余 艦, 張 揚(yáng), 晁迎九, 高 歌, 陳 昱, 顧大群
(安徽省立醫(yī)院神經(jīng)外科,安徽省腦立體定向神經(jīng)外科研究所,安徽 合肥 230036)
miRNA-21減輕氧糖剝奪對(duì)PC12細(xì)胞的損傷*
余 艦△, 張 揚(yáng), 晁迎九, 高 歌, 陳 昱, 顧大群
(安徽省立醫(yī)院神經(jīng)外科,安徽省腦立體定向神經(jīng)外科研究所,安徽 合肥 230036)
目的: 探討微小RNA(miRNA)-21對(duì)低氧缺血損傷PC12細(xì)胞的影響。 方法:體外培養(yǎng)PC12細(xì)胞,建立氧糖剝奪(OGD)損傷模型。細(xì)胞隨機(jī)分為對(duì)照組、OGD組、陰性對(duì)照序列+OGD組、miRNA-21 inhibitor+ OGD組和miRNA-21 mimic+OGD組。通過(guò)采用CCK-8、real-time PCR、Western blot等技術(shù)探討miRNA-21對(duì)OGD損傷PC12細(xì)胞的影響和機(jī)制。 結(jié)果:降低miRNA-21的表達(dá),受OGD損傷的PC12細(xì)胞活力明顯下降;增加miRNA-21的表達(dá),受OGD損傷的PC12細(xì)胞活力明顯增加。進(jìn)一步發(fā)現(xiàn)miRNA-21促進(jìn)OGD損傷PC12細(xì)胞的AKT磷酸化。 結(jié)論:miRNA-21明顯增加OGD損傷PC12細(xì)胞的活力,其機(jī)制可能與激活PI3K/AKT信號(hào)通路有關(guān)。
微小RNA-21; PI3K/AKT信號(hào)通路; 氧糖剝奪; PC12細(xì)胞
腦血管疾病一直是危害我國(guó)中老年人身體健康和生命安全的主要疾病,其中以缺血性卒中最為常見(jiàn),發(fā)病比例約70%,在缺血性卒中的病理生理學(xué)過(guò)程中,低氧缺血是造成腦組織損傷的主要因素。已知微小RNA(microRNA,miRNA)是一類(lèi)長(zhǎng)度為20~24個(gè)核苷酸的內(nèi)源性非編碼小RNA,在轉(zhuǎn)錄水平負(fù)性調(diào)控基因的表達(dá)[1]。而前期研究對(duì)缺血缺氧后大鼠大腦切片行miRNA基因芯片分析的結(jié)果提示缺血缺氧處理后miRNA-21表達(dá)量顯著上調(diào)[2]。本研究借助氧糖剝奪(oxygen-glucose deprivation,OGD)造成的低氧缺糖損傷細(xì)胞模型,探討miRNA-21對(duì)受血損傷的PC12細(xì)胞的保護(hù)作用。
1 材料
PC12細(xì)胞購(gòu)自上海細(xì)胞庫(kù);DMEM和胎牛血清(Gibco);LipofectamineTM2000及TRIzol(Invitrogen);SYBR Green Master Mix(TaKaRa);CCK-8試劑盒(Dojindo);抗p-AKT (Ser-473)、p-AKT (Thr-308) 多克隆抗體和AKT抗體(Cell Signaling Technology);抗β-actin抗體(Sigma)。
2 方法
2.1 細(xì)胞培養(yǎng)及分組 PC12細(xì)胞置于高糖DMEM(含10%胎牛血清、10 mmol/L HEPES和2 mmol/L谷氨酸),37 ℃、5% CO2狀態(tài)下培養(yǎng)。細(xì)胞隨機(jī)分為5組:對(duì)照組:僅進(jìn)行常規(guī)培養(yǎng);OGD組:無(wú)糖低氧條件下培養(yǎng)12 h;陰性對(duì)照(negative control, NC)+OGD組:瞬時(shí)轉(zhuǎn)染NC序列24 h后,無(wú)糖缺氧條件下培養(yǎng)12 h;miRNA-21 inhibitor+OGD組:瞬時(shí)轉(zhuǎn)染miRNA-21抑制物24 h后,無(wú)糖缺氧條件下培養(yǎng)12 h;miRNA-21 mimic+OGD組:瞬時(shí)轉(zhuǎn)染miRNA-21模擬物24 h后,無(wú)糖缺氧狀態(tài)下培養(yǎng)12 h。轉(zhuǎn)染過(guò)程根據(jù)LipofectamineTM2000說(shuō)明書(shū)進(jìn)行。
2.2 Real-time PCR檢測(cè)miRNA-21的表達(dá) 各組依照實(shí)驗(yàn)設(shè)計(jì)要求,按TRIzol說(shuō)明書(shū)抽取總RNA,分光光度法測(cè)定計(jì)算提取的總RNA含量及濃度,莖環(huán)法轉(zhuǎn)錄得到cDNA。采用SYBR Green法檢測(cè)各組miRNA-21的表達(dá)量,引物序列如表1所示。擴(kuò)增條件為:94 ℃ 5 min;94 ℃ 30s,55 ℃ 30s ,72 ℃ 90s,35~40個(gè)循環(huán)。每個(gè)樣品重復(fù)3次。
