王書(shū)錦,劉云根,2,張 超,侯 磊,2,王 妍,2
(1:西南林業(yè)大學(xué)環(huán)境科學(xué)與工程學(xué)院,昆明 650224)(2:西南林業(yè)大學(xué)農(nóng)村污水處理研究所,昆明 650224)(3:西南林業(yè)大學(xué)林學(xué)院,昆明 650224)
洱海流域入湖河口濕地沉積物氮、磷、有機(jī)質(zhì)分布及污染風(fēng)險(xiǎn)評(píng)價(jià)
王書(shū)錦1,劉云根1,2,張 超3,侯 磊1,2,王 妍1,2
(1:西南林業(yè)大學(xué)環(huán)境科學(xué)與工程學(xué)院,昆明 650224)(2:西南林業(yè)大學(xué)農(nóng)村污水處理研究所,昆明 650224)(3:西南林業(yè)大學(xué)林學(xué)院,昆明 650224)
以云南洱海羅時(shí)江河口濕地為典型對(duì)象,利用柱狀底泥分層采樣器采集羅時(shí)江河口濕地表層(0~10 cm)沉積物樣品,研究分析總氮(TN)、總磷(TP)、有機(jī)質(zhì)(OM)的空間分布特征,并對(duì)沉積物進(jìn)行污染風(fēng)險(xiǎn)評(píng)價(jià). 結(jié)果表明:表層沉積物TP含量在0.04~1.28 g/kg之間,空間分布特征為:Ⅱ區(qū)>Ⅰ區(qū),水道Ⅰ>水道Ⅱ;TN含量在0.33~2.96 g/kg之間,空間分布特征為:Ⅰ區(qū)>Ⅱ區(qū),水道Ⅰ>水道Ⅱ,OM含量在32.43~233.03 g/kg之間,空間分布表現(xiàn)為Ⅰ區(qū)<Ⅱ區(qū),水道Ⅰ<水道Ⅱ. 結(jié)合綜合污染指數(shù)與有機(jī)指數(shù)評(píng)價(jià)法可知,羅時(shí)江河口濕地表層沉積物氮、磷污染:Ⅰ區(qū)和水道Ⅰ屬于中度污染,Ⅱ區(qū)和水道Ⅱ?qū)儆谳p度污染;有機(jī)污染:水道Ⅰ和水道Ⅱ?qū)儆谥囟任廴?,Ⅰ區(qū)和Ⅱ區(qū)屬于中度污染. 羅時(shí)江河口濕地表層沉積物空間分布受外源污染物、養(yǎng)殖活動(dòng)和濕地水生植物的影響,氮、磷外源輸入以水道Ⅰ為主,有機(jī)質(zhì)輸入以水道Ⅱ?yàn)橹?
洱海流域;羅時(shí)江河口濕地;高原河口濕地;沉積物;氮;磷;有機(jī)質(zhì);空間分布;風(fēng)險(xiǎn)評(píng)價(jià)
河口濕地作為削減流域物質(zhì)輸入湖泊的最后天然屏障,具有攔截入湖污染、恢復(fù)水陸生態(tài)系統(tǒng)功能、維持湖泊水質(zhì)、改善湖灣生態(tài)景觀等重要作用[1-2]. 河口濕地沉積物是氮、磷等污染物的存儲(chǔ)庫(kù),在外源得到控制時(shí),沉積物在一定程度上能充當(dāng)營(yíng)養(yǎng)源的作用,被吸附在沉積物中的營(yíng)養(yǎng)物質(zhì)能通過(guò)解析、溶解等作用返回上覆水體,形成濕地營(yíng)養(yǎng)源的內(nèi)負(fù)荷,影響河口濕地水質(zhì)和削減效果[3-5]. 河口濕地不僅是削減入湖污染、保護(hù)湖泊的最后屏障,而且對(duì)控制湖泊富營(yíng)養(yǎng)化具有重要作用. 因此,河口濕地的治理和保護(hù)顯得尤為重要. 當(dāng)前,我國(guó)學(xué)者對(duì)湖泊、水庫(kù)沉積物碳、氮、磷和重金屬污染進(jìn)行了大量研究,如王佩等[6]研究了太湖湖濱帶底泥氮、磷、有機(jī)質(zhì)的分布與污染評(píng)價(jià);趙興青等[7]采集了不同季節(jié)太湖梅梁灣和貢湖底泥柱樣,研究了底泥營(yíng)養(yǎng)鹽含量的垂直變化;盧少勇等[8]研究了長(zhǎng)壽湖表層沉積物氮、磷和有機(jī)質(zhì)污染特征并對(duì)其進(jìn)行評(píng)價(jià);張清海等[9]研究了貴州草海典型高原濕地表層沉積物重金屬的積累、分布與污染評(píng)價(jià);趙海超等[10]研究了洱海沉積物中不同形態(tài)磷的時(shí)空分布特征;陳永川等[11]研究了滇池沉積物總磷(TP)的時(shí)空分布特征;張玉璽等[12]研究了陽(yáng)宗海沉積物中磷的分布及其影響因素;張娜等[13]對(duì)青藏高原典型湖泊湖岸帶表層沉積物碳、氮、磷進(jìn)行了分析;但關(guān)于國(guó)內(nèi)高原河口濕地沉積物碳、氮、磷的分布及污染現(xiàn)狀的研究鮮見(jiàn)報(bào)道.
