付苗++吳昌長
摘 要:基于彈塑性力學(xué)和有限元基本理論,針對(duì)一150m高聳鋼筋混凝土結(jié)構(gòu)煙囪定向爆破拆除工程,研究了該煙囪爆破拆除的力學(xué)條件、煙囪爆破傾覆時(shí)間、煙囪爆破傾覆時(shí)的支座內(nèi)力以及煙囪爆破傾覆時(shí)的本構(gòu)關(guān)系;采用有限元分析軟件ANSYS/LS-DYNA,通過分離式共節(jié)點(diǎn)建模,建立了高聳鋼筋混凝土煙囪有限元模型,并對(duì)煙囪爆破拆除過程進(jìn)行了有限元模擬。研究結(jié)果表明,論文提出的煙囪爆破傾覆歷程的本構(gòu)關(guān)系符合實(shí)際;論文建立的高聳鋼筋混凝土煙囪有限元爆破拆除分析模型合理;實(shí)際煙囪傾覆歷程、傾覆方位、傾覆長度與有限元數(shù)值模擬結(jié)果吻合較好。
關(guān)鍵詞:高聳鋼筋混凝土結(jié)構(gòu)煙囪;爆破拆除;數(shù)值模擬;本構(gòu)關(guān)系;有限元模型
Towering Reinforced Concrete Chimney by Directional Blasting Numerical simulation of overturning course
Fu Miao,Wu Chang-chang
(Department of Civil Engineering, Yunnan University, Kunming 650000)
Abstract: Based on the elastic-plastic finite element mechanics and basic theory, for a 150m tall reinforced concrete structure Chimney demolition, Demolition of the chimney studied mechanical condition, Chimney overturning time, Chimney overturning the bearing forces and chimney blasting overturning the constitutive; using finite element analysis software ANSYS/LS-DYNA, a total of nodes through separate modeling of reinforced concrete chimneys towering established finite element model, and the chimney blasting process by finite element simulation. The results show that, the paper proposed Chimney overturning realistic constitutive process; paper reinforced concrete chimneys towering established finite element analysis model Demolition reasonable; actual chimney overturning history, overturning position, overturning length and finite element numerical simulation results agree better.
Keywords: reinforced concrete structure towering chimneys; Blasting; numerical simulation; constitutive; finite element model
1.引言
隨著城市化進(jìn)程和產(chǎn)業(yè)升級(jí)的不斷推進(jìn),在城市建設(shè)和企業(yè)技術(shù)改造中,經(jīng)常要開展煙囪、水塔等廢棄高聳建筑物的控制性拆除爆破工作。拆除爆破既要達(dá)到預(yù)定拆除目的,又必須有效控制爆破振動(dòng)影響、飛石拋擲距離和破壞范圍等,以保障周圍環(huán)境安全[1]。目前,國內(nèi)外已廣泛應(yīng)用爆破方法拆除高聳建筑物,定向爆破拆除煙囪的高度已達(dá)210米[2]。