表1 Real-time PCR的引物序列
2.3 CCK-8法測(cè)定細(xì)胞活力 將PC12細(xì)胞以5×107/L密度接種于96孔板,每孔50 μL。于37 ℃、5% CO2條件下培養(yǎng)過(guò)夜,并依照實(shí)驗(yàn)要求每孔加CCK-8試劑10 μL,繼續(xù)培養(yǎng)4 h,用酶聯(lián)免疫儀在波長(zhǎng)450 mm處讀取吸光度。
2.4 Western blot檢測(cè)PI3K/AKT信號(hào)通路的激活 將PC12細(xì)胞接種于6孔板,按實(shí)驗(yàn)要求給予后,加入細(xì)胞裂解液,4 ℃裂解30 min,取蛋白液,采用BCA法進(jìn)行蛋白定量,總蛋白經(jīng)SDS-PAGE分離后,轉(zhuǎn)移到硝酸纖維膜,5%脫脂奶粉封閉2 h,隨后加入抗p-AKT、AKT和β-actin抗體(1∶1 000),4 ℃過(guò)夜,TBST洗滌3次,每次10 min,加入相應(yīng)HRP標(biāo)記的IgG,室溫2 h,加顯色試劑顯影、曝光,圖像分析軟件分析結(jié)果。
3 統(tǒng)計(jì)學(xué)處理
采用SPSS 19.0統(tǒng)計(jì)軟件進(jìn)行分析。實(shí)驗(yàn)數(shù)據(jù)以均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示,多組之間比較采用單因素方差分析及LSD-t檢驗(yàn),以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
1 miRNA-21表達(dá)量的檢測(cè)
Real-time PCR檢測(cè)各組miRNA-21的相對(duì)表達(dá)量,結(jié)果如圖1所示。和對(duì)照組相比,OGD組的miRNA-21表達(dá)明顯增加(P<0.05);轉(zhuǎn)染miRNA-21 mimic后miRNA-21的表達(dá)進(jìn)一步明顯增加(P<0.05);而miRNA-21 inhibitor+ OGD組與對(duì)照組比較無(wú)明顯差異。
Figure 1.The relative expression levels of miRNA-21 in the PC12 cells with different treatments detected by real-time PCR. Mean±SD.n=3.*P<0.05vscontrol group.
圖1 Real-time PCR檢測(cè)各組miRNA-21 的相對(duì)表達(dá)量
2 miRNA-21表達(dá)上升可增加低氧缺血PC12細(xì)胞的活力
如圖2所示,與對(duì)照組相比,OGD組PC12細(xì)胞活力明顯下降34.9%(P<0.05);與OGD組相比,miRNA-21 inhibitor+ OGD組細(xì)胞活力下降44.8%(P<0.05);與OGD組相比,miRNA-21 mimic+ OGD組細(xì)胞活力上升37.7%(P<0.05)。
Figure 2.The viability of the PC12 cells in each group detected by CCK-8 assay. Mean±SD.n=3.*P<0.05 control group;#P<0.05vsOGD.
圖2 CCK-8法檢測(cè)各組PC12細(xì)胞的活力
3 miRNA-21激活PI3K/AKT相關(guān)的信號(hào)通路
如圖3所示,OGD處理及轉(zhuǎn)染miRNA-21 inhibitor或mimic對(duì)總AKT表達(dá)無(wú)明顯影響;與對(duì)照組相比,降低miRNA-21表達(dá)抑制了OGD處理對(duì)PI3K/AKT信號(hào)通路的激活,但差異無(wú)統(tǒng)計(jì)學(xué)意義,而增加miRNA-21表達(dá)則進(jìn)一步增強(qiáng)低氧缺糖處理對(duì)PI3K/AKT信號(hào)通路的激活(P<0.05)。這些結(jié)果表明miRNA-21在低氧缺糖狀態(tài)下PC12細(xì)胞的PI3K/AKT信號(hào)通路激活過(guò)程中起著關(guān)鍵作用。
Figure 3.The effects of miRNA-21 on the activation of PI3K/AKT signaling pathway under hypoxia and glucose deprivation condition detected by Western blot. Mean±SD.n=3.*P<0.05vscontrol group;#P<0.05vsOGD.