羅時(shí)江河口濕地位于云南高原湖泊洱海北部湖灣入水口處,其在削減羅時(shí)江上游農(nóng)業(yè)面源污染、控制洱海湖泊富營(yíng)養(yǎng)中發(fā)揮著重要作用. 近年來(lái),隨著洱海流域旅游業(yè)、工業(yè)的發(fā)展,外源污染加重,羅時(shí)江河口濕地沉積物積累了大量的污染物質(zhì),在適當(dāng)?shù)臈l件下釋放到水體中,從而加劇了洱海的水體富營(yíng)養(yǎng)化的風(fēng)險(xiǎn). 本研究通過(guò)對(duì)羅時(shí)江河口濕地不同分區(qū)和兩條主水流通道沉積物的分析,揭示其總氮(TN)、TP和有機(jī)質(zhì)(OM)的分布特征并對(duì)其污染水平進(jìn)行評(píng)價(jià),旨在系統(tǒng)全面闡明羅時(shí)江河口濕地沉積物污染現(xiàn)狀及來(lái)源,為羅時(shí)江河口濕地沉積物污染防治和生態(tài)環(huán)境保護(hù)提供科學(xué)依據(jù).
羅時(shí)江發(fā)源于大理市洱源縣西湖,是洱海北部3條主要入湖河流之一,流經(jīng)右所、鄧川、上關(guān)三鄉(xiāng)鎮(zhèn),在沙坪九孔橋注入洱海,全長(zhǎng)18.29 km. 流量在豐水期約為13.0 m3/s,枯水期為2.0 m3/s,占洱海總來(lái)水量的13%. 據(jù)本項(xiàng)目監(jiān)測(cè)結(jié)果,2013年羅時(shí)江水質(zhì)TP指標(biāo)超過(guò)《地表水環(huán)境質(zhì)量標(biāo)準(zhǔn)》(GB 3838-2002)中的Ⅴ類(lèi)標(biāo)準(zhǔn)(年平均濃度為0.68 mg/L),無(wú)法滿足《洱海流域保護(hù)治理規(guī)劃(2003-2020)》所要求的“Ⅱ類(lèi)標(biāo)準(zhǔn)”.
羅時(shí)江河口濕地是削減羅時(shí)江攜帶的農(nóng)業(yè)面源污染物、保護(hù)洱海水質(zhì)的最后屏障,位于洱海北部湖灣(25°56′52.8″~25°57′24.9″N,100°05′59.9″~100°06′5.9″E),面積約0.5 km2. 研究區(qū)屬北亞熱帶高原季風(fēng)氣候區(qū),年均溫度為15.6℃,年均降雨量約為942 mm. 濕地西北和東北部分別有羅時(shí)江、黑泥溝攜帶大量的泥沙、磷污染物注入. 濕地內(nèi)植被多為人工栽植的水生植物,其中挺水植物主要有蘆葦(Phragmitesaustralis)、荷(Nelumbonucifera)、梭魚(yú)草(Pontederiacordata)、再力花(Thaliadealbata)、香蒲(TyphaorientalisPresl)、菰(Zizanialatifolia);沉水植物主要有金魚(yú)藻(Ceratophyllumdemersum)、微齒眼子菜(Potamogetonmaackianus)、黑藻(Hydrillaverticillata);浮葉植物主要有睡蓮(Nymphaea)等.
2.1 樣品采集與分析
本研究采用網(wǎng)格法布點(diǎn),網(wǎng)格大小為100 m×100 m,去除無(wú)效網(wǎng)格(如整個(gè)網(wǎng)格中為小島或無(wú)水淹沒(méi)區(qū)),羅時(shí)江河口濕地中共劃分為45個(gè)網(wǎng)格,在網(wǎng)格中心處取樣,其中23#、28#、30#、31#、33#、34#、35#、36#樣點(diǎn)網(wǎng)格由于被小島分割,未在網(wǎng)格中心取樣,根據(jù)地形條件及水流狀況增加1~2個(gè)采樣點(diǎn),增加后采樣點(diǎn)共有55個(gè)(圖1). 原羅時(shí)江河流位置,目前是羅時(shí)江河口濕地主水流通道Ⅰ(樣點(diǎn)為:1#、14#、25#、34A#、38#);原黑泥溝河流位置,目前是羅時(shí)江河口濕地主水流通道Ⅱ(樣點(diǎn)為:2#、3#、12#、42#、43#).
采樣時(shí)間為2014年11月20日,利用柱狀底泥采樣器采集0~10 cm表層沉積物,取樣后放入便攜式冷恒溫箱帶回實(shí)驗(yàn)室分析沉積物中TN、TP和OM含量. 沉積物TN、TP和OM指標(biāo)分析方法分別采用高氯酸-硫酸消化法(LY/T 1228-1999)、酸熔-鉬銻抗比色法(LY/T 1232-1999)和重鉻酸鉀氧化-外加熱法(LY/T 1237-1999).
圖1 羅時(shí)江河口濕地區(qū)位(a)及樣點(diǎn)布置(b)Fig.1 Location of study area(a) and sampling sites(b) in estuarine wetland of Luoshi River
2.2 數(shù)據(jù)處理與分析
數(shù)據(jù)處理及其相關(guān)分析采用Excel 2007與SPSS 16.0軟件.
圖2 羅時(shí)江河口濕地表層沉積物中OM含量的分布特征Fig.2 Distribution of organic matter contents in the surface sediments of the estuarine wetland of Luoshi River
3.1 OM分布特征
OM是沉積物是湖泊內(nèi)源污染的重要指標(biāo),也是反映有機(jī)營(yíng)養(yǎng)程度的重要標(biāo)志[7,14]. 羅時(shí)江河口濕地沉積物OM含量在32.43~233.03 g/kg之間,平均值為78.54 g/kg,平均值由高到低依次為:水道Ⅰ<水道Ⅱ,Ⅰ區(qū)<Ⅱ區(qū). 水道Ⅰ的OM含量最大值、最小值和平均值分別為233.03、64.29 和94.08 g/kg;水道Ⅱ的OM含量最大值、最小值和平均值分別為147.85、73.90 和96.84 g/kg;Ⅰ區(qū)的OM含量在32.43~233.03 g/kg之間,平均值為72.57 g/kg;Ⅱ區(qū)的OM含量在32.68~147.85 g/kg之間,平均值為84.74 g/kg(圖2). 易文利等[15]研究認(rèn)為長(zhǎng)江中下游11個(gè)淺水湖泊沉積物中OM含量在9.80~110.00 g/kg之間,平均值為37.20 g/kg;趙海超等[18]研究表明,洱海表層沉積物中OM含量在25.70~148.9 g/kg之間,平均值為52.0 g/kg,可見(jiàn)羅時(shí)江河口濕地表層沉積物中OM含量較高,潛在釋放風(fēng)險(xiǎn)較高.
