孔佑賓,李喜煥,張彩英
(河北農(nóng)業(yè)大學(xué)農(nóng)學(xué)院/教育部華北作物種質(zhì)資源研究與利用重點(diǎn)實(shí)驗(yàn)室,河北保定 071001)
大豆紫色酸性磷酸酶基因GmPAP4啟動(dòng)子結(jié)構(gòu)與活性分析
孔佑賓,李喜煥,張彩英
(河北農(nóng)業(yè)大學(xué)農(nóng)學(xué)院/教育部華北作物種質(zhì)資源研究與利用重點(diǎn)實(shí)驗(yàn)室,河北保定 071001)
【目的】克隆GmPAP4啟動(dòng)子(PAP4-pro),并分析其表達(dá)特性,為進(jìn)一步研究其作用機(jī)制奠定基礎(chǔ)?!痉椒ā恳罁?jù) GmPAP4 cDNA序列(GenBank No. HQ162477),通過比對(duì)大豆參考基因組,設(shè)計(jì)特異引物,克隆GmPAP4啟動(dòng)子序列,通過PLACE與PlantCARE在線生物信息學(xué)數(shù)據(jù)庫預(yù)測(cè)該啟動(dòng)子相關(guān)調(diào)控元件。構(gòu)建GmPAP4啟動(dòng)子驅(qū)動(dòng)GUS表達(dá)載體(PAP4-pro-GUS)并轉(zhuǎn)化根癌農(nóng)桿菌GV3101;通過Floral dip法將PAP4-pro-GUS轉(zhuǎn)化擬南芥,利用卡那霉素(Kan)抗性篩選和特異引物的PCR鑒定,最終獲得T3轉(zhuǎn)基因擬南芥。通過對(duì)T3轉(zhuǎn)基因擬南芥不同組織GUS染色,分析啟動(dòng)子的組織表達(dá)特性,將T3轉(zhuǎn)基因擬南芥通過適磷和植酸磷處理,20 d后,取其根部進(jìn)行GUS活性和表達(dá)分析,研究啟動(dòng)子對(duì)不同磷環(huán)境的響應(yīng)?!窘Y(jié)果】克隆了GmPAP4上游啟動(dòng)子序列,通過PLACE與PlantCARE在線生物信息學(xué)數(shù)據(jù)庫預(yù)測(cè)顯示,GmPAP4啟動(dòng)子除含有啟動(dòng)子核心的調(diào)控元件外,還含有(1)組織特異調(diào)控元件:as1(根系特異表達(dá)調(diào)控元件)和Skn-1_motif(胚乳特異表達(dá)調(diào)控元件);(2)應(yīng)答元件:TC-rich repeats(逆境脅迫反應(yīng)調(diào)控元件)和Box-W3(真菌應(yīng)答相關(guān)調(diào)控元件);(3)結(jié)合位點(diǎn):MBS(MYB轉(zhuǎn)錄因子的結(jié)合位點(diǎn))等。不同組織GUS染色結(jié)果顯示,轉(zhuǎn)基因擬南芥整個(gè)根系GUS染色較深,莖、葉中僅微管組織有較明顯GUS染色,花瓣微管組織中也能觀察到微弱GUS染色。定量PCR結(jié)果顯示,植酸磷處理?xiàng)l件下轉(zhuǎn)基因擬南芥根系GUS表達(dá)比適磷處理提高了1.3倍(P<0.05);同時(shí)GUS活性測(cè)定顯示,與適磷處理相比,植酸磷處理?xiàng)l件下轉(zhuǎn)基因擬南芥根系GUS活性提高了1.9倍(P<0.05)?!窘Y(jié)論】獲得大豆GmPAP4啟動(dòng)子,通過不同組織GUS染色和不同磷環(huán)境GUS表達(dá)分析顯示該啟動(dòng)子主要在根部且受低磷信號(hào)誘導(dǎo)表達(dá),為誘導(dǎo)型啟動(dòng)子。
大豆;GmPAP4;啟動(dòng)子;組織特異性;植酸磷響應(yīng)
【研究意義】磷是植物生長(zhǎng)發(fā)育必需營(yíng)養(yǎng)元素之一,磷低效利用限制大豆產(chǎn)量和品質(zhì)。酸性磷酸酶能夠提高土壤有機(jī)磷利用效率、改良植物磷素營(yíng)養(yǎng)性狀,因此,研究該類基因的表達(dá)調(diào)控對(duì)揭示其作用機(jī)制具有重要意義。植物基因表達(dá)受一系列順式作用元件與反式作用因子的調(diào)控,而植物基因啟動(dòng)子在基因轉(zhuǎn)錄調(diào)控中起關(guān)鍵作用,通過分析基因啟動(dòng)子表達(dá)特性能夠?yàn)榻沂舅嵝粤姿崦富蛘{(diào)控機(jī)制提供理論依據(jù)[1-4]?!厩叭搜芯窟M(jìn)展】紫色酸性磷酸酶(purple acid phosphatase,PAP)廣泛存在于植物、動(dòng)物、微生物,具有5個(gè)保守基序、7個(gè)高度保守氨基酸殘基和1個(gè)金屬離子雙核中心。LI等[5]分離得到擬南芥29個(gè)PAPs基因,半定量PCR發(fā)現(xiàn),低磷條件下7個(gè)PAPs基因(AtPAP7—AtPAP13)誘導(dǎo)表達(dá);HUR等[6]研究發(fā)現(xiàn),OsPAP2僅受低磷環(huán)境影響而與其他元素?zé)o關(guān);肖凱等[7-8]將MtPAP1轉(zhuǎn)入擬南芥,植酸鹽條件下,超表達(dá)植株生物產(chǎn)量、無機(jī)磷與全磷含量明顯提高;WANG等[9]將AtPAP15轉(zhuǎn)入大豆,在酸性土壤中3個(gè)轉(zhuǎn)基因株系產(chǎn)量性狀均明顯優(yōu)于野生型;BOZZO等[10]發(fā)現(xiàn)番茄酸性磷酸酶可水解胞外磷脂化合物釋放出無機(jī)磷;LIANG等[11]發(fā)現(xiàn)菜豆酸性磷酸酶PvPAP3可利用胞外 ATP作為磷源。