圖3 Western blot法檢測(cè)低氧缺糖損傷狀態(tài)下miRNA-21對(duì)PI3K/AKT信號(hào)通路激活的影響
低氧缺糖損傷是神經(jīng)組織常見(jiàn)的損傷形式,可激發(fā)體內(nèi)多種應(yīng)激機(jī)制修復(fù)損傷而保護(hù)腦組織[3],在我們的前期研究中,胰島素樣生長(zhǎng)因子1分泌增加,及低氧誘導(dǎo)因子1α 和葡萄糖轉(zhuǎn)運(yùn)蛋白3表達(dá)上調(diào)均參與其保護(hù)機(jī)制[4-5]。PC12細(xì)胞是大鼠腎上腺嗜鉻細(xì)胞株,具有合成、代謝及運(yùn)輸神經(jīng)遞質(zhì)的特性,長(zhǎng)期被廣泛用于研究中樞神經(jīng)系統(tǒng)疾病的體外模型。動(dòng)物體內(nèi)成熟的單鏈miRNA先與一種核糖核蛋白結(jié)合形成復(fù)合物,再引導(dǎo)復(fù)合物結(jié)合到靶mRNA的3’-UTR,進(jìn)一步抑制mRNA的翻譯從而在轉(zhuǎn)錄水平負(fù)性調(diào)控基因的表達(dá)[6]。在外周和中樞神經(jīng)系統(tǒng)疾病如腦卒中的發(fā)病和潛在治療應(yīng)用過(guò)程中miRNA的作用的已經(jīng)被廣泛關(guān)注[7-11]。前期研究對(duì)缺血缺氧后大鼠大腦切片行miRNA基因芯片分析,結(jié)果提示缺血缺氧前后某些miRNA表達(dá)量顯著改變,包括miRNA-21、miRNA-34a、miRNA-30d和miRNA-9等[2, 12]。在神經(jīng)膠膠質(zhì)瘤細(xì)胞中發(fā)現(xiàn)miRNA-21表達(dá)水平增加5~100倍,抑制miRNA-21表達(dá)后caspase-3活性增加,膠質(zhì)細(xì)胞凋亡增加[13],表明miRNA-21與細(xì)胞凋亡密切相關(guān),最后我們將目標(biāo)鎖定于miRNA-21。
本實(shí)驗(yàn)通過(guò)建立PC12細(xì)胞的OGD模型,并通過(guò)轉(zhuǎn)染miRNA-21抑制劑或模擬物,發(fā)現(xiàn)低氧缺糖狀態(tài)下同時(shí)抑制miRNA-21表達(dá)進(jìn)一步降低細(xì)細(xì)胞活力,而miRNA-21過(guò)表達(dá)可增加低氧缺糖狀態(tài)下細(xì)胞活力。這些結(jié)果提示miRNA-21對(duì)保護(hù)低氧缺糖狀態(tài)下的PC12細(xì)胞起著重要的作用。本研究進(jìn)一步探討miRNA-21保護(hù)低氧缺糖狀態(tài)下的PC12細(xì)胞的具體機(jī)制。
miRNA-21可參與多種信號(hào)通路的激活,有報(bào)道表明miRNA-21可通過(guò)激活PI3K/AKT信號(hào)通路保護(hù)缺血再灌注的心肌細(xì)胞[14],同時(shí)我們先前的研究證明PI3K/AKT信號(hào)通路在保護(hù)低氧缺血損傷腦組織起著重要作用[4],但miRNA-21是否通過(guò)相同機(jī)制保護(hù)低氧缺糖損傷腦組織仍不明確。進(jìn)一步研究發(fā)現(xiàn)降低miRNA-21表達(dá)抑制了低氧缺糖處理對(duì)PI3K/AKT信號(hào)通路的激活,而增加了miRNA-21表達(dá)則進(jìn)一步增強(qiáng)低氧缺糖處理對(duì)PI3K/AKT信號(hào)通路的激活,這些結(jié)果表明miRNA-21在低氧缺糖狀態(tài)下PC12細(xì)胞的PI3K/AKT信號(hào)通路激活過(guò)程中起著關(guān)鍵作用。但miRNA-21激活PI3K/AKT信號(hào)通路后的下游相關(guān)蛋白及機(jī)制仍不明確,將是我們下一步研究的重要方向。綜上所述,在本研究中我們將miRNA-21調(diào)控的PI3K/AKT信號(hào)通路保護(hù)低氧缺血損傷PC12細(xì)胞的作用機(jī)制作為主要解決的科學(xué)問(wèn)題,研究成果有望為進(jìn)一步推動(dòng)藥物保護(hù)低氧缺血損傷腦組織新的靶點(diǎn)提供更充分理論依據(jù)。
[1] Wienholds E, Kloosterman WP, Miska E, et al. Micro-RNA expression in zebrafish embryonic development [J]. Science, 2005, 309(5732):310-311.
