鄭學偉,SHAH Syed Tariq,范術(shù)麗,魏恒玲,龐朝友,李鴻彬,喻樹迅
(1石河子大學生命科學學院,新疆石河子 832000;2中國農(nóng)業(yè)科學院棉花研究所/棉花生物學國家重點實驗室,河南安陽 455000)
陸地棉轉(zhuǎn)錄因子GhNAC7的克隆及功能分析
鄭學偉1,2,SHAH Syed Tariq2,范術(shù)麗2,魏恒玲2,龐朝友2,李鴻彬1,喻樹迅2
(1石河子大學生命科學學院,新疆石河子 832000;2中國農(nóng)業(yè)科學院棉花研究所/棉花生物學國家重點實驗室,河南安陽 455000)
【目的】從陸地棉中克隆GhNAC7,分析其結(jié)構(gòu)和功能,研究其在棉花不同組織中以及葉片不同發(fā)育時期的表達量。并轉(zhuǎn)入擬南芥進一步探究其在棉花葉片衰老過程中的作用?!痉椒ā坷弥袊r(nóng)業(yè)科學院棉花研究所棉花生物學國家重點實驗室建立的棉花衰老葉片cDNA文庫中的序列,獲得1個含有NAM結(jié)構(gòu)域的EST,使用Oligo 6.71設(shè)計引物,重新在陸地棉葉片cDNA中進行克隆。使用Gene Structure Display Server軟件分析GhNAC7結(jié)構(gòu),使用在線工具PlantCARE分析啟動子序列,利用在線工具GenScan進行氨基酸序列翻譯。同時,利用擬南芥基因組數(shù)據(jù)庫(TAIR)進行序列比對,選取得分較高的NAC家族基因,使用MEGA 6.06軟件和GeneDoc軟件進行進化樹分析和氨基酸比對。以XbaⅠ和SacⅠ為酶切位點構(gòu)建35S::GhNAC7-GFP融合表達載體,分析其在洋蔥表皮細胞中的瞬時表達,進行亞細胞定位。利用實時熒光定量PCR技術(shù)分析GhNAC7在棉花不同組織、不同葉片發(fā)育時期以及在200 μmol·L-1ABA調(diào)控下的表達量。通過構(gòu)建pGhNAC7-GUS融合表達載體并轉(zhuǎn)擬南芥,分析其啟動子特異性。以EcoRⅠ和SalⅠ為酶切位點,利用pBI101和pBI121載體,分別構(gòu)建融合表達載體并轉(zhuǎn)擬南芥進行過表達分析?!窘Y(jié)果】從陸地棉中成功克隆GhNAC7,其全長為1 064 bp,包含3個外顯子,2個內(nèi)含子。生物信息學分析結(jié)果表明,GhNAC7開放閱讀框為834 bp,可編碼277個氨基酸,其蛋白質(zhì)分子量為31.35 kD,等電點為9.22。結(jié)構(gòu)域分析表明其屬于NAC轉(zhuǎn)錄因子的NAM亞家族,進化樹分析顯示GhNAC7與ANAC041、ANAC083同源性最高,其中,GhNAC7與ANAC083結(jié)構(gòu)域位置均為17—58 aa。其啟動子核心元件包含一系列與衰老、激素、脅迫相關(guān)的順式作用元件。亞細胞定位表明其蛋白為核蛋白。組織特異性表明GhNAC7在真葉、子葉、花、花藥和衰老真葉中均明顯表達,其中在衰老的真葉中表達量最高。啟動子特異性分析表明,其GUS活性在衰老的葉片中最強。在擬南芥中過表達該基因,轉(zhuǎn)基因植株比野生型表現(xiàn)出明顯的衰老癥狀。熒光定量PCR分析表明,ABA處理后6 h GhNAC7明顯上調(diào)表達,并在48 h表達量達到最高,這表明ABA可調(diào)控GhNAC7表達從而調(diào)節(jié)棉花葉片衰老?!窘Y(jié)論】GhNAC7可以促進棉花葉片衰老并受ABA的調(diào)控。
陸地棉;NAM結(jié)構(gòu)域;葉片衰老;GhNAC7;過表達
【研究意義】棉花作為世界上種植最為廣泛的農(nóng)作物之一,其纖維是紡織工業(yè)中應用最普遍的天然纖維。但是,棉花在實際種植過程中受各種環(huán)境因素的影響(例如干旱、鹽脅迫、黃萎病等),嚴重影響了棉花纖維的質(zhì)量和產(chǎn)量。越來越多的研究表明 NAC家族轉(zhuǎn)錄因子廣泛參與各種脅迫過程,并發(fā)揮著顯著作用[1-4],NAC家族轉(zhuǎn)錄因子也參與一些高度復雜的網(wǎng)絡(luò)調(diào)控,并對環(huán)境信號和多種生長發(fā)育過程進行有效整合,進而調(diào)節(jié)葉片衰老[5]。因此,開展棉花特別是陸地棉 NAC基因的功能研究顯得格外重要?!厩叭搜芯窟M展】NAC轉(zhuǎn)錄因子廣泛分布于陸生植物中,它是植物中所特有的具有多種生物功能的轉(zhuǎn)錄因子。隨著SOUER等[6]從矮牽牛中成功克隆到第一個NAC轉(zhuǎn)錄因子NAM,越來越多的NAC家族轉(zhuǎn)錄因子在不同植物中被報道。擬南芥中包含138個NAC轉(zhuǎn)錄因子,水稻中有158個,狗尾草中有149個,三葉楊中有 289個[7],其他植物(如大麥、玉米、柑橘南瓜、甘蔗、陸地棉、小麥等)中也發(fā)現(xiàn)了 NAC基因家族相關(guān)基因。因此,NAC家族轉(zhuǎn)錄因子被認為是植物中最大轉(zhuǎn)錄因子家族之一[8]。NAC轉(zhuǎn)錄因子具有多種功能,在植物生長發(fā)育、逆境脅迫應答和激素信號轉(zhuǎn)導等過程中具有重要作用[9]。GhNAP可以緩解atnap突變體的延遲衰老,引起擬南芥早衰。在棉花中,GhNAP的下調(diào)延遲了葉片衰老。同時,GhNAP受ABA的誘導表達并通過 ABA調(diào)控途徑調(diào)節(jié)葉片衰老[10]。EVANS等[11]研究還發(fā)現(xiàn)GhNAC18受水楊酸、茉莉酸甲酯和乙烯誘導上調(diào)表達,但是在脫落酸的誘導下卻下調(diào)表達。脅迫處理中,在干旱,過氧化氫,低溫(4℃)下其表達上調(diào),但是在鹽脅迫中表達受到抑制。有趣的是,GhNAC18的轉(zhuǎn)錄激活功能在衰老葉片中受到抑制,其表達量下降,進一步研究發(fā)現(xiàn)其在衰老的起始階段發(fā)揮著重要作用。研究證實,GhATAF1在非