關(guān)于大豆紫色酸性磷酸酶基因,LI等[12]利用已測(cè)序大豆基因組數(shù)據(jù),通過同源比對(duì)方法進(jìn)行預(yù)測(cè),認(rèn)為大豆基因組中可能存在35個(gè)紫色酸性磷酸酶基因。迄今為止,已克隆并開展功能研究的僅有4個(gè)(GmPAP1—GmPAP4),其中GmPAP1、GmPAP2通過半定量分析顯示低磷條件下誘導(dǎo)表達(dá),但其功能并未深入開展,對(duì)GmPAP3的研究發(fā)現(xiàn),該基因僅受鹽脅迫誘導(dǎo),而不受低磷脅迫誘導(dǎo),是一個(gè)與大豆耐鹽相關(guān)的基因[13]。GmPAP4是河北農(nóng)業(yè)大學(xué)農(nóng)學(xué)院大豆育種創(chuàng)新團(tuán)隊(duì)前期克隆,定量PCR結(jié)果顯示植酸磷條件下該基因誘導(dǎo)高效表達(dá),并證實(shí)其超表達(dá)能顯著提高轉(zhuǎn)基因擬南芥有機(jī)磷的利用效率[14]。而關(guān)于紫色酸性磷酸酶啟動(dòng)子,目前主要在擬南芥進(jìn)行了研究。ROBINSON等[15]分析AtPAP12啟動(dòng)子發(fā)現(xiàn),正常磷條件下,轉(zhuǎn)基因植株GUS不表達(dá),而低磷誘導(dǎo)下轉(zhuǎn)基因植株GUS染色明顯,說明AtPAP12啟動(dòng)子受低磷誘導(dǎo)表達(dá)。對(duì)AtPAP10研究發(fā)現(xiàn),正常磷條件下轉(zhuǎn) AtPAP10:GUS植株根系表達(dá)主要集中在維管組織,而低磷誘導(dǎo)下的GUS表達(dá)遍布整個(gè)根系[16]?!颈狙芯壳腥朦c(diǎn)】前人關(guān)于紫色酸性磷酸酶啟動(dòng)子研究主要集中于擬南芥、水稻等模式植物,大豆中未開展相關(guān)研究,本文作者前期對(duì)大豆紫色酸性磷酸酶基因GmPAP4提高植物有機(jī)磷利用功能進(jìn)行了驗(yàn)證,然而關(guān)于其如何調(diào)控發(fā)揮作用還有待深入研究?!緮M解決的關(guān)鍵問題】本研究通過克隆GmPAP4上游啟動(dòng)子,分析啟動(dòng)子序列,轉(zhuǎn)基因擬南芥分析啟動(dòng)子的組織表達(dá)和不同磷環(huán)境下啟動(dòng)子活性的定量檢測(cè),了解GmPAP4的調(diào)控模式,為今后相關(guān)轉(zhuǎn)錄因子的研究奠定基礎(chǔ)。
1.1 試驗(yàn)材料
大豆品種中黃15、擬南芥(Arabidopsis thaliana)Columbia、農(nóng)桿菌GV3101、植物表達(dá)載體pBI121由河北農(nóng)業(yè)大學(xué)農(nóng)學(xué)院大豆育種創(chuàng)新團(tuán)隊(duì)提供。大腸桿菌Top10、pMD19-T vector、限制性內(nèi)切酶等HindⅢ和BamHⅠ等購自寶生物工程(大連)有限公司,X-gluc購自Sigma,其他化學(xué)試劑購自生工生物工程(上海)股份有限公司。
1.2 大豆葉片基因組DNA的提取
采用CTAB法提取大豆葉片基因組DNA,1%瓊脂糖凝膠電泳檢測(cè) DNA質(zhì)量,Nanodrop1000測(cè)定DNA濃度。
1.3 GmPAP4啟動(dòng)子克隆
依據(jù) GmPAP4 cDNA序列(GenBank No.HQ162477),利用phytozome檢索其上游序列[17],設(shè)計(jì)特異引物 PAP4-pro-F/R(表 1),以中黃 15葉片DNA為模板,采用LaTaq(TaKaRa)進(jìn)行PCR擴(kuò)增(擴(kuò)增體系與程序參照說明書);擴(kuò)增產(chǎn)物經(jīng) 1%瓊脂糖凝膠電泳檢測(cè),回收目的片段并與 pMD19-T(TaKaRa)載體連接,轉(zhuǎn)化大腸桿菌感受態(tài)細(xì)胞Top10、藍(lán)白斑篩選,同時(shí)利用PAP4-pro-F/R進(jìn)行菌液 PCR篩選陽性克隆并通過測(cè)序分析獲得序列正確的單克隆。
1.4 GmPAP4啟動(dòng)子生物信息學(xué)分析
利用 PlantCARE(http://bioinformatics.psb.ugent. be/webtools/plantcare/html/)、PLACE(https://sogo.dna. affrc.go.jp/)分析GmPAP4啟動(dòng)子調(diào)控元件。
1.5 GmPAP4啟動(dòng)子驅(qū)動(dòng)GUS表達(dá)載體構(gòu)建
