国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

AlphaGo: Using Machine Learning to Master the Ancient Game of Go阿爾法圍棋:機(jī)器學(xué)習(xí)掌握圍棋這項(xiàng)古老技藝

2017-02-08 23:37:56德米什哈薩比斯莊曉旭閆冉審訂
英語世界 2017年9期
關(guān)鍵詞:棋局阿爾法棋盤

文/德米什·哈薩比斯 譯/莊曉旭 閆冉/審訂

By Demis Hassabis1

圍棋起源于中國,至今已有2500多年的歷史??鬃釉鵀閲遄魑模彩侵袊娜蓑}客必需掌握的四藝之一。全世界的圍棋手總數(shù)超過4000萬,圍棋的規(guī)則簡單:棋手在棋盤上行白子或黑子,努力吃掉對(duì)方的棋子或在棋盤上圍地。下圍棋主要靠個(gè)人的直覺與感覺,其美妙、精微與蘊(yùn)含的智慧,讓幾千年來的人們?yōu)橹裢?/p>

[2]雖然圍棋規(guī)則簡單,下起來卻極其復(fù)雜??赡艿钠逦欢噙_(dá)1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000種,這比宇宙中的原子數(shù)量都要多,比國際象棋大10的100次方倍。

The game of Go originated in China more than 2,500 years ago.Confucius wrote about the game, and it is considered one of the four essential arts required of any true Chinese scholar. Played by more than 40 million people worldwide, the rules of the game are simple: Players take turns to place black or white stones on a board, trying to capture the opponent’s stones or surround empty space to make points of territory. The game is played primarily through intuition and feel, and because of its beauty, subtlety and intellectual depth it has captured the human imagination for centuries.

[2] But as simple as the rules are,Go is a game of profound complexity.There are1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 possible positions—that’s more than the number of atoms in the universe,and more than a googol times larger than chess.

[3]圍棋的復(fù)雜性使其對(duì)計(jì)算機(jī)有很大難度,也正因此圍棋成為人工智能研究者渴望征服的挑戰(zhàn)。這些研究者們以各類游戲?yàn)閷?shí)驗(yàn),以發(fā)明出可以解決問題的智能、靈活的計(jì)算程序,有時(shí)解決的方式與人類相似。電腦可以勝任的第一個(gè)游戲是“井字游戲”(又叫作“一字棋”),時(shí)間是1952年。1994年,掌握了跳棋。1997年,電腦“深藍(lán)”因戰(zhàn)勝棋王加里·卡斯帕羅夫而聞名。計(jì)算機(jī)的戰(zhàn)績并不局限于棋牌游戲——2011年IBM的沃森在《危險(xiǎn)邊緣》節(jié)目中,擊敗該節(jié)目的兩位冠軍;2014年,我們通過原始像素輸入開發(fā)出掌握雅麗達(dá)游戲幾十種玩法的計(jì)算機(jī)程序。但到現(xiàn)在為止,人工智能工程師依舊不能開發(fā)出百戰(zhàn)百勝的圍棋計(jì)算機(jī)程序。

[4]傳統(tǒng)的人工智能方法是構(gòu)建覆蓋所有可能位置的搜索樹,而這并能不在圍棋中實(shí)現(xiàn)。因而當(dāng)我們著手征服圍棋的時(shí)候,采取了不同的方法。我們建立了名為“阿爾法圍棋”(A l p h a G o)的體系。該體系結(jié)合了高級(jí)樹形檢索與深度神經(jīng)網(wǎng)絡(luò),我們給這些神經(jīng)網(wǎng)絡(luò)中輸入棋局并用含有數(shù)百萬類神經(jīng)元連接的1 2個(gè)不同的網(wǎng)絡(luò)層對(duì)其處理。一個(gè)神經(jīng)網(wǎng)絡(luò),即“策略網(wǎng)絡(luò)”,可以選擇下一步棋的走法;另一個(gè)神經(jīng)網(wǎng)絡(luò),即“價(jià)值網(wǎng)絡(luò)”,則可預(yù)測棋局的贏家。

[3] This complexity is what makes Go hard for computers to play, and therefore an irresistible challenge to artificial intelligence (AI) researchers,who use games as a testing ground to invent smart, flexible algorithms that can tackle problems, sometimes in ways similar to humans. The fi rst game mastered by a computer was noughts and crosses2noughts and crosses是一種在3×3格子上進(jìn)行的連珠游戲,由于棋盤一般不畫邊框,格線排成井字故得名。兩個(gè)玩家,一個(gè)打圈(○),一個(gè)打叉(×),輪流在3乘3的格上打自己的符號(hào),最先以橫、直、斜連成一線則為勝。因而又叫“一字棋”。(also known as tic-tac-toe)in 1952. Then fell checkers in 1994. In 1997 Deep Blue famously beat Garry Kasparov at chess. It’s not limited to board games either—IBM’s Watson bested two champions at Jeopardy3美國一檔智力競賽電視節(jié)目。in 2011, and in 2014 our own algorithms learned to play dozens of Atari games just from the raw pixel inputs. But to date, Go has thwarted AI researchers.

[4] Traditional AI methods—which construct a search tree over all possible positions—don’t have a chance in Go.So when we set out to crack Go, we took a different approach. We built a system, AlphaGo, that combines an advanced tree search with deep neural networks. These neural networks take a description of the Go board as an input and process it through 12 different network layers containing millions of neuron-like connections. One neural network, the “policy network,” selects the next move to play. The other neural network, the “value network,” predicts the winner of the game.