生物脅迫中發(fā)揮著重要作用,其在ABA、冷脅迫和鹽脅迫的調(diào)控下上調(diào)表達。GhATAF1也受茉莉酸,水楊酸和黃萎病菌的誘導表達,這暗示了其不僅參與非生物脅迫,而且參與了生物脅迫過程。此外,過表達GhATAF1增加了棉花對黃萎病和灰霉病的易感性,并伴隨著茉莉酸介導的信號傳導的抑制和水楊酸介導的信號傳導的激活[12]。同樣,SlNAC35表達受干旱脅迫、鹽脅迫、細菌病原體和信號分子誘導,暗示其與生物和非生物刺激相關(guān)。研究發(fā)現(xiàn)SlNAC35可以通過調(diào)節(jié)NtARF的表達,從而促進根的生長發(fā)育[13]。NIU等[14]發(fā)現(xiàn)BnaNAC55能夠激活一些與活性氧和防御有關(guān)基因的表達。無論是在油菜和本氏煙草中表達BnaNAC55,都會導致ROS積累,并最終導致植物過敏性細胞死亡。值得關(guān)注的是,大麥中HvNAC005與發(fā)育衰老相關(guān),是大麥衰老的正調(diào)節(jié)因子,且在ABA處理下,受其啟動子中 ABA介導的元件的響應,其表達明顯上調(diào)[15]。此外,水稻OsNAC6[16]和SNAC2[17]、辣椒 CaNAC1[18]、擬南芥 NAC1[19]等基因在相關(guān)植物脅迫應答和生長發(fā)育中發(fā)揮著重要作用?!颈狙芯壳腥朦c】NAC家族轉(zhuǎn)錄因子功能在擬南芥、水稻等植物中被廣泛的研究,但是對于棉花尤其是陸地棉相關(guān)的NAC家族轉(zhuǎn)錄因子研究卻很少,而關(guān)于調(diào)節(jié)衰老相關(guān)的 NAC基因更是鮮有報道?!緮M解決的關(guān)鍵問題】本研究從陸地棉中克隆獲得一個全新的 NAC基因——GhNAC7,進一步分析其在棉花葉片衰老中的作用,為進一步研究其參與葉片衰老的機制奠定基礎(chǔ),為其他棉花 NAC轉(zhuǎn)錄因子基因的后續(xù)深入研究提供重要的借鑒。
1.1 試驗材料
試驗材料為中棉所10號(CCRI 10),于2013年4月種植于中國農(nóng)業(yè)科學院棉花研究所白壁鎮(zhèn)試驗田,田間采用常規(guī)大田管理。
溫室試驗處理所用材料中棉所 10號和擬南芥于2013年6月均種植于中國農(nóng)業(yè)科學院棉花研究所棉花生物學國家重點實驗室溫室,試驗條件分別設(shè)置為25℃,光照16 h/黑暗8 h;22℃,光照16 h/黑暗8 h。
1.2 試驗處理及取樣
大田棉花分別取花、花藥、纖維(0、5、10、15、20和25DPA)、子葉、真葉、衰老葉片、根和莖為試驗材料,每種樣品3個重復,所取樣品均用液氮迅速冷凍,-80℃保存?zhèn)溆谩?/p>
溫室樣品選取長勢一致的中棉所 10號棉花幼苗進行處理。其中,用200 μmol·L-1脫落酸(ABA)進行噴灑葉片處理。溫室樣品處理時均以無菌水處理的棉花幼苗為空白對照。分別在處理后 6、12、24、36和48 h取子葉。所取樣品迅速用液氮冷凍,-80℃保存用于提取DNA和RNA。
為研究GhNAC7在自然衰老中的表達情況,從棉花材料中棉所10號的七葉期開始進行統(tǒng)一掛牌,選取葉片生長發(fā)育過程的5個時期作為研究對象,為了便于研究,將衰老子葉和葉片的5個發(fā)育時期分為以下5個階段,不衰老期(non-senesent,NS)、衰老初始期(initial-senescent,IS,葉片衰老面積大于10%)、衰老早期(early-senescent,ES,葉片衰老面積小于30%)、衰老晚期(late-senescent,LS,葉片衰老面積大于 50%)和完全衰老期(completely-senescent,CS,葉片衰老面積大于90%),在葉綠素測定和基因表達分析中,以NS作為對照組。
1.3 DNA和RNA的提取
采用改良的CTAB方法[20]提取樣品DNA,-20℃保存?zhèn)溆茫捎迷噭┖校ㄌ旄萍加邢薰荆ū本┑腞NAprep Pure Plant Kit(DP441))提取全RNA,方法完全參照說明書進行,-80℃保存?zhèn)溆?。cDNA反轉(zhuǎn)錄選用 PrimeScript First-Strand cDNA Synthesis Super Mix(TaKaRa,Japan)試劑盒進行。
1.4 GhNAC7的克隆及生物信息學分析