有資料顯示,富營(yíng)養(yǎng)化水體中沉積物中所含OM一般來(lái)自生活污水和水生動(dòng)植物殘?bào)w長(zhǎng)期沉積[16-17],這些有機(jī)殘?bào)w經(jīng)過(guò)濕地生物的分解及礦化,不斷與水體發(fā)生交換,逐步沉積和埋藏于沉積物中,其在湖泊營(yíng)養(yǎng)鹽交換過(guò)程中卻起著舉足輕重的作用[18]. 羅時(shí)江河口濕地水道Ⅱ和Ⅱ區(qū)沉積物OM含量高于水道Ⅰ和Ⅰ區(qū),可能與有機(jī)質(zhì)長(zhǎng)期沉降累積、水體流動(dòng)性和船運(yùn)等有關(guān). Ⅱ區(qū)水域分布面積較寬,水流從Ⅰ區(qū)水道急速流至Ⅱ區(qū),水域變寬,流速變緩,沉積作用加劇使得沉積物OM含量較高. OM含量的高低不僅與水體沉積作用有關(guān),而且與人類(lèi)的活動(dòng)如船運(yùn)、養(yǎng)殖活動(dòng)等也有密切關(guān)系. 據(jù)現(xiàn)場(chǎng)調(diào)查,Ⅱ區(qū)和水道Ⅱ?yàn)闈竦赜^光船的主要運(yùn)行區(qū)域,頻繁的人為擾動(dòng)促進(jìn)了沉積物對(duì)OM的吸附. 此外,在濕地恢復(fù)建設(shè)之前Ⅱ區(qū)主要為魚(yú)塘養(yǎng)殖用地,水產(chǎn)養(yǎng)殖會(huì)對(duì)沉積物OM產(chǎn)生影響,太湖圍欄養(yǎng)殖導(dǎo)致沉積物OM含量增加593%[19]. 本研究中水道Ⅱ東北方向有從事養(yǎng)殖活動(dòng),沉積物OM含量明顯高于無(wú)養(yǎng)殖活動(dòng)的水道Ⅰ.
3.2 TN、TP分布特征
羅時(shí)江河口濕地表層沉積物TN含量在0.33~2.96 g/kg之間,平均值變化為:Ⅰ區(qū)>Ⅱ區(qū),水道Ⅰ>水道Ⅱ. 根據(jù)美國(guó)環(huán)境保護(hù)署(EPA)制定的沉積物TN污染的評(píng)價(jià)標(biāo)準(zhǔn)[20],Ⅱ區(qū)和水道Ⅱ的TN平均值小于1.00 g/kg,屬輕度污染;Ⅰ區(qū)和水道Ⅰ的TN含量在1.00~2.00 g/kg之間,屬中度污染(圖3).
羅時(shí)江河口濕地表層沉積物TP含量在0.04~1.28 g/kg之間,平均值為0.57 g/kg,平均值變化為:Ⅱ區(qū)>Ⅰ區(qū),水道Ⅰ>水道Ⅱ. 根據(jù)美國(guó)EPA制定的沉積物TP污染的評(píng)價(jià)標(biāo)準(zhǔn)[20],Ⅰ區(qū)、Ⅱ區(qū)和水道Ⅰ的TP平均值在0.45~0.65 g/kg之間,屬中度污染;水道Ⅱ的TP含量在0.45 g/kg以下,屬輕度污染(圖3).
圖3 羅時(shí)江河口濕地表層沉積物中TN和TP含量的分布特征Fig.3 Distributions of TN and TP contents in the surface sediments of the estuarine wetland of Luoshi River
沉積物中TN和TP含量的分布是外源污染物輸入后在水體動(dòng)力作用下在不同區(qū)域沉降的結(jié)果,同時(shí)沉積后的氮素在水體擾動(dòng)下會(huì)發(fā)生懸浮再分配[21-22]. 氮素在生物及pH、DO等環(huán)境因子作用下發(fā)生形態(tài)轉(zhuǎn)化,逐步向下沉積或釋放到水體中被生物吸收利用[23-25]. 楊洋等[3]的研究表明,水草存在與否和沉積物氮含量呈顯著正相關(guān),而羅時(shí)江河口濕地Ⅰ區(qū)挺水植物分布面積較Ⅱ區(qū)大,故Ⅰ區(qū)表層沉積物TN含量大于Ⅱ區(qū). 與TN相反,Ⅰ區(qū)表層沉積物的TP含量小于Ⅱ區(qū),這可能是由于水草的分布及其生物量大小能影響湖泊沉積物氮、磷元素含量,氮含量均隨著水草生物量的增加而顯著增加,但水草生物量對(duì)磷含量的影響微乎其微[26],甚至能明顯降低磷含量. 有研究表明,挺水植物降低內(nèi)源磷的能力較沉水植物強(qiáng)[27]. 而現(xiàn)場(chǎng)調(diào)查發(fā)現(xiàn),Ⅰ區(qū)以挺水植物為主,Ⅱ區(qū)以沉水植物為主,所以導(dǎo)致Ⅰ區(qū)表層沉積物的TP含量小于Ⅱ區(qū).