本文基于彈塑性力學(xué)和有限元基本理論,針對(duì)一150m高聳鋼筋混凝土結(jié)構(gòu)煙囪定向爆破拆除工程,對(duì)該煙囪爆破拆除的力學(xué)條件、煙囪爆破傾覆時(shí)間、煙囪爆破傾覆時(shí)的支座內(nèi)力以及煙囪爆破傾覆時(shí)的本構(gòu)關(guān)系進(jìn)行研究,并采用有限元分析軟件ANSYS/LS-DYNA,通過分離式共節(jié)點(diǎn)建模,建立高聳鋼筋混凝土煙囪有限元模型,對(duì)煙囪爆破拆除過程進(jìn)行了有限元模擬。
2.爆破拆除方案
煙囪爆破拆除的原理是在煙囪傾倒一側(cè)的煙囪支承筒壁底部炸開一個(gè)爆破缺口,破壞煙囪結(jié)構(gòu)穩(wěn)定性,導(dǎo)致整個(gè)結(jié)構(gòu)失穩(wěn)和重心外移,使煙囪在自重作用下形成傾覆力矩,進(jìn)而使煙囪按預(yù)定方向傾倒。若煙囪爆破缺口長度過短,上部結(jié)構(gòu)產(chǎn)生的傾覆力矩可能小于下部支撐結(jié)構(gòu)可以承受的彎矩,爆破時(shí)結(jié)構(gòu)不易發(fā)生破壞;若煙囪爆破缺口尺寸過長,下部支撐結(jié)構(gòu)不能承受上部結(jié)構(gòu)的自重,上部結(jié)構(gòu)將直接壓塌下部結(jié)構(gòu),影響煙囪倒塌方向,產(chǎn)生嚴(yán)重后果。因此煙囪爆破缺口尺寸對(duì)煙囪控制爆破拆除至關(guān)重要。
某電廠一個(gè)150m高度的鋼筋混凝土結(jié)構(gòu)煙囪,煙囪底部壁厚400mm,外徑為5.83m、內(nèi)徑為5.43m;110m高度處煙囪璧厚為180mm,外徑為3.68m、內(nèi)徑為3.5m;煙囪頂部壁厚200mm,外徑為2.905m、內(nèi)徑為2.705m;煙囪體積為1299.87m3,質(zhì)量為3.37966×106Kg,煙囪自重為33121KN。圖1為該電廠150m高度的鋼筋混凝土煙囪。
在爆破缺口中部長度7.5m范圍內(nèi),采用137發(fā)瞬發(fā)導(dǎo)爆管雷管,總裝藥量8.22kg;第二段起爆雷管布置在爆破缺口余下的炮孔,采用140發(fā)導(dǎo)爆管毫秒延期雷管,總裝藥量8.4kg。此外,為保證煙囪順利倒塌,在煙囪爆破缺口兩端各開設(shè)了1個(gè)高1.46m、長4m的三角形作為定向窗。
3.煙囪爆破傾覆時(shí)間歷程
煙囪爆破傾覆時(shí)間是煙囪爆破過程控制的一個(gè)重要因素,煙囪爆破傾覆時(shí)間可由煙囪傾覆過程的角加速度ε與煙囪傾覆過程的角速度求得,即:
在公式(1)中,dt為煙囪爆破傾覆時(shí)間。針對(duì)論文中150m高度的鋼筋混凝土結(jié)構(gòu)煙囪,其爆破傾覆時(shí)間為:
4.煙囪爆破拆除過程有限元模擬
4.1有限元模型
鑒于鋼筋混凝土煙囪由鋼筋和混凝土兩種不同性能的材料組成,采用分離式共節(jié)點(diǎn)有限元建模,可事先分別計(jì)算混凝土和鋼筋的單元?jiǎng)偠染仃?,然后統(tǒng)一集成到結(jié)構(gòu)整體剛度矩陣中,可按實(shí)際配筋劃分單元,并可在鋼筋混凝土之間嵌入粘結(jié)單元。因此,論文針對(duì)該150m高度鋼筋混凝土結(jié)構(gòu)煙囪,基于ANSYS/LS-DYNA有限元分析軟件[11],采用分離式有限元建模方法建立鋼筋混凝土煙囪有限元模型。論文建立的煙囪有限元整體模型如圖3所示。
建模過程時(shí),為模擬煙囪傾覆過程,通過在特定時(shí)間定義爆破缺口處材料失效的方法來模擬爆破缺口的形成。筒體之間以及筒體與地面之間采用自動(dòng)單面接觸,鋼筋與地面之間采用點(diǎn)面接觸模擬煙囪傾覆觸地。其中在ANSYS/LS-DYNA有限元分析軟件環(huán)境下可通過在K文件中加入使材料失效的命令流來模擬爆破形成缺口,并可修改K文件使煙囪筒體和缺口處的材料具有失效準(zhǔn)則功能。
4.2數(shù)值模擬結(jié)果