通過對實驗室自建的棉花衰老葉片cDNA文庫測序,獲得1個含有NAM結(jié)構(gòu)域的NAC轉(zhuǎn)錄因子的EST(未公布),與雷蒙德氏棉(Gossypium raimondii)D 基因組(http://cgp.genomics.org.cn/page/species/ download.jsp)比對,并設(shè)計引物(表1),以陸地棉葉片cDNA為模板,利用基于PCR的改良染色體步移法[21]擴增啟動子,擴增程序為94℃ 5 min;94℃ 30 s,58℃ 30 s,72℃ 1 min,30個循環(huán);72℃ 5 min。PCR產(chǎn)物經(jīng)檢測、純化后,與克隆載體pMD18-T(TaKaRa,Japan)連接,并轉(zhuǎn)化大腸桿菌DH5α,然后挑取單克隆進行測序。DNA測序和引物合成均由蘇州金唯智生物科技有限公司完成。
使用 Oligo 6.71設(shè)計引物(表 1)。使用 Gene Structure Display Server(http://gsds.cbi.pku.edu.cn/)分析GhNAC7結(jié)構(gòu)[22],利用NCBI在線工具ORF Finder(http://www.ncbi.nlm.nih.gov/gorf/gorf.html)查找GhNAC7的ORF。利用在線工具GenScan(http://genes. mit.edu/GENSCAN.html)進行氨基酸序列翻譯。通過在線工具 Compute pI/Mw(http://web.expasy.org/ compute_pi/)預測其蛋白分子量和等電點。使用在線工具 PlantCARE(http://bioinformatics.psb.ugent.be/ webtools/plantcare/html/)對其啟動子進行分析。利用美國擬南芥基因組數(shù)據(jù)庫(TAIR,http://www. arabidopsis.org/)進行BLAST分析。氨基酸序列比對利用GeneDoc軟件,進化樹的構(gòu)建利用MEGA 6.06軟件,采用ClustalW法進行比對,并使用Neighborjoining方法構(gòu)建進化樹。
表1 本研究中的引物Table 1 The primer sequences in this study
1.5 熒光定量PCR
以Ghactin為內(nèi)參基因,并設(shè)計引物(表1)。以反轉(zhuǎn)錄 cDNA為模板,利用 ABI 7500系統(tǒng)(Applied Biosystems,美國),選用 UltraSYBR Mixture(With ROX)(康為,北京)試劑盒進行qRT-PCR試驗,反應體系和步驟按照SYBR GreenⅠ的說明書進行,GhNAC7相對表達量利用 2-ΔΔCt方法計算。
1.6 葉綠素濃度測定
葉綠素的測定參照LICHTENTHALER[23]的方法,將樣品浸泡于80%丙酮中,置于4℃,黑暗處理48 h。取出后輕搖3 min,分別在波長為663和645 nm測定吸光度。根據(jù)以下公式計算濃度:
1.7 亞細胞定位
參照SHAH等[4]方法進行GhNAC7亞細胞定位,用 XbaⅠ和 SacⅠ分別對測序正確的 GhNAC7和pBI121載體進行雙酶切,并使用T4DNA連接酶連接,構(gòu)建 35S::GhNAC7-GFP融合表達載體,同時以35S::GFP載體為空白對照。通過凍融法將載體轉(zhuǎn)入農(nóng)桿菌LBA4404感受態(tài)細胞,利用卡那霉素和PCR進行陽性菌液篩選,篩選出的陽性菌在LB液體培養(yǎng)基中擴搖至OD600值為0.6,然后侵染洋蔥表皮30 min,無菌濾紙吸凈表面菌液于暗處在 1/2MS培養(yǎng)基培養(yǎng)12 h,培養(yǎng)溫度設(shè)置為25℃。
1.8 GhNAC7啟動子的特異性分析
按照1.7方法同時構(gòu)建pGhNAC7-GUS融合表達載體。將構(gòu)建好的融合表達載體轉(zhuǎn)入擬南芥,鑒定轉(zhuǎn)基因擬南芥,取葉片、莖、花和根,分別置于 GUS染色液中,37℃培養(yǎng)箱中溫育過夜。將浸染過的樣品轉(zhuǎn)入70%酒精中脫色2—3次,至陰性對照材料呈白色,然后置于體式鏡下觀察拍照。
1.9 擬南芥的遺傳轉(zhuǎn)化
使用EcoRⅠ和SalⅠ分別對測序正確的GhNAC7和pBI101雙元載體進行酶切,用T4連接酶連接過夜,并轉(zhuǎn)化大腸桿菌 DH5α,挑取單克隆,測序后提取質(zhì)粒轉(zhuǎn)化農(nóng)桿菌LBA4404感受態(tài)細胞,篩選陽性菌落。將以上2種轉(zhuǎn)化后的含有正確質(zhì)粒的農(nóng)桿菌轉(zhuǎn)化擬南芥,步驟如下:(1)將農(nóng)桿菌接種到LB培養(yǎng)基(50 μg·mL-1卡那霉素、50 μg·mL-1鏈霉素和25 μg·mL-1利福平)中,25℃,175 r/min震蕩過夜。(2)擴大培養(yǎng)至OD600=1.3,500 r/min離心15 min,并收集菌體。(3)將收集的菌體重懸于滲透液(5%蔗糖、121℃滅菌15 min,加重濃度0.02%的SilwettL-77),以滲透液為參照,調(diào)節(jié)OD600至0.8—1.0。(4)將擬南芥的花在重懸液中浸染30—50 s,浸染后的擬南芥置于暗處培養(yǎng)24 h。然后在長日照下培養(yǎng),直至收種子。
轉(zhuǎn)基因擬南芥的篩選參照張文香等[24]方法。
2.1 GhNAC7及其啟動子的生物信息學分析