通過HindⅢ和BamHⅠ雙酶切,將PAP4-pro替換pBI121載體上的35S啟動(dòng)子以構(gòu)建GmPAP4啟動(dòng)子驅(qū)動(dòng)GUS的表達(dá)載體。經(jīng)T4DNA連接酶連接,轉(zhuǎn)化大腸桿菌感受態(tài)細(xì)胞 Top10,菌液涂布于固體 LB平板(含Kan 100 μg·mL-1),37℃倒置培養(yǎng)12 h后,挑取單菌落,接種于 LB液體培養(yǎng)基(含 Kan 100 μg·mL-1)。提取質(zhì)粒,利用HindⅢ和BamHⅠ酶切鑒定重組植物表達(dá)載體PAP4-pro-GUS。
1.6 農(nóng)桿菌介導(dǎo)擬南芥遺傳轉(zhuǎn)化及分子檢測(cè)
采用凍融法將 PAP4-pro-GUS轉(zhuǎn)入農(nóng)桿菌菌株GV3101,浸花法轉(zhuǎn)化擬南芥,收獲成熟種子,并于MS固體培養(yǎng)基(含Kan 100 μg·mL-1)篩選陽性植株,提取陽性植株葉片 DNA,利用跨載體引物PAP4-pro-GUS-F/R(表1)進(jìn)行PCR檢測(cè),通過自交獲得T3轉(zhuǎn)PAP4-pro-GUS擬南芥,并用于后續(xù)的GUS染色和GUS表達(dá)分析。
1.7 轉(zhuǎn)基因擬南芥GUS染色與活性測(cè)定
GUS染色植株生長(zhǎng)條件:轉(zhuǎn)基因擬南芥 T3種子播種于MS培養(yǎng)基。GUS染色方法:分別取相同時(shí)期的根、莖、葉、花組織,將各組織置于適量 X-gluc(Sigma)染色液,37℃孵育12—16 h,并用75%、80%、100%乙醇進(jìn)行梯度脫色,最后于奧林巴斯顯微鏡BX51(Japan)下觀察GUS染色情況[17]。試驗(yàn)選取3個(gè)T3轉(zhuǎn)基因株系,每個(gè)轉(zhuǎn)基因株系取10株用于GUS染色,重復(fù)3次。
GUS活性測(cè)定植株生長(zhǎng)條件:轉(zhuǎn)基因擬南芥 T3種子播種于MS培養(yǎng)基,MS培養(yǎng)基設(shè)置2個(gè)磷素處理(適磷以KH2PO4為磷源;低磷以Phytate為磷源,兩處理P濃度均為500 μmol·L-1,其他營(yíng)養(yǎng)元素濃度不變)。植株生長(zhǎng)20 d(溫度24℃,光照16 h,黑暗8 h)后,取根系組織進(jìn)行GUS活性測(cè)定[18]。GUS活性測(cè)定具體方法:提取轉(zhuǎn)基因擬南芥根組織,液氮研磨,將約100 mg研磨樣品置于1.5 mL離心管,吸取500 μL植物總蛋白提取液(康為世紀(jì)),震蕩混勻,4℃孵育15 min,隨后4℃ 12 000 r/min離心,取上清液即為提取的植物蛋白。通過BSA法測(cè)定提取蛋白的濃度,以 4-甲基傘形酮酰-β-葡萄糖醛酸苷(MUG)為底物,在激發(fā)光365 nm,發(fā)射光455 nm條件下,測(cè)定GUS活性。試驗(yàn)選取3個(gè)T3轉(zhuǎn)基因株系,每個(gè)轉(zhuǎn)基因株系取10株用于GUS活性測(cè)定,重復(fù)3次。
1.8 轉(zhuǎn)基因擬南芥GUS實(shí)時(shí)定量PCR檢測(cè)
將轉(zhuǎn)基因擬南芥種子播種于MS培養(yǎng)基,MS培養(yǎng)基設(shè)置2個(gè)磷素處理(適磷以KH2PO4為磷源;低磷以Phytate為磷源,兩處理P濃度均為500 μmol·L-1,其他營(yíng)養(yǎng)元素濃度不變)。植株生長(zhǎng)20 d(溫度24℃,光照16 h,黑暗8 h)后,取其根提RNA進(jìn)行實(shí)時(shí)定量PCR。具體方法為設(shè)計(jì)實(shí)時(shí)定量PCR引物(基因引物為GUS-RT-F/R,內(nèi)參引物為eEF1a-F/R,表1),采用SYBR?GreenⅠ熒光染料法進(jìn)行實(shí)時(shí)定量PCR并通過 2-△△CT法進(jìn)行基因表達(dá)水平相對(duì)定量分析[19]。反應(yīng)程序?yàn)?5℃ 30 s;95℃ 10 s,58℃ 10 s,72℃ 15 s,40個(gè)循環(huán);72℃ 10 min。試驗(yàn)選取3個(gè)T3轉(zhuǎn)基因株系,每個(gè)轉(zhuǎn)基因株系取10株用于定量PCR,重復(fù)3次。
表1 本試驗(yàn)所用引物Table 1 PCR primer sequences in this study
1.9 數(shù)據(jù)分析
采用 SPSS 19.0分析軟件,利用 one-way ANOVA方法對(duì)試驗(yàn)中所有數(shù)據(jù)進(jìn)行 P<0.05水平的數(shù)據(jù)分析[20]。
2.1 大豆GmPAP4啟動(dòng)子克隆與生物信息學(xué)分析
