268-278.
[31]Jiao Z J, Yi W, Rong Y W,et al. MicroRNA-1285 regulates 17beta-estradiol-inhibited immature boar sertoli cell proliferation via adenosine monophosphate-activated protein kinase activation[J]. Endocrinology, 2015,156:4059-4070.
[32]Yao C, Sun M, Yuan Q,et al. MiRNA-133b promotes the proliferation of human Sertoli cells through targeting GLI3[J]. Oncotarget, 2016, 7:2201-2219.
[33]Ma C P, Song H B, Yu L,et al. miR-762 promotes porcine immature Sertoli cell growth via the ring finger protein 4(RNF4) gene[J]. Sci Rep, 2016, 6:32783.
[34]Rakoczy J, Fernandez-Valverde S L, Glazov E A,et al.MicroRNAs-140-5p/140-3p modulate leydig cell numbers in the developing mouse testis[J]. Biol Reprod, 2013, 88(6):143.
10.19556/j.0258-7033.2017-12-001
國家自然科學(xué)基金(31272439、31572401)
陳曉旭(1992- )男,博士研究生,研究方向?yàn)閯?dòng)物遺傳育種與繁殖,E-mail:chenxiaoxu1992@outlook.com
*通訊作者:曾文先,教授,博士生導(dǎo)師,研究方向?yàn)閯?dòng)物遺傳育種與繁殖,E-mail:zengwenxian2015@126.com