根據(jù)中國農(nóng)業(yè)科學院棉花研究所棉花生物學國家重點實驗室建立的棉花衰老葉片 cDNA文庫進行擴增,經(jīng)測序獲得1 064 bp序列(GenBank:JX155857.1),并依序?qū)⑵涿麨?GhNAC7。使用 Gene Structure Display Server對其結(jié)構(gòu)進行分析,結(jié)果顯示,其包含3個外顯子,2個內(nèi)含子,其ORF為834 bp(圖1)。其啟動子包含一系列的順式作用元件(圖 2)。其中,激素響應元件包括ABA響應元件ABRE、茉莉酸甲酯響應元件CGTCA和TGACG。脅迫響應元件包括熱脅迫元件HSE、低溫脅迫響應元件LTR和干旱脅迫誘導的MYB結(jié)合位點MBS。與衰老相關(guān)的G-box元件,涉及晝夜節(jié)律控制的調(diào)控元件circadian以及響應光照的順式作用元件Gap-box、I-box和Sp1等。這些激素、脅迫和衰老相關(guān)的順式作用元件預示著GhNAC7參與棉花逆境響應和衰老過程,并發(fā)揮重要作用。
圖1 GhNAC7結(jié)構(gòu)示意圖Fig. 1 Schematic representation of the genomic DNA structure of GhNAC7
2.2 GhNAC7蛋白結(jié)構(gòu)及進化樹分析
由 GenScan在線預測編碼氨基酸序列,發(fā)現(xiàn)GhNAC7共編碼277個氨基酸,進一步分析,可知其蛋白分子質(zhì)量約為31.35 kD,等電點為9.22,結(jié)構(gòu)域分析表明GhNAC7含有一個NAM結(jié)構(gòu)域,屬于NAM亞家族。使用GhNAC7全長CDS在TAIR中進行比對,選取得分較高的NAC家族基因(圖3-A),利用MEGA 6.06軟件并結(jié)合GeneDoc軟件,對GhNAC7構(gòu)建進化樹,結(jié)果顯示,GhNAC7與ANAC041、ANAC083同源性最高(圖3-A)。對三者氨基酸序列進行比對,其保守結(jié)構(gòu)域A、B、C、D、E 5個部分如圖所示(圖3-B)。結(jié)果表明,3種蛋白N末端表現(xiàn)出高度的相似性,然而其 C末端表現(xiàn)出明顯的差異。其中,GhNAC7與ANAC083同源性最高,其結(jié)構(gòu)域位置均為17—58 aa(圖3-B),預示GhNAC7蛋白在植物生長過程中與ANAC083發(fā)揮著相似或相近的生物學功能。
圖2 GhNAC7啟動子分析示意圖Fig. 2 Schematic representation of GhNAC7 promoter
圖3 GhNAC7的聚類分析和氨基酸序列比對Fig. 3 Cluster analysis of GhNAC7 and Sequence alignment of amino acids
2.3 GhNAC7蛋白的亞細胞定位
將構(gòu)建的 35S::GhNAC7-GFP融合表達載體轉(zhuǎn)化到洋蔥表皮細胞,暗處培養(yǎng)12 h后,利用共聚焦激光掃描顯微鏡觀察綠色熒光在細胞中的分布(圖 4),只在細胞核中觀察到綠色熒光,說明GhNAC7被定位在細胞核中;然而,作為對照組,綠色熒光則分布在細胞膜、細胞質(zhì)和細胞核中。這也說明了GhNAC7啟動子具有轉(zhuǎn)錄激活活性,進一步說明GhNAC7只作用于細胞核,屬于核蛋白。
2.4 GhNAC7在陸地棉中的表達模式分析
通過研究 GhNAC7在不同組織中的表達情況(圖5-A),發(fā)現(xiàn)GhNAC7在不同組織中表達情況與先前報道的 GhNAC家族基因表達相似[25]。GhNAC7在纖維中幾乎不表達,在根、莖、花藥中少量表達,在真葉、子葉、衰老葉片和花中表達量較高,尤其在子葉和衰老葉片中表達較明顯。為了進一步闡明 GhNAC7在子葉和衰老葉片中的表達情況,分別取正常衰老的真葉和子葉對 GhNAC7的表達量進行分析(圖 5-B、5-C),結(jié)果表明,在2種組織中GhNAC7隨著衰老程度的加深,其表達量增加。在子葉和真葉完全衰老時,其表達量達到最大,尤其是在完全衰老的真葉中,其表達量約是不衰老的 50倍之多,說明該基因在葉片衰老過程中有重要作用。
圖4 GhNAC7蛋白亞細胞中定位分析Fig. 4 Subcellular localizations of GhNAC7 protein in onion epidermis cells
圖5 GhNAC7的表達分析Fig. 5 Expression analysis of GhNAC7 gene in cotton
2.5 GhNAC7啟動子特異性分析
為進一步驗證GhNAC7的組織特異性,通過構(gòu)建pGhNAC7::GUS融合表達載體,轉(zhuǎn)化擬南芥,并對轉(zhuǎn)基因株系各部分組織進行GUS染色。結(jié)果顯示,在轉(zhuǎn)基因擬南芥的葉片和根中均檢測到GUS活性(圖6-B和圖6-C),其中,莖生綠葉和根中GUS活性比較微弱,然而在衰老葉片中,其GUS活性最強。而在莖和幼葉、花和種皮中沒有檢測到GUS活性(圖6-A)。
2.6 轉(zhuǎn)基因擬南芥過表達分析
為研究GhNAC7在植物生長過程中可能的生物學功能,構(gòu)建GhNAC7植物過表達載體,并轉(zhuǎn)化擬南芥進行表型分析。2個載體各篩選出5株轉(zhuǎn)基因株系,進行鑒定(圖7)。與野生型植株相比,pBI101載體的過表達株系葉片出現(xiàn)衰老現(xiàn)象(圖8-A—圖8-C),且觀察發(fā)現(xiàn),衰老首先在蓮座葉出現(xiàn),隨后出現(xiàn)在莖生葉中。而pBI121載體的過表達株系也同樣出現(xiàn)了葉片衰老(圖8-D—圖8-F)。說明GhNAC7可以促進擬南芥葉片衰老。