根據(jù)設(shè)計(jì)的特異引物對(duì)中黃15的DNA進(jìn)行PCR擴(kuò)增,獲得GmPAP4上游啟動(dòng)子,經(jīng)測(cè)序顯示該序列長(zhǎng)度為2 049 bp,與williams 82大豆參考基因組相同。將起始密碼子ATG的第一個(gè)堿基A定義為+1,通過PLACE和 PlantCARE進(jìn)行在線預(yù)測(cè),結(jié)果顯示,GmPAP4啟動(dòng)子除含有真核生物啟動(dòng)子必須的核心元件,還有其他調(diào)控元件:(1)組織特異調(diào)控元件:as1(根系特異表達(dá)調(diào)控元件)、Skn-1_motif(胚乳特異表達(dá)調(diào)控元件);(2)應(yīng)答元件:TC-rich repeats(逆境脅迫反應(yīng)調(diào)控元件)、Box-W3(真菌應(yīng)答相關(guān)調(diào)控元件);(3)結(jié)合位點(diǎn):MBS(MYB轉(zhuǎn)錄因子的結(jié)合位點(diǎn))等(圖1)。
圖1 GmPAP4啟動(dòng)子調(diào)控元件預(yù)測(cè)Fig.1 Prediction of regulatory elements in GmPAP4 promoter sequence
2.2 啟動(dòng)子表達(dá)載體構(gòu)建及轉(zhuǎn)基因擬南芥獲得
利用HindⅢ/BamHⅠ將獲得的GmPAP4啟動(dòng)子片段(PAP4-pro,2 049 bp)替換pBI121載體上的35S-pro構(gòu)建 GmPAP4啟動(dòng)子驅(qū)動(dòng) GUS表達(dá)載體(PAP4-pro-GUS,圖2-a),經(jīng)轉(zhuǎn)化大腸桿菌Top10,HindⅢ/BamHⅠ對(duì)重組質(zhì)粒進(jìn)行雙酶切鑒定,表明PAP4-pro已替換pBI121中的35S-pro(圖2-b)。
將重組表達(dá)載體PAP4-pro-GUS導(dǎo)入根癌農(nóng)桿菌GV3101中,并通過農(nóng)桿菌介導(dǎo)法將該載體轉(zhuǎn)入擬南芥,利用跨載體引物PAP4-pro-GUS-F/R引物PCR(圖2-a)擴(kuò)增轉(zhuǎn) PAP4-pro-GUS擬南芥,電泳結(jié)果顯示目的片段大小為400 bp,與預(yù)期結(jié)果一致(圖3)。通過自交加代最終獲得轉(zhuǎn) PAP4-pro-GUS擬南芥 T3株系。
圖2 PAP4-pro-GUS載體構(gòu)建Fig. 2 Construction of PAP4-pro-GUS
圖3 轉(zhuǎn)PAP4-pro-GUS擬南芥PCR檢測(cè)Fig. 3 Detection of transgenic Arabidopsis plants with PAP4-pro-GUS by PCR
2.3 GmPAP4啟動(dòng)子組織器官表達(dá)特性分析
為了解GmPAP4啟動(dòng)子在不同時(shí)期和組織中的表達(dá)活性,分別對(duì)轉(zhuǎn)基因擬南芥T3的根、莖、葉、花進(jìn)行GUS染色。結(jié)果顯示,GUS染色遍布轉(zhuǎn)基因擬南芥整個(gè)根系且染色較深(圖4-e),莖、葉中僅有微管組織有較明顯GUS染色(圖4-f,圖4-g),花瓣微管組織中也能觀察到微弱GUS染色(圖4-h),而萌發(fā)種子未發(fā)現(xiàn)GUS染色(數(shù)據(jù)未列出)。這些結(jié)果預(yù)示著GmPAP4可能主要在根中表達(dá),參與根系周圍植酸磷的分解利用。
2.4 GmPAP4啟動(dòng)子植酸磷應(yīng)答分析
為研究不同磷處理?xiàng)l件下GmPAP4啟動(dòng)子表達(dá)特性,分別采用適磷、植酸磷兩種磷條件處理轉(zhuǎn)PAP4-pro-GUS擬南芥T3植株,并測(cè)定其根系GUS表達(dá)及活性。定量PCR結(jié)果顯示,與適磷處理相比,植酸磷處理?xiàng)l件下轉(zhuǎn)基因擬南芥根系 GUS表達(dá)提高了1.3倍(P<0.05,圖5-a);同時(shí)GUS活性測(cè)定顯示,與適磷處理相比植酸磷處理?xiàng)l件下轉(zhuǎn)基因擬南芥根系GUS活性提高了1.9倍(P<0.05,圖5-b)。結(jié)果表明,GmPAP4啟動(dòng)子能夠?qū)ν饨绛h(huán)境中的植酸磷處理作出響應(yīng),為揭示植酸磷處理?xiàng)l件下GmPAP4誘導(dǎo)表達(dá)提供了理論依據(jù)。
圖4 轉(zhuǎn)PAP4-pro-GUS擬南芥不同組織GUS染色分析Fig. 4 GUS staining in different tissues of transgenic Arabidopsis with PAP4-pro-GUS
圖5 不同磷處理下轉(zhuǎn)PAP4-pro-GUS擬南芥根系GUS基因表達(dá)及活性測(cè)定Fig. 5 GUS expression and activity measurement in roots of transgenic Arabidopsis with PAP4-pro-GUS under different phosphorus treatments