圖4為煙囪爆破傾覆歷程數(shù)值模擬結(jié)果,圖5為實(shí)際煙囪爆破傾覆歷程圖,圖6和圖7為有限元計(jì)算得到的煙囪頂部、質(zhì)心及缺口等不同部位在爆破傾覆過程中的位移、運(yùn)動(dòng)速度隨時(shí)間的變化曲線,圖8為有限元計(jì)算得到的煙囪爆破傾覆歷程不同時(shí)刻的煙囪等效應(yīng)力場分布圖。
由圖4和圖5可知,煙囪爆破傾覆歷程數(shù)值模擬結(jié)果與實(shí)際煙囪爆破傾覆過程吻合較好。由圖6和圖7可知,計(jì)算得到的煙囪頂部、質(zhì)心及缺口等不同部位在爆破傾覆過程中的位移、運(yùn)動(dòng)速度隨時(shí)間的變化情況較符合實(shí)際。圖7中煙囪頂部、質(zhì)心及缺口部位在爆破傾覆過程中的運(yùn)動(dòng)速度隨時(shí)間變化出現(xiàn)振動(dòng)是因?yàn)楸苾A覆初期煙囪筒體出現(xiàn)晃動(dòng),圖7中煙囪頂部、質(zhì)心及缺口部位運(yùn)動(dòng)速度在5.8秒出現(xiàn)突變是因?yàn)闊焽璞苾A覆過程中爆破缺口發(fā)生閉合,圖7中煙囪頂部、質(zhì)心及缺口部位運(yùn)動(dòng)速度在5.8秒出現(xiàn)躍變是因?yàn)闊焽璞苾A覆觸地造成的。
5.結(jié)論
(1)采用數(shù)值模擬方法對(duì)煙囪爆破拆除過程進(jìn)行模擬分析,可較全面地研究煙囪傾覆歷程、煙囪傾覆歷程的應(yīng)力、位移、煙囪傾覆時(shí)間和速度、煙囪爆破傾覆時(shí)的支座內(nèi)力等,可開展煙囪模擬爆破拆除實(shí)驗(yàn),以指導(dǎo)煙囪爆破拆除設(shè)計(jì)。
(2)采用有限元分析軟件ANSYS/LS-DYNA可模擬煙囪控制爆破拆除過程,采用分離式共節(jié)點(diǎn)有限元建模方法建模,實(shí)際煙囪傾覆歷程、傾覆方位、傾覆長度與有限元數(shù)值模擬結(jié)果吻合較好。
(3)論文提出的煙囪爆破傾覆歷程的本構(gòu)關(guān)系符合實(shí)際;論文采用的材料塑性隨動(dòng)硬化模型以及可Cowper-Symonds材料應(yīng)變率模型可較好地反應(yīng)煙囪爆破傾覆過程的鋼筋及混凝土材料力學(xué)性能。
(4)數(shù)值模擬結(jié)果與理論計(jì)算結(jié)果存在一定差別的主要原因是理論計(jì)算所采用的模型沒有考慮煙囪爆破過程形成的塑性鉸對(duì)煙囪傾覆運(yùn)動(dòng)的影響作用。數(shù)值模擬結(jié)果與實(shí)際煙囪爆破傾覆過程存在一定差別的主要原因是數(shù)值模擬所用材料參數(shù)與實(shí)際煙囪爆破傾覆過程材料力學(xué)性能存在偏差。
參考文獻(xiàn)
[1] 張成化、羅惠敏、謝斌等.城市改造建設(shè)中拆除爆破安全管理的幾點(diǎn)做法[J].采礦技術(shù),2001.11(5):178-179.
[2] 王希之、謝興博、譚雪剛等.210m高煙囪爆破拆除技術(shù).工程爆破,2011.17(2):53-55.
[3] 汪浩、鄭炳旭.拆除爆破綜合技術(shù)[J].工程爆破,2003.9(1):27-31.
[4] 葉海旺、薛江波、房澤法.基于LS-DYNA的磚煙囪爆破拆除模擬研究[J].爆破,2008.25(2):39-42.
[5] 言志信、葉振輝、劉培林、曹小紅.鋼筋混凝土高煙囪定向爆破拆除倒塌過程研究[J].振動(dòng)與沖擊,2011.30(9):197-210.
[6] 王斌、趙伏軍、林大能、谷建新.筒形薄壁建筑物爆破切口形狀的的有限元分析[J].采礦技術(shù),2005.9:95-97.123.
[7] 趙根、張文煊、李永池.鋼筋混凝土定向爆破參數(shù)與效果的DAA模擬[J].工程爆破,2006.12(3):19-21.49.
[8] 孫金山、盧文波、謝先啟.框架結(jié)構(gòu)建筑物拆除爆破模擬技術(shù)研究[J].工程爆破,2004,10(4):1-4.
[9] 王澤鵬、胡仁喜、康士廷.ANSYS13.0LS-DYNA非線性有限元分析實(shí)例指導(dǎo)過程[M].北京.機(jī)械工業(yè)出版社,2011.9.
【文章編號(hào)】1627-6868(2016)11-0009-03