2.7 ABA對GhNAC7的調(diào)控分析
通過對噴施200 μmol·L-1ABA 6 h后的棉花幼苗子葉進行熒光定量PCR分析(圖9),在ABA處理下GhNAC7表達量顯著高調(diào),且在處理后48 h達到最大值。結(jié)果表明,ABA調(diào)控GhNAC7,從而調(diào)節(jié)棉花葉片的衰老。
圖6 轉(zhuǎn)基因擬南芥GUS組織染色Fig. 6 GUS analysis of pGhNAC7::GUS in transgenic Arabidopsis
圖7 轉(zhuǎn)基因擬南芥DNA檢測Fig. 7 DNA identification of transgenic Arabidopsis
NAC家族轉(zhuǎn)錄因子是植物中主要的調(diào)節(jié)因子,其功能在擬南芥、水稻等植物中被廣泛的研究,它在調(diào)節(jié)脅迫應答和植物生長過程中發(fā)揮著重要的作用[26]。但是在棉花中,尤其是陸地棉相關(guān)的 NAC家族轉(zhuǎn)錄因子研究卻很少,而調(diào)節(jié)衰老相關(guān)的 NAC基因更是鮮有報道。
本文從陸地棉中成功克隆獲得一個全新的 NAC家族轉(zhuǎn)錄因子GhNAC7,生物信息學研究發(fā)現(xiàn)其擁有一個NAM結(jié)構(gòu)域,這也是NAM亞家族轉(zhuǎn)錄因子的特有典型結(jié)構(gòu)。序列比對顯示其N端高度保守,C端保守性較低,擁有多個重復出現(xiàn)的氨基酸序列。
熒光定量結(jié)果顯示,GhNAC7組織特異性表達其與棉花生長發(fā)育有著密切的關(guān)系,其表達量在衰老的真葉中最高。且進一步研究發(fā)現(xiàn),GhNAC7表達量隨著棉花真葉和子葉衰老程度的加深而逐漸增加,這充分表明在棉花葉片衰老過程中GhNAC7扮演著某種重要的作用。ZHAO等[27]研究表明,GhNAC12在早衰和衰老的子葉中,其表達量逐漸增加,最終導致棉花早衰。本研究中,GhNAC7主要在衰老的真葉中表達,說明GhNAC7主要參與調(diào)控了棉花真葉衰老的過程。ODA-YAMAMIZO等[28]證實,與野生型擬南芥相比,ANAC046轉(zhuǎn)基因擬南芥明顯出現(xiàn)了早衰的表型,說明ANAC046是擬南芥葉片衰老的正向調(diào)節(jié)因子。為了進一步探究GhNAC7相關(guān)的生物學功能,在擬南芥模式植物中對其進行了過表達研究,結(jié)果發(fā)現(xiàn),相對于野生型擬南芥,轉(zhuǎn)基因擬南芥表型發(fā)生了較大的改變,其中轉(zhuǎn)基因擬南芥表現(xiàn)出明顯的衰老現(xiàn)象,推測可能是GhNAC7的過表達導致了轉(zhuǎn)基因擬南芥表型的變化。這也說明GhNAC7在調(diào)節(jié)葉片衰老的過程中可能扮演著正向調(diào)節(jié)因子的作用,因此,認為GhNAC7是調(diào)控葉片衰老的基因之一。但是,對于調(diào)節(jié)葉片衰老的具體機制還不得而知,需要進一步加以研究。
圖8 轉(zhuǎn)基因擬南芥過表達分析Fig.8 Overexpression of GhNAC7 gene in Arabidopsis
圖9 ABA處理下GhNAC7在棉花幼苗中的表達Fig. 9 Expression profile of GhNAC7 gene in ABA treatment in cotton seedlings
進化樹分析表明,GhNAC7與ANAC083具有很高的一致性。這也暗示著GhNAC7在植物生長過程中與其發(fā)揮著相似的生物學作用。研究表明,ABA是葉片衰老中的正調(diào)節(jié)因子,可以促進葉片衰老[29]。SHAH等[30]研究也表明,對棉花幼苗施加外源脫落酸和乙烯,NAC家族基因?qū)BA響應最為明顯。此外,ABA應答基因 VND-INTERACTING2(VNI2,ANAC083)可以通過整合 ABA介導的非生物脅迫信號來調(diào)節(jié)相關(guān)基因的表達,如COR(受冷脅迫調(diào)節(jié))和RD(受失水調(diào)節(jié)),進而調(diào)節(jié)葉片衰老[31]。本文啟動子分析顯示其包含了ABA響應元件ABRE,熒光定量試驗也進一步證實對棉花幼苗施加ABA 6 h后其表達量明顯上調(diào),說明在棉花中ABA可以通過調(diào)控GhNAC7的表達,調(diào)節(jié)棉花葉片衰老。研究表明,NAC家族基因在脅迫誘導衰老中發(fā)揮著正調(diào)節(jié)因子的作用[32-33]。綜上所述,本文得到了一個棉花葉片的正調(diào)控因子,為進一步分析該基因在葉片衰老過程中的作用機制打下基礎(chǔ);同時,利用棉花葉片衰老特異啟動子和 RNAi載體,可以降低該基因在葉片衰老過程中的表達量,有望獲得抑制棉花葉片衰老的新種質(zhì),為該基因的生產(chǎn)應用打下基礎(chǔ)。