紫色酸性磷酸酶是一類水解酶,低磷條件下,植物根部的酸性磷酸酶活性提高,使植株根際周圍更多的有機(jī)磷催化變?yōu)闊o機(jī)磷供植物利用。植物基因啟動(dòng)子作為關(guān)鍵調(diào)控元件,其序列分布著多種與基因功能密切相關(guān)的調(diào)控元件,使基因能夠?qū)ν饨绛h(huán)境作出及時(shí)響應(yīng)。目前關(guān)于該類基因及其啟動(dòng)子研究主要限于模式植物,大豆中研究還有待開展[21-25]。前人通過對(duì)AtPAP15啟動(dòng)子研究發(fā)現(xiàn),轉(zhuǎn)基因植株根、莖、葉等組織都能觀察到GUS染色,脅迫反應(yīng)試驗(yàn)顯示,未發(fā)現(xiàn)該啟動(dòng)子在低磷條件下表達(dá)活性顯著提高[20]。DEL VECCHIO等[26]對(duì)AtPAP25啟動(dòng)子研究發(fā)現(xiàn),該啟動(dòng)子僅在葉片表達(dá),且低磷條件下 GUS染色增強(qiáng)。OsPAP10c啟動(dòng)子研究發(fā)現(xiàn),該啟動(dòng)子主要在植株根部表達(dá),且低磷條件能誘導(dǎo)基因增強(qiáng)表達(dá)[27]。河北農(nóng)業(yè)大學(xué)農(nóng)學(xué)院大豆育種創(chuàng)新團(tuán)隊(duì)克隆了大豆紫色酸性磷酸酶基因GmPAP4,該基因具有分解有機(jī)磷的活性,實(shí)時(shí)定量PCR分析顯示該基因在根部特異表達(dá),且能夠響應(yīng)有機(jī)磷脅迫[14]。本研究克隆了 GmPAP4啟動(dòng)子,通過轉(zhuǎn)PAP4-pro-GUS擬南芥GUS染色結(jié)果顯示,該啟動(dòng)子表達(dá)活性在不同組織存在較大差別,其中以轉(zhuǎn)基因植株根系表達(dá)活性最高,同時(shí)發(fā)現(xiàn),植酸磷脅迫條件下的轉(zhuǎn)基因擬南芥根系 GUS表達(dá)和活性都顯著高于適磷處理,這一結(jié)果與OsPAP10c啟動(dòng)子表達(dá)特性類似。
GNATATNC序列,作為磷饑餓誘導(dǎo)基因啟動(dòng)子上游的關(guān)鍵元件,能夠與 PHR1(作為磷調(diào)控網(wǎng)絡(luò)中的核心調(diào)控因子)特異結(jié)合,使基因?qū)Φ土篆h(huán)境作出響應(yīng)。擬南芥AtPHR1缺失抑制擬南芥中低磷應(yīng)答相關(guān)基因表達(dá),進(jìn)一步研究發(fā)現(xiàn),AtPHR1與下游磷饑餓誘導(dǎo)基因啟動(dòng)子序列上 GNATATNC序列結(jié)合影響了磷相關(guān)基因的表達(dá)[28]。ZHANG等[24]對(duì)水稻 27個(gè) PAP基因啟動(dòng)子生物信息學(xué)分析顯示,有 12個(gè)PAP啟動(dòng)序列中含有PIBS元件,且多位于啟動(dòng)子上游1 500 bp以內(nèi),如OsPAP10c啟動(dòng)子上游1 500 bp序列中含2個(gè)PIBS元件,同時(shí)多數(shù)基因啟動(dòng)子中PIBS元件個(gè)數(shù)與根系基因低磷誘導(dǎo)強(qiáng)度成正相關(guān)(各基因表達(dá)提高范圍為2.7—61.5倍)。然而GmPAP4啟動(dòng)子上游2 049 bp序列中未發(fā)現(xiàn)PIBS元件,前期試驗(yàn)表明,低磷脅迫下GmPAP4表達(dá)最高提高了4倍,因此推測(cè)GmPAP4可能不受PHR1的調(diào)控,而啟動(dòng)子序列中的防御脅迫應(yīng)答元件或許在誘導(dǎo)表達(dá)中發(fā)揮了關(guān)鍵作用。這與上述前人研究結(jié)果不一致,還需更多的試驗(yàn)數(shù)據(jù)作為支撐。
植物基因啟動(dòng)子按照表達(dá)模式不同,可分為組成型(如花椰菜花葉病毒啟動(dòng)子、玉米Ubiquitin啟動(dòng)子及根癌農(nóng)桿菌胭脂堿合成酶基因啟動(dòng)子)[29-31]、特異型(如根特異、花特異、種子特異啟動(dòng)子)[32-34]和誘導(dǎo)型(擬南芥rd29A、小麥Em基因啟動(dòng)子)[35-36],其中以組成型啟動(dòng)子在植物基因工程中應(yīng)用最多;但也伴隨著一些問題,如持續(xù)過表達(dá)外源基因引起的異源蛋白大量增加帶來的植物代謝平衡問題等。因此,采用組織特異型或誘導(dǎo)型基因啟動(dòng)子,實(shí)現(xiàn)外源基因的精準(zhǔn)控制更有利于轉(zhuǎn)基因植株的生長(zhǎng)。本研究克隆的GmPAP4啟動(dòng)子中含有根特異表達(dá)調(diào)控元件和脅迫應(yīng)答元件,若能夠通過后續(xù)試驗(yàn)驗(yàn)證并分離這些特異表達(dá)調(diào)控序列,可為植物基因工程提供新的特異型基因啟動(dòng)子元件。
獲得大豆紫色酸性磷酸酶GmPAP4上游2 049 bp的啟動(dòng)子片段,并構(gòu)建了融合 GUS的植物表達(dá)載體PAP4-pro-GUS。該啟動(dòng)子主要在根部表達(dá),且受低磷誘導(dǎo)。
[1] BUTLER J E F, KADONAGA J T. The RNA polymerase II core promoter: A key component in the regulation of gene expression. Genes & Development, 2002, 16(20): 2583-2592.