表層沉積物中TN和TP含量均是水道Ⅰ>水道Ⅱ(圖3). 一方面是由于水道Ⅱ水較深且無(wú)植物,上游來(lái)水所受阻力小,流速相對(duì)較快,污染物沉積作用相對(duì)水道Ⅰ較弱;另一方面,通過(guò)對(duì)38#和42#(分別為水道Ⅰ和水道Ⅱ入水口處)樣點(diǎn)12個(gè)月的水質(zhì)分析發(fā)現(xiàn),12個(gè)月中有9個(gè)月38#樣點(diǎn)水體TN、TP濃度較42#樣點(diǎn)的高(P<0.01)(圖4),表明外源氮、磷輸入以水道Ⅰ為主. 由此可以推斷,沉積物氮、磷的空間分布受外源輸入的影響.
圖4 38#和42#樣點(diǎn)水體中總氮和總磷濃度Fig.4 Total nitrogen and total phosphorus concentrations of 38# and 42# sampling sites
目前對(duì)淺水湖泊沉積物的污染狀況尚無(wú)統(tǒng)一的評(píng)價(jià)方法和標(biāo)準(zhǔn),多用有機(jī)指數(shù)(OI)和有機(jī)氮(ON)評(píng)價(jià)法[28],只考慮了OM和ON,而忽略了磷;有的采用加拿大安大略省環(huán)境和能源部(1992年)制定的環(huán)境質(zhì)量評(píng)價(jià)標(biāo)準(zhǔn)[29-33],該標(biāo)準(zhǔn)根據(jù)底泥中污染物對(duì)底棲生物的生態(tài)毒性效應(yīng)進(jìn)行分級(jí),雖然后者考慮到磷,但此標(biāo)準(zhǔn)源于對(duì)海洋底泥的生態(tài)毒性分析. 因此本文針對(duì)羅時(shí)江河口濕地表層沉積物的氮、磷和OM的分布特點(diǎn),用綜合污染指數(shù)評(píng)價(jià)法和有機(jī)指數(shù)評(píng)價(jià)法來(lái)評(píng)價(jià)羅時(shí)江河口濕地表層沉積物的污染現(xiàn)狀.
4.1 綜合污染指數(shù)評(píng)價(jià)
本文以采用的TN和TP的評(píng)價(jià)標(biāo)準(zhǔn)(0.55和0.60 g/kg),與加拿大安略省環(huán)境和能源部(1992)發(fā)布的指南中沉積物中能引起最低級(jí)別生態(tài)風(fēng)險(xiǎn)效應(yīng)的TN和TP含量相一致[32]. 單項(xiàng)污染指數(shù)計(jì)算公式為[34]:
Si=Ci/Cs
(1)
(2)
式中,Si為單項(xiàng)評(píng)價(jià)指數(shù)或標(biāo)準(zhǔn)指數(shù),Si>1表明含量超過(guò)評(píng)價(jià)標(biāo)準(zhǔn)值;Ci為評(píng)價(jià)因子i的實(shí)測(cè)值(g/kg);Cs為評(píng)價(jià)因子i的評(píng)價(jià)標(biāo)準(zhǔn)值(g/kg). TN的Cs為0.55 g/kg,TP的Cs為0.60 g/kg[35];FF為綜合污染指數(shù);F為n項(xiàng)污染物污染指數(shù)平均值(STN和STP的平均值);Fmax為最大單項(xiàng)污染指數(shù)(STN和STP的最大值). 羅時(shí)江河口濕地表層沉積物氮、磷污染評(píng)價(jià)及污染程度分級(jí)結(jié)果見(jiàn)表1和表2.
表1 羅時(shí)江河口濕地表層沉積物綜合污染評(píng)價(jià)*
Tab.1 Comprehensive pollution assessment for the surface sediments of the estuarine wetland of Luoshi River
項(xiàng)目STN等級(jí)STP等級(jí)FF等級(jí)Ⅰ區(qū)1.9130.8821.673Ⅱ區(qū)1.5331.0231.412水道Ⅰ1.8931.0431.693水道Ⅱ1.7430.6621.492
*評(píng)價(jià)標(biāo)準(zhǔn)參照文獻(xiàn)[36].
表2 羅時(shí)江河口濕地表層沉積物綜合污染程度分級(jí)
Tab.2 Standard and level of comprehensive pollution for the surface sediments of the estuarine wetland of Luoshi River
等級(jí)STNSTPFF類(lèi)型1STN<1.0STP<0.5FF<1.0清潔21.0≤STN≤1.50.5≤STP≤1.01.0≤FF≤1.5輕度污染31.5
根據(jù)表1中綜合污染指數(shù),可得到羅時(shí)江河口濕地表層沉積物的污染分布(圖5). 結(jié)合表2和圖5可知綜合污染指數(shù)大小為:Ⅰ區(qū)>Ⅱ區(qū),水道Ⅰ>水道Ⅱ,且Ⅰ區(qū)和水道Ⅰ均屬于中度污染,Ⅱ區(qū)和水道Ⅱ均屬于輕度污染.
4.2 有機(jī)污染指數(shù)評(píng)價(jià)
圖5 羅時(shí)江河口濕地表層沉積物的綜合污染分布Fig.5 Distribution of comprehensive pollution for the surface sediments of the estuarine wetland of Luoshi River
綜合污染指數(shù)法忽略了OM指標(biāo),考慮到近年來(lái)沉積物富營(yíng)養(yǎng)化最主要的原因是有機(jī)物、氮、磷的迅速增加,所以本文用有機(jī)污染指數(shù)法[37]對(duì)羅時(shí)江河口濕地沉積物污染現(xiàn)狀進(jìn)一步評(píng)價(jià),使評(píng)價(jià)結(jié)果更完善. 有機(jī)污染指數(shù)評(píng)價(jià)法將選用的評(píng)價(jià)參數(shù)TN、TP綜合成一個(gè)概括的指數(shù)值來(lái)表征底泥污染程度,其相對(duì)于綜合污染指數(shù)法而言具優(yōu)越性,是綜合信息輸出[38]. 根據(jù)公式(3)~(5)并結(jié)合表3,羅時(shí)江河口濕地表層沉積物有機(jī)污染評(píng)價(jià)結(jié)果見(jiàn)表4.