獲得GhNAC7全長cDNA,該基因?qū)儆贜AM轉(zhuǎn)錄因子亞家族,其全長為1 064 bp,ORF為834 bp,編碼277個氨基酸,其蛋白為核蛋白。GhNAC7啟動子核心元件包含一系列與衰老、激素、脅迫相關(guān)的順式作用元件。GhNAC7的表達具有較高的組織特異性,在衰老的真葉中表達量最高,其啟動子特異性在衰老的真葉中也最強。在擬南芥中過表達該基因,轉(zhuǎn)基因植株比野生型表現(xiàn)出明顯的衰老癥狀。GhNAC7可促進棉花葉片衰老,并受ABA的調(diào)控。
[1] GUNAPATI S, NARESH R, RANJAN S, RANJAN S, NIGAM D, HANS A, VERMA P C, GADRE R, PATHRE U V, SANE A P, SANE V A. Expression of GhNAC2 from G. herbaceum, improves root growth and imparts tolerance to drought in transgenic cotton and Arabidopsis. Scientific Reports, 2016, 6: 24978.
[2] WANG J Y, WANG J P, YANG H F. Identification and functional characterization of the NAC gene promoter from Populus euphratica. Planta, 2016, 244(2): 417-427.
[3] RAHMAN H, RAMANATHAN V, NALLATHAMBI J, DURAIALAGARAJA S, MUTHURAJAN R. Over-expression of a NAC67 transcription factor from finger millet (Eleusine coracana L.) confers tolerance against salinity and drought stress in rice. BMC Biotechnology, 2016, 16(1): 7.
[4] SHAH S T, PANG C, HUSSAIN A, FAN S, SONG M, ZAMIR R, YU S. Molecular cloning and functional analysis of NAC family genes associated with leaf senescence and stresses in Gossypium hirsutum L.. Plant Cell, Tissue and Organ Culture, 2014, 117(2): 167-186.
[5] KIM H J, NAM H G, LIM P O. Regulatory network of NAC transcription factors in leaf senescence. Current Opinion in Plant Biology, 2016, 33: 48-56.
[6] SOUER E, VAN HOUWELINGEN A, KLOOS D, MOL J, KOES R. The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell, 1996, 85(2): 159-170.
[7] JIN J, ZHANG H, KONG L, GAO G, LUO J. PlantTFDB 3.0: A portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Research, 2014, 42(Database issue): D1182.
[8] 康桂娟, 曾日中, 聶智毅, 黎瑜, 代龍軍, 段翠芳. 植物NAC轉(zhuǎn)錄因子的研究進展. 生物技術(shù)通報, 2012, 28(11): 21-26.
KANG G J, ZENG R Z, NIE Z Y, LI Y, DAI L J, DUAN C F. Research progress of plant NAC transcription factors. Biotechnology Bulletin, 2012, 28(11): 21-26. (in Chinese)
[9] 陳娜, 蔣晶, 曹必好, 雷建軍,陳長明. 植物NAC轉(zhuǎn)錄因子功能研究新進展. 分子植物育種, 2015, 13(6): 1407-1414.
CHEN N, JIANG J, CAO B H, LEI J J, CHEN C M. The latest progresses on plant NAC transcription factors function. Molecular Plant Breeding, 2015, 13(6): 1407-1414. (in Chinese)
[10] FAN K, BIBI N, GAN S,LI F, YUAN S, NI M, WANG M, SHEN H, WANG X. A novel NAP member GhNAP is involved in leaf senescence in Gossypium hirsutum. Journal of Experimental Botany, 2015, 66(15): 4669-4682.