[2] BUTLER J E F, KADONAGA J T. Enhancer-promoter specificity mediated by DPE or TATA core promoter motifs. Genes & Development, 2001, 15(19): 2515-2519.
[3] SMALE S T, KADONAGA J T. The RNA polymerase II core promoter. Annual Review of Biochemistry, 2003, 72(1): 449-479.
[4] BREATHNACH R, CHAMBON P. Organization and expression of eukaryotic split genes coding for proteins. Annual Review of Biochemistry, 1981, 50(1): 349-383.
[5] LI D, ZHU H, LIU K, LIU X, LEGGEWIE G, UDVARDI M, WANG D. Purple acid phosphatases of Arabidopsis thaliana comparative analysis and differential regulation by phosphate deprivation. Journal of Biological Chemistry, 2002, 277(31): 27772-27781.
[6] HUR Y J, JIN B R, NAM J, CHUNG Y S, LEE J H, CHOI H K, YUN D J, YI G, KIM Y H, KIM D H. Molecular characterization of OsPAP2: Transgenic expression of a purple acid phosphatase up-regulated in phosphate-deprived rice suspension cells. Biotechnology Letters, 2010, 32(1): 163-170.
[7] 肖凱, 谷俊濤, HARRISON M, WANG Z Y. MtPAP1表達(dá)特性及異源表達(dá)對(duì)擬南芥有機(jī)態(tài)磷吸收的影響. 植物生理與分子生物學(xué)學(xué)報(bào), 2006, 32(1): 99-106.
XIAO K, GU J T, HARRISON M, WANG Z Y. Effects of MtPAP1 expression and heterologous expression on the absorption of organic phosphorus in Arabidopsis thaliana. Journal of Plant Physiology and Molecular Biology, 2006, 32(1): 99-106. (in Chinese)
[8] XIAO K, ZHANG J H, HARRISON M, WANG Z Y. Ectopic expression of a phytase gene from Medicago truncatula barrel medic enhances phosphorus absorption in plants. Journal of Integrative Plant Biology, 2006, 48(1): 35-43.
[9] WANG X R, WANG Y X, TIAN J, LIM B L, YAN X L, LIAO H. Overexpressing AtPAP15 enhances phosphorus efficiency in soybean. Plant Physiology, 2009, 151(1): 233-240.
[10] BOZZO G G, RAGHOTHAMA K G, PLAXTON W C. Purification and characterization of two secreted purple acid phosphatase isozymes from phosphate-starved tomato (Lycopersicon esculentum) cell cultures. European Journal of Biochemistry, 2002, 269(24): 6278-6287.
[11] LIANG C, TIAN J, LAM H M, LIM B L, YAN X L, LIAO H. Biochemical and molecular characterization of PvPAP3, a novel purple acid phosphatase isolated from common bean enhancing extracellular ATP utilization. Plant Physiology, 2010, 152(2): 854-864.