OI=OC(%)×ON(%)
(3)
ON=TN(%)×0.95
(4)
OC=OM(%)/1.724
(5)
式中,OC為有機(jī)碳.
表3 羅時(shí)江河口濕地表層沉積物的有機(jī)指數(shù)評(píng)價(jià)標(biāo)準(zhǔn)
Tab.3 Assess standards of organic index for the surface sediments of the estuarine wetland of Luoshi River
項(xiàng)目OI<0.050.05≤OI<0.200.2≤OI<0.5OI≥0.5類(lèi)型清潔輕度污染中度污染重度污染等級(jí)ⅠⅡⅢⅣ
表4 羅時(shí)江河口濕地表層沉積物的有機(jī)污染評(píng)價(jià)
Tab.4 Organic pollution assessment for the surface sediments of the estuarine wetland of Luoshi River
項(xiàng)目OC/%ON/%OI等級(jí)Ⅰ區(qū)0.411.000.41ⅢⅡ區(qū)0.470.800.38Ⅲ水道Ⅰ0.550.990.55Ⅳ水道Ⅱ0.560.910.51Ⅳ
羅時(shí)江河口濕地有機(jī)污染分布情況為:Ⅰ區(qū)>Ⅱ區(qū),水道Ⅰ>水道Ⅱ,總體為中度污染,局部(水道Ⅰ和水道Ⅱ)屬于重度污染(表4).
FF和OI的評(píng)價(jià)結(jié)果較為一致,羅時(shí)江河口濕地沉積物均表現(xiàn)為Ⅰ區(qū)>Ⅱ區(qū),水道Ⅰ>水道Ⅱ.FF指數(shù)表明,水道Ⅰ和Ⅰ區(qū)屬于中度污染水平,水道Ⅱ和Ⅱ區(qū)均屬于輕度污染水平;OI指數(shù)表明,Ⅰ區(qū)和Ⅱ區(qū)均屬于中度污染,水道Ⅰ和水道Ⅱ均屬于重度污染水平. 綜上所述,該濕地表層沉積物綜合污染和有機(jī)污染水平處于輕度與中度污染等級(jí)之間. 與石勇[39]對(duì)巢湖塘西河河口濕地(總體上屬于警戒等級(jí),處于尚清潔水平)、陳如海等[28]對(duì)西溪濕地(富營(yíng)養(yǎng)化程度比較嚴(yán)重)沉積物污染的評(píng)價(jià)結(jié)果相比,羅時(shí)江河口濕地表層沉積物污染水平與平原濕地存在差異.
羅時(shí)江河口濕地表層沉積物TN空間分布情況為Ⅰ區(qū)>Ⅱ區(qū),水道Ⅰ>水道Ⅱ,TN含量在0.33~2.96 g/kg之間,平均值為0.94 g/kg;TP含量在0.04~1.28 g/kg之間,平均值為0.57 g/kg,空間分布情況為:Ⅰ區(qū)<Ⅱ區(qū),水道Ⅰ>水道Ⅱ;OM含量在32.43~233.03 g/kg之間,平均值為78.54 g/kg,與TN和TP的空間分布不同,OM含量表現(xiàn)為:水道Ⅰ<水道Ⅱ,Ⅰ區(qū)<Ⅱ區(qū).
沉積物氮、磷分布受外源輸入影響,且羅時(shí)江河口濕地氮、磷污染主要來(lái)自水道Ⅰ和水道Ⅱ. 養(yǎng)殖活動(dòng)導(dǎo)致沉積物OM含量增加,對(duì)TP影響不顯著. 大量挺水植物分布會(huì)增加沉積物中總氮含量,降低總磷含量. 運(yùn)用FF分析表明:Ⅰ區(qū)和水道Ⅰ均屬于中度污染,Ⅱ區(qū)和水道Ⅱ均屬于輕度污染;運(yùn)用OI分析表明:Ⅰ區(qū)和Ⅱ區(qū)均屬于中度污染,水道Ⅰ和水道Ⅱ均屬于重度污染.FF和OI的評(píng)價(jià)結(jié)果均表現(xiàn)為Ⅰ區(qū)>Ⅱ區(qū),水道Ⅰ>水道Ⅱ. 通過(guò)分析比較,羅時(shí)江河口濕地與平原地區(qū)濕地表層沉積物污染水平存在差異.
[1] Cui Baoshan, Liu Xingtu. Discussion on some basic problems in design of wetland ecosystem.ChineseJournalofAppliedEcology, 2001, 12(1): 145-150. [崔保山, 劉興土. 濕地生態(tài)系統(tǒng)設(shè)計(jì)的一些基本問(wèn)題探討. 應(yīng)用生態(tài)學(xué)報(bào), 2001, 12(1): 145-150.]
[2] Li Yinxi, Hu Yaohui, Wang Yunhuaetal. Wetland restoration and its purification efficiency in estuary of Dajie River, Lake Xingyun, Yunnan Province.JLakeSci, 2007, 19(3): 283-288. DOI:10.18307/2007.0309. [李蔭璽, 胡耀輝, 王云華等. 云南星云湖大街河口湖濱濕地修復(fù)及凈化效果. 湖泊科學(xué), 2007, 19(3): 283-288.]
[3] Yang Yang, Liu Qigen, Hu Zhongjunetal. Spatial distribution of sediment carbon, nitrogen and phosphorus and pollution evaluation of sediment in Taihu Lake Basin.ActaScientiaeCircumstantiae, 2014, 34(12): 3057-3064. [楊洋, 劉其根, 胡忠軍等. 太湖流域沉積物碳氮磷分布與污染評(píng)價(jià). 環(huán)境科學(xué)學(xué)報(bào), 2014, 34(12): 3057-3064.]