[11] EVANS O, DOU L, GUO Y, PANG C, WEI H, SONG M, FAN S, YU S. GhNAC18, a novel cotton (Gossypium hirsutum L.) NAC gene, is involved in leaf senescence and diverse stress responses. African Journal of Biotechnology, 2016, 15(24): 1233-1245.
[12] HE X, ZHU L, XU L, GUO W, ZHANG X. GhATAF1, a NAC transcription factor, confers abiotic and biotic stress responses by regulating phytohormonal signaling networks. Plant Cell Reports, 2016, 35(10): 2167-2179.
[13] WANG G, ZHANG S, MA X, WANG Y, KONG F, MENG Q. A stress-associated NAC transcription factor (SlNAC35) from tomato plays a positive role in biotic and abiotic stresses. Physiologia Plantarum, 2016, 158(1): 45-64.
[14] NIU F, WANG C, YAN J, GUO X, WU F, YANG B, DEYHOLOS M K, JIANG Y. Functional characterization of NAC55 transcription factor from oilseed rape (Brassica napus L.) as a novel transcriptional activator modulating reactive oxygen species accumulation and cell death. Plant Molecular Biology, 2016, 92(1): 89-104.
[15] CHRISTIANSEN M W, MATTHEWMAN C, PODZIMSKA-SROKA D, O’SHEA C, LINDEMOSE S, M?LLEGAARD N E, HOLME L B, HEBELSTRUP K, SKRIVER K, GREGERSEN P L. Barley plants over-expressing the NAC transcription factor gene HvNAC005 show stunting and delay in development combined with early senescence. Journal of Experimental Botany, 2016, 67(17): 5259-5273.
[16] NAKASHIMA K, TRAN L S P, VAN NGUYEN D, FUJITA M, MARUYAMA K, TODAKA D, LTO Y, HAYASHI N, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Functional analysis of a NAC-typetranscription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. The Plant Journal, 2007, 51(4): 617-630.
[17] HU H, YOU J, FANG Y, ZHU X, QI Z, XIONG L. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Molecular Biology, 2008, 67(1/2): 169-181.
[18] OH S K, LEE S, YU S H, CHOI D. Expression of a novel NAC domain-containing transcription factor (CaNAC1) is preferentially associated with incompatible interactions between chili pepper and pathogens. Planta, 2005, 222(5): 876-887.
[19] XIE Q, FRUGIS G, COLGAN D, CHUA N H. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes & Development, 2000, 14(23): 3024-3036.
[20] 宋國立, 崔榮霞, 王坤波, 郭立平, 黎紹惠, 王春英, 張香娣. 改良CTAB法快速提取棉花DNA. 棉花學報, 1998, 10(5): 273-275.
SONG G L, CUI R X, WANG K B, GUO L P, LI S H, WANG C Y, ZHANG X D. A rapid improved CTAB method for extraction of cotton genomic DNA. Cotton Science, 1998, 10(5): 273-275. (in Chinese)
[21] WU A, LIU J. An improved method of chromosome walking for promoter sequences cloning. Chinese Journal of Biochemistry and Molecular Biology, 2005, 22(3): 243-246.
[22] GUO A Y, ZHU Q H, CHEN X, LUO J C. GSDS: A gene structure display server. Yi Chuan, 2007, 29(8): 1023-1026.
[23] LICHTENTHALER H K. [34] Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology, 1987, 148: 350-382.
[24] 張文香, 范術(shù)麗, 宋美珍, 龐朝友, 魏恒玲, 喻樹迅. 棉花GhMADS29啟動子克隆及表達分析. 棉花學報, 2015, 25(4): 309-315.
ZHANG W X, FAN S L, SONG M Z, PANG C Y, WEI H L, YU S X. Cloning and expression analysis of the promoter of GhMADS29 from cotton. Cotton Science, 2015, 25(4): 309-315. (in Chinese)
[25] MENG C, CAI C, ZHANG T, GUO W. Characterization of six novel NAC genes and their responses to abiotic stresses in Gossypium hirsutum L.. Plant Science, 2009, 176(3): 352-359.
[26] HE X J, MU R L, CAO W H, ZHANG Z G, ZHANG J S, CHEN S Y. AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. The Plant Journal, 2005, 44(6): 903-916.
[27] ZHAO F, MA J, LI L, FAN S, GUO Y, SONG M, WEI H, PANG C. GhNAC12, a neutral candidate gene, leads to early aging in cotton (Gossypium hirsutum L.). Gene, 2016, 576(1): 268-274.
[28] ODA-YAMAMIZO C, MITSUDA N, SAKAMOTO S, OGAWA D, OHME-TAKAGI M, OHMIYA A. The NAC transcription factor ANAC046 is a positive regulator of chlorophyll degradation and senescence in Arabidopsis leaves. Scientific Reports, 2016, 6: 23609.
[29] GAO S, GAO J, ZHU X, SONG Y, LI Z, REN G, ZHOU X, KUAI B. ABF2, ABF3 and ABF4 promote ABA-mediated chlorophyll degradation and leaf senescence by transcriptional activation of chlorophyll catabolic genes and senescence-associated genes in Arabidopsis. Molecular Plant, 2016, 9(9): 1272-1285.
[30] SHAH S T, PANG C, FAN S, SONG M, ARAIN S, YU S. Isolation and expression profiling of GhNAC transcription factor genes in cotton (Gossypium hirsutum L.) during leaf senescence and in response to stresses. Gene, 2013, 531(2): 220-234.