[12] LI C C, GUI S H, YANG T, WALK T, WANG X R, LIAO H. Identification of soybean purple acid phosphatase genes and their expression responses to phosphorus availability and symbiosis. Annals of Botany, 2012, 109(1): 275-285.
[13] LIAO H, WONG F L, PHANG T H, CHEUNG M Y, LI W Y F, SHAO G H, YAN X L, LAM H M. GmPAP3, a novel purple acid phosphatase-like gene in soybean induced by NaCl stress but not phosphorus deficiency. Gene, 2003, 318(318): 103-111.
[14] KONG Y, LI X, MA J, LI W L, YAN G J, ZHANG C Y. GmPAP4, a novel purple acid phosphatase gene isolated from soybean (Glycine max), enhanced extracellular phytate utilization in Arabidopsis thaliana. Plant Cell Reports, 2014, 33(4): 655-667.
[15] ROBINSON W D, PARK J, TRAN H T, DEL VECCHIO H A, YING S, ZINS J L, PATEL K, MCKNIGHT T D, PLAXTON W C. The secreted purple acid phosphatase isozymes AtPAP12 and AtPAP26 play a pivotal role in extracellular phosphate-scavenging by Arabidopsis thaliana. Journal of Experimental Botany, 2012, 63(18): 6531-6542.
[16] WANG L S, LI Z, QIAN W Q, GUO W L, GAO X, HUANG L L, WANG H, ZHU H F, WU J W, WANG D W, LIU D. The Arabidopsis purple acid phosphatase AtPAP10 is predominantly associated with the root surface and plays an important role in plant tolerance to phosphate limitation. Plant Physiology, 2011, 157(3): 1283-1299.
[17] 周小瓊, 丁一瓊, 左麗, 喻德躍. 大豆硫轉(zhuǎn)運(yùn)蛋白基因GmSULTR1;2b啟動(dòng)子的克隆及活性分析. 中國農(nóng)業(yè)科學(xué), 2015, 48(8): 1650-1659. ZHOU X Q, DING Y Q, ZUO L, YU D Y. Cloning and activity analysis of the promoter of sulfate transporter gene GmSULTR1;2b. Scientia Agricultura Sinica, 2015, 48(8): 1650-1659. (in Chinese)
[18] 雷建峰, 伍娟, 陳曉俊, 於添平, 倪志勇, 李月, 張巨松, 劉曉東.棉花花粉中高效轉(zhuǎn)錄U6啟動(dòng)子的克隆及功能分析. 中國農(nóng)業(yè)科學(xué), 2015, 48(19): 3794-3802.
LEI J F, WU J, CHEN X J, YU Q P, NI Z Y, LI Y, ZHANG J S, LIU X D. Cloning and functional analysis of cotton U6 promoter with high transcription activity in cotton pollen. Scientia Agricultura Sinica, 2015, 48(19): 3794-3802. (in Chinese)
[19] 黃方, 何慧, 遲英俊, 蓋鈞鎰, 喻德躍. 大豆GmTINY1基因的克隆與表達(dá)分析. 作物學(xué)報(bào), 2009, 35(12): 2174-2179.
HUANG F, HE H, CHI Y J, GAI J Y, YU D Y. Cloning and characterization of GmTINY1 gene in soybean (Glycine max). Acta Agronomica Sinica, 2009, 35(12): 2174-2179. (in Chinese)
[20] KUANG R, CHAN K H, YEUNG E, LIM B L. Molecular and biochemical characterization of AtPAP15, a purple acid phosphatase with phytase activity in Arabidopsis. Plant Physiology, 2009, 151(1): 199-209.
[21] SCARPELLA E, FRANCIS P, BERLETH T. Stage specific markers define early steps of procambium development in Arabidopsis leaves and correlate termination of vein formation with mesophyⅡdifferentiation. Development, 2004, 131(14): 3445-3455.
[22] SCHENK G, GE Y, CARRINGTON L E, WYNNE C J, SEARLE I R, CARROLL B J, HAMILTON S, DE JERSEY J. Binuclear metal centers in plant purple acid phosphatases: Fe-Mn in sweet potato and Fe-Zn in soybean. Archives of Biochemistry and Biophysics, 1999, 370(2): 183-189.
[23] OLCZAK M, MORAWIECKA B, WATOREK W. Plant purple acid phosphatases-genes, structures and biological function. Acta Biochimica Polonica, 2003, 50(4): 1245-1256.
[24] ZHANG Q, WANG C, TIAN J, LI K, SHOU H. Identification of rice purple acid phosphatases related to phosphate starvation signalling. Plant Biology, 2011, 13(1): 7-15.
[25] 李利華, 邱旭華, 李香花, 王石平, 練興明. 低磷脅迫水稻根部基因表達(dá)譜研究. 中國科學(xué)C輯: 生命科學(xué), 2009, 39(6): 549-558.
LI L H, QIU X H, LI X H, WANG S P, LIAN X M. Analysis of gene expression profile of rice roots under low phosphorus stress. Science in China Series C: Life Sciences, 2009, 39(6): 549-558. (in Chinese)
[26] DEL VECCHIO H A, YING S, PARK J, KNOWLES V L, KANNO S, TANOI K, SHE Y M, PLAXTON W C. The cell wall-targeted purple acid phosphatase AtPAP25 is critical for acclimation of Arabidopsis thaliana to nutritional phosphorus deprivation. The Plant Journal,2014, 80(4): 569-581.