[4] Bootsma MC, Barendregt A, Alphen JCA. Effectiveness of reducing external nutrient load entering a eutrophicated shallow lake ecosystem in the Naardermeer nature reserve, the Netherlands.BiologicalConservation, 1999, 90(3): 193-201.
[5] Xu Jin, Xu Ligang, Gong Ranetal. Adsorption and release characteristic of phosphorus and influential factors in Poyang Lake sediment.EcologyandEnvironmentSciences, 2014, 23(4): 630-635. [徐進(jìn), 徐力剛, 龔然等. 鄱陽(yáng)湖沉積物中磷吸附釋放特性及影響因素研究. 生態(tài)環(huán)境學(xué)報(bào), 2014, 23(4): 630-635.]
[6] Wang Pei, Lu Shaoyong, Wang Dianwuetal. Nitrogen, phosphorous and organic matter spatial distribution characteristics and their pollution status evaluation of sediments nutrients in lakeside zones of Taihu Lake.ChinaEnvironmentalScience, 2012, 32(4): 703-709. [王佩, 盧少勇, 王殿武等. 太湖湖濱帶底泥氮、磷、有機(jī)質(zhì)分布與污染評(píng)價(jià). 中國(guó)環(huán)境科學(xué), 2012, 32(4): 703-709.]
[7] Zhao Xingqing, Yang Liuyan, Yu Zhenyangetal. Temporal and spatial distribution of physicochemical characteristics and nutrients in sediments of Lake Taihu.JLakeSci, 2007, 19(6): 698-704. DOI:10.18307/2007.0612. [趙興青, 楊柳燕, 于振洋等. 太湖沉積物理化性質(zhì)及營(yíng)養(yǎng)鹽的時(shí)空變化. 湖泊科學(xué), 2007, 19(6): 698-704.]
[8] Lu Shaoyong, Xu Mengsuang, Jin Xiangcanetal. Pollution characteristics and evaluation of nitrogen, phosphorus and organic matter in surface sediments of Lake Changshouhu in Chongqing, China.ChineseJournalofEnvironmentalScience, 2012, 33(2): 393-398. [盧少勇, 許夢(mèng)爽, 金相燦等. 長(zhǎng)壽湖表層沉積物氮磷和有機(jī)質(zhì)污染特征及評(píng)價(jià). 環(huán)境科學(xué), 2012, 33(2): 393-398.]
[9] Zhang Qinghai, Lin Changhu, Tan Hongetal. Accumulation, distribution and pollution assessment of heavy metals in surface sediment of Caohai Plateau Wetland, Guizhou Province.EnvironmentalScience, 2013, 34(3): 1055-1061. [張清海, 林昌虎, 譚紅等. 草海典型高原濕地表層沉積物重金屬的積累、分布與污染評(píng)價(jià). 環(huán)境科學(xué), 2013, 34(3): 1055-1061.]
[10] Zhao Haichao, Wang Shengrui, Jiao Lixinetal. Characteristics of temporal and spatial distribution of different forms of phosphorus in the sediments of Erhai Lake.ResearchofEnvironmentalSciences, 2013, 26(3): 227-234. [趙海超, 王圣瑞, 焦立新等. 洱海沉積物中不同形態(tài)磷的時(shí)空分布特征. 環(huán)境科學(xué)研究, 2013, 26(3): 227-234.]
[11] Chen Yongchuan, Tang Li, Zhang Degangetal. The spatially and temporally dynamic variation of total phosphorus in sediment of Dianchi Lake.JournalofAgro-EnvironmentScience, 2007, 26(1): 51-57. [陳永川, 湯利, 張德剛等. 滇池沉積物總磷的時(shí)空分布特征研究. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2007, 26(1): 51-57.]
[12] Zhang Yuxi, Liu Jingtao, Wang Jincuietal. Distribution of phosphorus in the sediments of Yangzonghai Lake and its influencing factors.SafetyandEnvironmentalEngineering, 2013, 20(6): 43-48. [張玉璽, 劉景濤, 王金翠等. 陽(yáng)宗海沉積物中磷的分布及其影響因素. 安全與環(huán)境工程, 2013, 20(6): 43-48.]
[13] Zhang Na, Li Hongjing, Yuan Lingweietal. Characteristics of organic carbon, nitrogen and phosphorus in surface sediments of typical littorals of three lake regions on Qinghai-Tibet Plateau.JournalofShaanxiNormalUniversity(NaturalScienceEdition), 2010, 14(3): 70-75. [張娜, 李紅敬, 遠(yuǎn)凌威等. 青藏高原典型湖泊湖岸帶表層沉積物碳、氮、磷分析. 陜西師范大學(xué)學(xué)報(bào): 自然科學(xué)版, 2010, 14(3): 70-75.]
[14] Yu Hui, Zhang Wenbin, Lu Shaoyongetal. Spatial distribution characteristics of surface sediments nutrients in Lake Hongze and their pollution status evaluation.EnvironmentalScience, 2010, 31(4): 961-968. [余輝, 張文斌, 盧少勇等. 洪澤湖表層底質(zhì)營(yíng)養(yǎng)鹽的形態(tài)分布特征與評(píng)價(jià). 環(huán)境科學(xué), 2010, 31(4): 961-968.]
[15] Yi Wenli, Wang Shengrui, Jin Xiangcanetal. Distribution of total organic matter and the forms on the sediments from shallow lakes in the middle and lower reaches of the Yangtze River.JournalofNorthwestUniversity(NaturalScienceEdition), 2008, 36(5): 141-148. [ 易文利, 王圣瑞, 金相燦等. 長(zhǎng)江中下游淺水湖沉積物中有機(jī)質(zhì)及其組分的賦存特征. 西北農(nóng)林科技大學(xué)學(xué)報(bào): 自然科學(xué)版, 2008, 36(5): 141-148.]