[5]我們用人類專家圍棋比賽中的3000萬個(gè)走法強(qiáng)化這套神經(jīng)網(wǎng)絡(luò)系統(tǒng),直到它可以預(yù)測57%的人類落子(在阿爾法圍棋之前,這個(gè)紀(jì)錄是44%)。但我們的目標(biāo)不是模仿人類選手,而是要戰(zhàn)勝他們。要實(shí)現(xiàn)這個(gè)目標(biāo),阿爾法圍棋掌握了如何為自身發(fā)現(xiàn)新戰(zhàn)略,即在神經(jīng)網(wǎng)絡(luò)中對(duì)棋局進(jìn)行成千上萬次計(jì)算,并運(yùn)用試差法調(diào)整系統(tǒng)間的連接(這一過程又叫強(qiáng)化學(xué)習(xí))。當(dāng)然,上文種種都要求強(qiáng)大的運(yùn)算能力,所以我們也大量使用了谷歌云平臺(tái)。

[6]在種種強(qiáng)化之后,我們開始讓阿爾法圍棋參與實(shí)戰(zhàn)。首先,我們舉辦了阿爾法圍棋與其他頂級(jí)計(jì)算機(jī)圍棋程序間的錦標(biāo)賽。阿爾法圍棋在5 0 0場競賽中只輸了一場。接著我們邀請(qǐng)了蟬聯(lián)三屆歐洲圍棋冠軍的樊麾——他從1 2歲起就投身圍棋,是職業(yè)選手中的精英。我們邀請(qǐng)他到倫敦的工作室來參加挑戰(zhàn)賽。在2 0 1 5年1 0月的閉門比賽中,阿爾法圍棋5∶0贏得了比賽。這是電腦程序第一次戰(zhàn)勝職業(yè)圍棋手。

[5] We trained the neural networks on 30 million moves from games played by human experts, until it could predict the human move 57 percent of the time (the previous record before AlphaGo was 44 percent). But our goal is to beat the best human players, not just mimic them. To do this, AlphaGo learned to discover new strategies for itself, by playing thousands of games between its neural networks, and adjusting the connections using a trial-and-error process known as reinforcement learning. Of course,all of this requires a huge amount of computing power, so we made extensive use of Google Cloud Platform.

[6] After all that training it was time to put AlphaGo to the test. First, we held a tournament between AlphaGo and the other top programs at the forefront of computer Go. AlphaGo won all but one of its 500 games against these programs. So the next step was to invite the reigning three-time European Go champion Fan Hui—an elite professional player who has devoted his life to Go since the age of 12—to our London office for a challenge match.In a closed-doors match last October,AlphaGo won by 5 games to 0. It was the first time a computer program has ever beaten a professional Go player.

[7] We are thrilled to have mastered Go and thus achieved one of the grand challenges of AI. However, the most significant aspect of all this for us is that AlphaGoisn’t just an“expert”system built with hand-crafted rules;instead it uses general machine learning techniques to fi gure out for itself how to win at Go. While games are the perfect platform for developing and testing AI algorithms quickly and efficiently,ultimately we want to apply these techniques to important real-world problems. Because the methods we’ve used are general-purpose4general-purpose 通用的。, our hope is that one day they could be extended to help us address some of society’s toughest and most pressing problems,from climate modelling to complex disease analysis. We’re excited to see what we can use this technology to tackle next! ■

[7]我們很開心能夠掌握圍棋訣竅,攻破人工智能眾多難點(diǎn)中的一個(gè)。但是,對(duì)我們來說最大的亮點(diǎn)在于,阿爾法圍棋不是靠人工建立的“專家”系統(tǒng),而是運(yùn)用一般的機(jī)器學(xué)習(xí)技巧,自己贏得圍棋比賽。雖然各類游戲是迅速高效地開發(fā)和檢測人工智能計(jì)算程序的完美平臺(tái),但我們最終的目標(biāo)是把這些技巧用于解決重要的現(xiàn)實(shí)問題。我們使用的方法是通用的,因而我們希望有一天能拓展這些方法來解決社會(huì)中一些最艱難、最緊迫的問題,比如氣候模型和復(fù)雜疾病分析等。我們很希望看到,接下來我們可以用這項(xiàng)技術(shù)解決哪些問題。 □

猜你喜歡
棋局阿爾法棋盤
極狐阿爾法S HI版
汽車觀察(2022年12期)2023-01-17 02:19:24
“螢火蟲-阿爾法”小型火箭首飛概述
國際太空(2021年10期)2021-12-02 01:32:42
ARCFOX極狐阿爾法S
汽車觀察(2021年11期)2021-04-24 18:04:58
傳祺海外新棋局
汽車觀察(2018年10期)2018-11-06 07:05:16
安凱運(yùn)游棋局
汽車觀察(2018年9期)2018-10-23 05:46:46
西咸新棋局
華林 國際大棋局
棋盤人生
棋盤里的天文數(shù)字
阿爾法磁譜儀(AMS)
太空探索(2014年5期)2014-07-12 09:53:44
桐梓县| 安吉县| 丰宁| 广宗县| 饶河县| 伊春市| 肃北| 巴塘县| 惠安县| 昭苏县| 宕昌县| 濮阳县| 郎溪县| 兴义市| 通化县| 壤塘县| 桃园县| 黄梅县| 尖扎县| 南宫市| 齐齐哈尔市| 拉萨市| 庆城县| 贵州省| 玉树县| 灵川县| 阳江市| 淮北市| 平和县| 吴桥县| 台江县| 林甸县| 霍城县| 焦作市| 青河县| 海宁市| 乌鲁木齐市| 全州县| 乐至县| 略阳县| 岗巴县|