[27] LU L H, QIU W M, GAO W W, TYERMAN S D, SHOU H X, WANG C. OsPAP10c, a novel secreted acid phosphatase in rice, plays an important role in the utilization of external organic phosphorus. Plant, Cell and Environment, 2016, 39(10): 2247-2259.
[28] NILSSON L, LUNDMARK M, JENSEN P E, NIELSEN T H. The Arabidopsis transcription factor PHR1 is essential for adaptation to high light and retaining functional photosynthesis during phosphate starvation. Physiologia Plantarum, 2012, 144(1): 35-47.
[29] CHRISTENSEN A H, SHARROCK R A, QUAIL P H. Maize polyubiquitin genes: Structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Molecular Biology, 1992, 18(4): 675-689.
[30] DEY N, MAITI I B. Structure and promoter/leader deletion analysis of mirabilis mosaic virus (MMV) full-length transcript promoter in transgenic plants. Plant Molecular Biology, 1999, 40(5): 771-782.
[31] ODELL J T, NAGY F, CHUA N H. Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature, 1985, 313(6005): 810-812.
[32] FLEMING A J, MANZARA T, GRUISSEM W, KUHLEMEIER C. Fluorescent imaging of GUS activity and RT-PCR analysis of gene expression in the shoot apical meristem. The Plant Journal, 1996, 10(4): 745-754.
[33] HAMILTON D A, SCHWARZ Y H, MASCARENHAS J P. A monocot pollen-specific promoter contains separable pollen-specific and quantitative elements. Plant Molecular Biology, 1998, 38(4): 663-669.
[34] JOHANSSON A M, WANG C, STENBERG A, HERTZBERG M, LITTLE C H, OLSSON O. Characterization of a PttRPS18 promoter active in the vascular cambium region of hybrid aspen. Plant Molecular Biology, 2003, 52(2): 317-329.
[35] KASUGA M, MIURA S, SHINOZAKI K, YAMAGUCHISHINOZAKI K. A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought-and low-temperature stress tolerance in tobacco by gene transfer. Plant and Cell Physiology, 2004, 45(3): 346-350.
[36] MARCOTTE W R, RUSSELL S H, QUATRANO R S. Abscisic acid-responsive sequences from the Em gene of wheat. The Plant Cell, 1989, 1(10): 969-976.
(責(zé)任編輯 李莉)
Construction and Activity Analysis of the Promoter of Purple Acid Phosphatase Gene GmPAP4 in Soybean
KONG YouBin, LI XiHuan, ZHANG CaiYing
(College of Agronomy, Agricultural University of Hebei/North China Key Laboratory for Germplasm Resources of Ministry of Education, Baoding 071001, Hebei)
【Objective】GmPAP4 promoter (PAP4-pro) was cloned, and its expression character was analyzed, thus providing a basis for research of regulatory mechanism of GmPAP4.【Method】On the basis of GmPAP4 (GenBank No. HQ162477) cDNA sequence and blasting the soybean reference genome, GmPAP4 promoter sequence was cloned with specific primers. The promoter regulatory elements were predicted through the online database PLACE and PlantCARE. PAP4-pro-GUS was constructed and transformed into Agrobacterium tumefaciens GV3101, which subsequently was transformed into Arabidopsis thaliana with Floral dip method. The T3transgenic plants were obtained by being screened with kanamycin (kan) and PCR amplification.【Result】GmPAP4 promoter was cloned, and its regulatory elements were analyzed using online databases PLACE and PlantCARE. The results showed that the promoter of GmPAP4 not only contained the core elements, but also contained the following elements: (1)tissue specific regulatory elements including as1 (root specific expression element), Skn-1_motif (endosperm specific expression element); (2): Response elements including TC-rich repeats (stress responsive elements), Box-W3 (fungal response related regulatory element); (3) binding sites including MBS (MYB binding sites of transcription factors), etc. The results of GUS staining showed that GmPAP4 promoter was mainly expressed in roots of transgenic Arabidopsis. The expression and activity of GUS measurement showed that GUS expression and GUS activity in roots of transgenic plants under phytate condition was, respectively, 1.3-fold (P<0.05) and 1.9-fold (P<0.05) than that under normal phosphorus condition.【Conclusion】Soybean GmPAP4 promoter was obtained in this study. According to GUS staining in different tissues and activity analysis under different phosphorus conditions, it was found that the promoter of GmPAP4 was mainly expressed in roots and significantly induced by low phosphorus signal.
soybean; GmPAP4; promoter; tissue specificity; response to phytate phosphorus starvation
2016-10-06;接受日期:2016-12-05
轉(zhuǎn)基因生物新品種培育科技重大專項(xiàng)(2014ZX0800404B)、河北省自然科學(xué)基金(C2014204035)
聯(lián)系方式:孔佑賓,E-mail:kong_1985@163.com。通信作者李喜煥,E-mail:lixihuan@hebau.edu.cn。通信作者張彩英,E-mail:cyzhang_60@126.com