沈曉芹, 李昊明
(西安理工大學(xué) 理學(xué)院,陜西 西安 710054)
?
曲線坐標系下三維彈性殼體中的微分幾何關(guān)系
沈曉芹, 李昊明
(西安理工大學(xué) 理學(xué)院,陜西 西安 710054)
本文建立了三維彈性殼體和其中性面上各點之間的某些微分幾何關(guān)系表達式,它對形成二維線性、非線性彈性殼體模型非常重要。具體地,三維彈性體上各點的協(xié)變度量張量、逆變度量張量、度量張量矩陣的行列式以及Christoffel符號是由二維中性曲面上的微分幾何表達式按殼體厚度方向的變量漸近展開來表示。
微分幾何;度量張量;Christoffel符號
圖 1 殼體ε及其中性面S[2]Fig.1 Shell εwith middle surface S[2]
(1)
這些矢量ai(y)在點θ(y)處構(gòu)成了協(xié)變基矢量,而矢量ai(y)定義為:
(2)
(3)
(4)
(5)
度量張量的行列式為:
在第二部分中,3D區(qū)域上的度量張量、度量矩陣的行列式和Christoffel符號可由2D曲面上表達式按殼體厚度方向的變量漸近展開來表示。
證明:
(6)
將式(1)~(4)代入(6),基于bαβ的對稱性,得到:
根據(jù)a3的定義,有
(8)
則:
因此:
(9)
將式(8)~(9)代入(7),得
類似地:
gα3=0
g33=g3·g3=?3Θ·?3Θ=
0+0+0+a3·a3=1
證畢。
(10)
其中:
證明:
其中,
證畢。
(11)
其中α,β,σ=1,2。
證明:
(12)
由于a3·a3=1,有:
則:
(13)
將式(13)代入(12),得:
類似地,
證畢。
(14)
其中α,β,σ=1,2。
證明:
由式(5),有:
gστΓαβ,τ+gσ3Γαβ,3=gστΓαβ,τ
g31Γαβ,1+g32Γαβ,2+g33Γαβ,3=Γαβ,3
gστΓα3,τ+gσ3Γα3,3=gστΓα3,τ
gατΓ33,τ+gα3Γ33,3=0
g3τΓα3,τ+g33Γα3,3=Γα3,3=0
g3τΓ33,τ+g33Γ33,3=Γ33,3=0
因此,式(14)能夠容易地從定理2和定理3而得到。
證畢。
[1]CIARLET P G. An introduction to differential geometry with applications to elasticity[M]. Heidelberg: Springer- Verlag, 2005.
[2]CIARLET P G. Mathematical Elasticity, Vol.III: Theory of Shells[M]. North-Holland, 2000.
[3]KOITER W T. A consistent first approximation in the general theory of thin elastic shells[C]//IUTAM Symposium on the Theory of Thin Elastic Shells, Amsterdam,August 1959 .
[4]KOITER W T. On the foundations of the linear theory of thin elastic shells[J]. Proc. Kon. Ned. Akad. Wetensch, 1970, B73: 169-195.
[5]LI Kaitai, SHEN Xiaoqin. A dimensional splitting method for linearly elastic shell[J]. International Journal of Computer Mathematics, 2007, 84(6): 807-824.
[6]SHEN Xiaoqin, LI Kaitai, MING Yang. Asymptotic expansions of stress tensor for linearly elastic shell[J]. Applied Mathematical Modelling, 2013, 37(16-17): 7964-7972.
[7]XIAO Liming. Justification of two-dimensional nonlinear dynamic shell equations of Koiter’s type[J]. Nonlinear Analysis, 2005, 62(3): 383-395.
(責(zé)任編輯 王緒迪,王衛(wèi)勛)
Differential geometric relations on the three-dimensional elastic shell in the curvilinear ordinates systems
SHEN Xiaoqin, LI Haoming
(School of Sciences, Xi’an University of Technology, Xi’an 710054, China)
The differential geometric relations between 3D elastic shell and the middle surface of shell are provided, which is of importance for forming 2D linear and nonlinear elastic shell models. Concretely, the metric tensor, the determinant of metric matrix field and the Christoffel symbols on the 3D elasticity are expressed by those on the 2D middle surface, which are featured by the asymptotic expressions with respect to the variable in the direction of thickness of the shell.
differential geometry; metric tensor; Christoffel symbol
10.19322/j.cnki.issn.1006-4710.2016.04.009
2016-01-08
國家自然科學(xué)基金資助項目(11571275);陜西省工業(yè)科技攻關(guān)資助項目(2015GY021);陜西省教育廳基金資助項目(2015CX009)
沈曉芹,女,博士,副教授,研究方向為微分方程數(shù)值解及其應(yīng)用。E-mail: xqshen@xaut.edu.cn
O186.1
A
1006-4710(2016)04-0428-04