[16] Tan Zhen. Vertical changes of nutrients in the sediments of urban lakes in Guangdong[Dissertation]. Guangzhou: Jinan University, 2006. [譚鎮(zhèn). 廣東城市湖泊沉積物營(yíng)養(yǎng)鹽垂直變化特征研究[學(xué)位論文]. 廣州: 暨南大學(xué), 2006.]
[17] Li Wenchao. Nitrogen accumulation in the sediment of East Taihu Lake and biological sedimentation of aquatic plants.ChinaEnvironmentalScience, 1997, 17(5): 418-421. [李文朝. 東太湖沉積物中氮的積累與水生植物沉積. 中國(guó)環(huán)境科學(xué), 1997, 17(5): 418-421.]
[18] Zhao Haichao, Wang Shengrui, Jiao Lixinetal. Characteristics of composition and spatial distribution of organic matter in the Sediment of Erhai Lake.ResearchofEnvironmentalSciences, 2013, 26(3): 243-249. [趙海超, 王圣瑞, 焦立新等. 洱海沉積物有機(jī)質(zhì)及其組分空間分布特征. 環(huán)境科學(xué)研究, 2013, 26(3): 243-249.]
[19] Yang Qingxin, Li Wenchao. Environmental changes since foundation of pen-fish-farming in East Taihu Lake.ChinaEnvironmentalScience, 1996, 16(2): 101-106. [楊清心, 李文朝. 東太湖圍網(wǎng)養(yǎng)魚(yú)后生態(tài)環(huán)境的演變. 中國(guó)環(huán)境科學(xué), 1996, 16(2): 101-106.]
[20] A guidance manual to support the assessment of contaminated sediments in freshwater ecosystems. US. EPA, 2002.
[21] Sun Xiaojing, Qin Boqiang, Zhu Guangweietal. Release of colloidal N and P from sediment of lake caused by continuing hydrodynamic disturbance.EnvironmentalScience, 2007, 28(6): 1223-1229. [孫小靜, 秦伯強(qiáng), 朱廣偉等. 持續(xù)水動(dòng)力作用下湖泊底泥膠體態(tài)氮、磷的釋放. 環(huán)境科學(xué), 2007, 28(6): 1223-1229.]
[22] Zhang Yunlin, Qin Boqiang, Chen Weiminetal. A study on total suspended matter in Lake Taihu.ResourcesandEnvironmentintheYangtzeBasin, 2004, 13(3): 266-271. [張運(yùn)林, 秦伯強(qiáng), 陳偉民等. 太湖水體中懸浮物研究. 長(zhǎng)江流域資源與環(huán)境, 2004, 13(3): 266-271.]
[23] Beutel MW, Leonard TM, Dent SRetal. Effects of aerobic and anaerobic conditions on P, N, Fe, Mn, and Hg accumulation in waters overlaying profundal sediments of an oligo-mesotrophic lake.WaterResearch, 2008, 42(8/9): 1953-1962.
[24] Liu JJ, Wang JQ, Xu WX. Effects of environmental factors on NH+4release in sediments from Chaohu Lake.AgriculturalScience&Technology, 2008, 9(3): 153-156.
[25] Pan Qikun, Luo Zhuanxi, Qiu Zhaozhengetal. Distribution characteristics of nitrogen forms in surface sediments of Jiulongjiang Estuary Wetland.ResearchofEnvironmentalSciences, 2011, 24(6): 673-678. [潘齊坤, 羅專(zhuān)溪, 邱昭政等. 九龍江口濕地表層沉積物氮的形態(tài)分布特征. 環(huán)境科學(xué)研究, 2011, 24(6): 673-678.]
[26] Squires MM, Lesack LF. The relation between sediment nutrient content and macrophyte biomass and community structure along a water transparency gradient among lakes of the Mackenzie Delta.CanadianJournalofFisheriesandAquaticSciences, 2003, 60(3): 333-343.
[27] Horppila J, Nurminen L. Effects of different macrophyte growth forms on sediment and P resuspension in a shallow lake.Hydrobiologia, 2005, 545(1): 167-175.
[28] Chen Ruhai, Zhan Liangtong, Chen Yunminetal. Contents of nitrogen, phosphorus and organic materials in sediments and their distribution along depth at Xixi Wetland.ChinaEnvironmentalScience, 2010, 30(4): 493-498. [陳如海, 詹良通, 陳云敏等. 西溪濕地底泥氮、磷和有機(jī)質(zhì)含量豎向分布規(guī)律. 中國(guó)環(huán)境科學(xué), 2010, 30(4): 493-498.]
[29] Calmano W, Ahlf W, Forstner U. Sediments quality assessment: Chemical and biological approaches. Berlin: Springer, 1996: 1-35.
[30] Wu Ming, Shao Xuexin, Jiang Keyi. Characteristics and assessment on nutrient distribution in water and sediments of Xixi National Wetland Park in Hangzhou.ForestResearch, 2008, 21(4): 587-591. [吳明, 邵學(xué)新, 蔣科毅. 西溪國(guó)家濕地公園水體和底泥N-P營(yíng)養(yǎng)鹽分布特征及評(píng)價(jià). 林業(yè)科學(xué)研究, 2008, 21(4): 587-591.]
[31] Leivuori M, Niemisto L. Sedimentation of trace metals in the Gulf of Bothnia.Chemosphere, 1995, 31(8): 3839-3856.
[32] Wei Linying, Bu Xianwei. Present assessment of environmental quality in sea area near Daao, Liuheng Island.DonghaiMarineScience, 1991, 17(1): 66-71. [魏琳瑛, 卜獻(xiàn)衛(wèi). 六橫大岙附近海域環(huán)境質(zhì)量現(xiàn)狀評(píng)價(jià). 東海海洋, 1991, 17(1): 66-71.]