[2] Truettner JS, Alonso OF, Bramlett HM, et al. Therapeutic hypothermia alters microRNA responses to traumatic brain injury in rats[J]. J Cereb Blood Flow Metab, 2011, 31(9):1897-1907.
[3] Wang J, Tang Y, Zhang W, et al. Insulin-like growth factor-1 secreted by brain microvascular endothelial cells attenuates neuron injury upon ischemia[J]. FEBS J, 2013, 280(15):3658-3668.
[4] Yu J, Li J, Zhang S, et al. IGF-1 induces hypoxia-inducible factor 1α-mediated GLUT3 expression through PI3K/Akt/mTOR dependent pathways in PC12 cells [J]. Brain Res, 2012, 1430:18-24.
[5] 蔣廣義, 鄭傳宜, 余 艦, 等. 大鼠GLUT3啟動(dòng)子的克隆及其缺糖調(diào)控活性的測(cè)定[J]. 中國(guó)病理生理雜志, 2011, 27(11):2147-2151.
[6] Bartel DP. MicroRNAs: target recognition and regulatory functions[J]. Cell, 2009, 136(2):215-233.
[7] Soifer HS, Rossi JJ, Saetrom P. MicroRNAs in disease and potential therapeutic applications[J]. Mol Ther, 2007, 15(12):2070-2079.
[8] Kocerha J, Kauppinen S, Wahlestedt C. MicroRNAs in CNS disorders[J]. Neuromolecular Med, 2009, 11(3):162-172.
[9] Zeng L, Liu J, Wang Y, et al. MicroRNA-210 as a novel blood biomarker in acute cerebral ischemia[J]. Front Biosci (Elite Ed), 2011, 3:1265-1272.
[10]Yin KJ, Deng Z, Huang H, et al. MiR-497 regulates neuronal death in mouse brain after transient focal cerebral ischemia[J]. Neurobiol Dis, 2010, 38(1): 17-26.
[11]韓江全, 盧俊江, 向燦輝, 等. MicroRNA-155對(duì)糖尿病大鼠腦缺血損傷血管再生的調(diào)控[J]. 中國(guó)病理生理雜志, 2015, 31(2):354-358.
[12]Bhalala OG, Pan L, Sahni V, et al. MicroRNA-21 regulates astrocytic response following spinal cord injury[J]. J Neurosci, 2012, 32(50): 17935-17947.
[13]Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells[J]. Can-cer Res, 2005, 65(14):6029-6033.
[14]Tu YF, Wan L, Fan YH, et al. Ischemic postconditio-ning-mediated miRNA-21 protects against cardiac ische-mia/reperfusion injury via PTEN/Akt pathway [J]. PLoS One, 2013, 8(10):e75872.
(責(zé)任編輯: 盧 萍, 羅 森)
Effect of miRNA-21 on protection of PC12 cells from oxygen-glucose deprivation damage
YU Jian, ZHANG Yang, CHAO Ying-jiu, GAO Ge, CHEN Yu, GU Da-qun
(DepartmentofNeurosurgery,AnhuiProvincialHospital,BrainStereotacticNeurosurgeryInstituteofAnhuiProvince,Hefei230036,China.E-mail:yujianqi024@163.com)
AIM: To investigate the effect of microRNA (miRNA)-21 on the PC12 cells with hypoxic-ischemic damage.METHODS: The PC12 cells were culturedinvitro, and the cell model of oxygen-glucose deprivation (OGD) was established. In accordance with the following requirements, the cells were randomly divided into control group, OGD group, negative control sequence+OGD group, miRNA-21 inhibitor+OGD group and miRNA-21 mimic+OGD group. The effects and mechanism of miRNA-21 on the protection of PC12 cells from OGD damage were determined by CCK-8 assay, real-time PCR and Western blot.RESULTS: Decrease in the expression of miRNA-21 by transfection with miRNA-21 inhibitor inhibited the viavility of the PC12 cells subjected to OGD damage. Increase in the expression of miRNA-21 by transfection with miRNA-21 mimic promoted the viability of the PC12 cells subjected to OGD damage. It was further confirmed that miRNA-21 promoted the AKT phosphorylation in OGD-damaged PC12 cells.CONCLUSION: miRNA-21 significantly increases the viability of PC12 cells subjected to OGD damage, which may be related to the activation of PI3K/AKT signaling pathway.
MicroRNA-21; PI3K/AKT signaling pathway; Oxygen-glucose deprivation; PC12 cells
1000- 4718(2017)02- 0361- 04
2016- 09- 02
2016- 11- 28
安徽省自然科學(xué)基金資助項(xiàng)目(No. 1508085QH174)
R363
A
10.3969/j.issn.1000- 4718.2017.02.028
雜志網(wǎng)址: http://www.cjpp.net
△通訊作者 Tel: 0551-62284074; E-mail: yujianqi024@163.com