[31] YANG S D, SEO P J, YOON H K, PARK C M. The Arabidopsis NAC transcription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes[W]. The Plant Cell, 2011, 23(6): 2155-2168.
[32] PIMENTA M R, SILVA P A, MENDES G C, ALVES J R, CAETANO H D N, MACHADO J P B, BRUSTOLINI O J B, CARPINETTI P A, MELO B P, SILVA J C F, ROSADO G L, FERREIRA M F S, DAL-BIANCO M, PICOLI E A d T, ARAGAO F J L, RAMOS H J O, FONTES E P B. The stress-induced soybean NAC transcription factor GmNAC81 plays a positive role in developmentally programmed leaf senescence. Plant and Cell Physiology, 2016, 57(5): 1098-1114.
[33] MAHMOOD K, EL-KEREAMY A, KIM S H, NAMBARA E, ROTHSTEIN S J. ANAC032 positively regulates age-dependent and stress-induced senescence in Arabidopsis thaliana. Plant and Cell Physiology, 2016: pcw120.
(責任編輯 李莉)
Molecular Cloning and Functional Analysis of GhNAC7 in Upland Cotton (Gossypium hirsutum L.)
ZHENG XueWei1,2, SHAH Syed Tariq2, FAN ShuLi2, WEI HengLing2, PANG ChaoYou2, LI HongBin1, YU ShuXun2
(1College of Life Science, Shihezi University, Shihezi 832000, Xinjiang;2Institute of Cotton Research, Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology, Anyang 455000, Henan)
【Objective】The primary objectives of this experiment are to clone GhNAC7 gene, analyze its structure, detect its expression in different tissues of cotton and at different developmental leaf senescence stages. Furthermore, its function in cotton leaf senescence was further studied through transforming GhNAC7 gene into Arabidopsis. 【Method】Based on the cotton senescentleaves cDNA library, which was built by State Key Laboratory of Cotton Biology of Institute of Cotton Research of CAAS, this gene was cloned from upland cotton using an expressed sequence tag (EST) containing NAM domain after designing primer using Oligo 6.71. Gene Structure Display Sever was conducted to analyze its structure, PlantCARE was used on-line to study its promoter sequence, and GenScan was simultaneously performed to translate amino acid on-line. Meanwhile, NAC family genes with higher scores were chosen after aligning sequence from Arabidopsis in TAIR. Afterwards MEGA 6.06 was used to display evolutionary relationships of the gene and GeneDOC was conducted to perform sequence alignment of amino acids. Via constructing 35S::GhNAC7-GFP fusion expression vector with XbaⅠand SacⅠrestriction sites, subcellular localization of GhNAC7 was studied by transient expression analysis of onion epidermal cells. Expression profiles of GhNAC7 in various tissues, in response to 200 μmol·L-1ABA treatment and developmental leaf senescence stages were investigated through quantitative real-time PCR (qRT-PCR). Its promoter specificity was conducted by transforming into Arabidopsis thaliana after constructing pGhNAC7-GUS fusion expression vector. Simultaneously, using pBI101 and pBI121 with EcoRⅠand SalⅠrestriction sites were used to construct fusion expression vectors, and then over-expression analysis was performed by transforming GhNAC7 into Arabidopsis thaliana.【Result】In this study, a novel gene GhNAC7 was successfully cloned from upland cotton (Gossypium hirsutum L.). Its full-length was 1 064 bp with three exons and two introns. Results of bioinformatics analysis exhibited that its open reading frame (ORF) was 834 bp, which encoding 277 amino acids. The molecular weights of GhNAC7 encoding protein were 31.35 kD and isoelectric point was 9.22. Domain analysis of GhNAC7 showed that it belongs to the NAM subgroup of NAC family, moreover phylogenetic tree analysis showed that GhNAC7 has the closest genetic relationship with ANAC041 and ANAC083, and GhNAC7 displayed the same domain positions with ANAC083 at 17-58 aa. Its core promoter elements were also predicted, which contained a series of aging, hormone, stress-related cis-acting elements. Subcellular localization elucidated the protein of GhNAC7 encoding is a nucleoprotein. Tissue-specific analysis showed that this gene was significantly expressed in true leaves, cotyledons, flowers, anthers and senescent leaves, but displayed the highest expression in senescent leaves. And in promoter specificity analysis, it was also exhibited the strongest GUS activity in senescent leaf. Over-expression in transgenic Arabidopsis verified evident symptoms of aging compared to the wild type. Fluorescence quantitative PCR analysis showed that the gene expression was significantly up-regulated after 6 h of ABA treatment and displayed the highest at 48 h, so it was hypothesized that ABA could regulate GhNAC7 gene expression to mediate cotton leaf senescence.【Conclusion】It was concluded that GhNAC7 gene could promote cotton leaf senescence and be regulated by ABA.
upland cotton; NAM domain; leaf senescence; GhNAC7; over-expression
2016-08-12;接受日期:2016-10-14
國家棉花產(chǎn)業(yè)技術(shù)體系建設(shè)專項(CARS-18)
聯(lián)系方式:鄭學偉,Tel:15664065727;E-mail:xiangvswei418529@sina.com。通信作者龐朝友,Tel:0372-2562269;E-mail:chypang@163.com。
李鴻彬,Tel:13579760761;E-mail:lihb@shzu.edu.cn