[33] Fang Yuqiao, Qiu Zu’nan, Ma Meifangetal. Enactment of the standard concerning polluted sediment types in the rivers.EnvironmentalScience, 1989, 10(1): 27-30. [方宇翹, 裘祖楠, 馬梅芳等. 河流底泥污染類(lèi)型標(biāo)準(zhǔn)的制定. 環(huán)境科學(xué), 1989, 10(1): 27-30.]
[34] Yue Weizhong, Huang Xiaoping, Sun Cuici. Distribution and pollution of nitrogen and phosphorus in surface sediments from the pearl river estuary.OceanologiaetLimnologiaSinica, 2007, 38(2): 111-117. [岳維忠, 黃小平, 孫翠慈. 珠江口表層沉積物中氮、磷的形態(tài)分布特征及污染評(píng)價(jià). 海洋與湖沼, 2007, 38(2): 111-117.]
[35] Wang Sumin, Dou Hongshen eds. Chinese lakes record. Beijing: Science Press, 1998. [王蘇民, 竇鴻身. 中國(guó)湖泊志. 北京: 科學(xué)出版社, 1998.]
[36] Fan Zhijie. Study on definition of marine sediment criteria by equilibrium partitioning method.EnvironmentalProtectioninTransportation, 1999, 20(1): 21-25. [范志杰. 淺談海洋沉積物標(biāo)準(zhǔn)的幾個(gè)問(wèn)題. 交通環(huán)保, 1999, 20(1): 21-25.]
[37] Li Renwei, Li He, Li Yuanetal. Study of heavy metals, nitrogen and phosphorus contaminants in the sediments of the Yellow River Delta in the sediments of the Yellow River Delta.ActaSedimentologicaSinica, 2001, 19(4): 622-629. [李任偉, 李禾, 李原等. 黃河三角洲沉積物重金屬、氮和磷污染研究. 沉積學(xué)報(bào), 2001, 19(4): 622-629.]
[38] Ding Jing. Characteristics of nitrogen and phosphorus distribution in Taihu Lake and its adsorption/desorption characteristics of the study[Dissertation]. Nanjing: Nanjing University of Science and Technology, 2010. [丁靜. 太湖氮磷分布特征及其吸附/解吸特征研究[學(xué)位論文]. 南京: 南京理工大學(xué), 2010.]
[39] Shi Yong. Pollution characteristics analysis and environmental quality assessment of sediments for estuary wetland of Tangxihe River [Dissertation]. Hefei: Hefei University of Technology, 2010. [石勇. 巢湖塘西河河口濕地沉積物污染特征及環(huán)境質(zhì)量評(píng)價(jià)[學(xué)位論文]. 合肥: 合肥工業(yè)大學(xué), 2009.]
Distribution and pollution risk assessment of nitrogen, phosphorus and organic matter in inlet rivers of Erhai Basin
WANG Shujin1, LIU Yungen1,2**, ZHANG Chao3, HOU Lei1,2& WANG Yan1,2
(1:CollegeofEnvironmentalScienceandEngineering,SouthwestForestryUniversity,Kunming650224,P.R.China)(2:ResearchInstituteofRuralSewageTreatment,SouthwestForestryUniversity,Kunming650224,P.R.China)(3:ForestryCollege,SouthwestForestryUniversity,Kunming650224,P.R.China)
The estuarine wetland of Luoshi River, which flowed into Lake Erhai in Yunnan Plateau, is used to be studied as a typical research object. Sediment samples in the estuarine wetland of Luoshi River were collected by the cylindrical sediment sampler and taken from the surface layer (0-10 cm). The spatial distributions of the total nitrogen, total phosphorus and total organic matter were analyzed, and did the pollution risk assessment of sediments. The results showed that: The contents of total phosphorus (TP) in the surface sediments ranged from 0.04 to 1.28 g/kg, and the TP spatial distribution characteristics were lower in areaⅠthan areaⅡ, but higher in channelⅠthan channelⅡ. The content of total nitrogen (TN) in the surface sediments ranged from 0.33 to 2.96 g/kg, and the TN spatial distribution characteristics were higher in areaⅠthan areaⅡ, and higher in channelⅠthan channelⅡ. The content of OM in the surface sediments ranged from 32.43 to 233.03 g/kg, and the OM spatial distribution characteristics were lower in areaⅠthan area Ⅱ, and lower in channelⅠthan channelⅡ. Combined evaluation methods with the comprehensive pollution index and organic index to analyze the pollution of the total nitrogen and the total phosphorus in the surface sediments at the estuarine wetland of Luoshi River, results show that the pollution in areaⅠand channelⅠwas medium level, and the pollution in areaⅡand channelⅡwas mild level. The pollution of organic contaminants in channelⅠand channelⅡwas heavy level, and the area Ⅰand areaⅡwas medium level. The spatial distribution of surface sediment at the estuarine wetland of Luoshi River was influenced by the external pollutant, the culture activity and the aquatic plant. Pollution in channel I was mainly sourced by input of nitrogen and phosphorus, and pollution in channel II was mainly dominated by organic matter.
Erhai Basin; estuarine wetland of Luoshi River; plateau estuary wetland; sediments; nitrogen; phosphorus; organic matter; spatial distribution; risk assessment
*國(guó)家自然科學(xué)基金項(xiàng)目(51469030,31560237,31460195)資助.2016-01-09收稿;2016-04-30收修改稿. 王書(shū)錦(1989~),男,碩士研究生;E-mail:haigui2018@163.com.
*通信作者; E-mail:henryliu1008@163.com.
J.LakeSci.(湖泊科學(xué)), 2017, 29(1): 69-77
DOI 10.18307/2017.0108
?2017 byJournalofLakeSciences