于靜洋,李倩倩,焦楊,李秋莉
遼寧師范大學(xué) 生命科學(xué)學(xué)院 遼寧省植物生物技術(shù)重點(diǎn)實(shí)驗(yàn)室,遼寧 大連 116081
基因芯片技術(shù)篩選轉(zhuǎn)SlNAC1基因擬南芥差異表達(dá)基因
于靜洋,李倩倩,焦楊,李秋莉
遼寧師范大學(xué) 生命科學(xué)學(xué)院 遼寧省植物生物技術(shù)重點(diǎn)實(shí)驗(yàn)室,遼寧 大連 116081
研究已表明植物特有的一些NAC (NAM, ATAF1/2, CUC2) 轉(zhuǎn)錄因子可提高植物抗逆性,利用基因芯片技術(shù)篩選轉(zhuǎn)SlNAC1基因擬南芥與野生型擬南芥間差異表達(dá)基因,能夠?yàn)檠芯哭D(zhuǎn)基因擬南芥非生物脅迫抗性相關(guān)基因提供依據(jù)。結(jié)果顯示,在轉(zhuǎn)SlNAC1基因擬南芥43 604個(gè)基因中有3 046個(gè)差異表達(dá)2倍以上的基因。對(duì)差異表達(dá)5倍以上基因經(jīng)過(guò)GO富集度統(tǒng)計(jì)學(xué)分析表明,細(xì)胞組分相關(guān)基因占33.05%;分子功能相關(guān)基因占33.95%;生物學(xué)過(guò)程相關(guān)基因占33.00%。對(duì)差異表達(dá)2倍以上基因進(jìn)行KEGG信號(hào)通路分析,結(jié)果表明有2 431個(gè)基因涉及到88個(gè)不同的信號(hào)通路。通過(guò)篩選獲得轉(zhuǎn)基因擬南芥非生物脅迫抗性相關(guān)候選基因,為后續(xù)研究NAC轉(zhuǎn)錄因子的下游基因及其調(diào)控網(wǎng)絡(luò)的構(gòu)建提供方向和理論支撐。
差異表達(dá),轉(zhuǎn)基因,非生物脅迫抗性,轉(zhuǎn)錄因子,GO分析,KEGG
植物在生長(zhǎng)過(guò)程中不可避免地會(huì)受到生物脅迫 (由生物引起,如病菌、蟲害等) 或非生物脅迫 (由一系列過(guò)度或不足的物理、化學(xué)條件變化所引發(fā)的不利于植物生長(zhǎng)發(fā)育的影響因素,如干旱、高溫、冷害、凍害等),它們都能影響植物的生長(zhǎng)、發(fā)育而降低產(chǎn)量。植物根據(jù)特定的環(huán)境脅迫進(jìn)化出多種適應(yīng)性的分子機(jī)制 (通過(guò)激活或抑制特定靶基因改變其表達(dá)量)[1]來(lái)響應(yīng)不同的非生物脅迫。植物感知到脅迫后通過(guò)信號(hào)轉(zhuǎn)導(dǎo)來(lái)激活脅迫響應(yīng)相關(guān)基因的表達(dá),參與脅迫應(yīng)答基因表達(dá)調(diào)控的核心組件包括激酶、磷酸酶和轉(zhuǎn)錄因子 (Transcription factor) 等[2]。轉(zhuǎn)錄因子是能夠結(jié)合在某基因上游特異核苷酸序列上的蛋白質(zhì),這些蛋白質(zhì)能調(diào)控其下游基因的轉(zhuǎn)錄。WRKY、MYB、bZIP和NAC等多種轉(zhuǎn)錄因子都能參與調(diào)控植物生長(zhǎng)發(fā)育并提高植物抗逆性。
Souer等最先在矮牽牛Petunia hybrid V. 中分離出 NAC轉(zhuǎn)錄因子,命名為 NAM[3]。1997年 Aida等[4]報(bào)道了 NAC (NAM,ATAF1/2和CUC) 轉(zhuǎn)錄因子的結(jié)構(gòu)域,并命名為NAC。NAC轉(zhuǎn)錄因子是具有多種生物學(xué)功能的植物特有的轉(zhuǎn)錄因子[5],具有參與調(diào)控植物發(fā)育 (胚、莖尖、側(cè)根形成,生長(zhǎng)素信號(hào)轉(zhuǎn)導(dǎo)和葉片衰老等)[6-8]、抵抗生物脅迫[9]與非生物脅迫 (干旱、高鹽、低溫、高溫、高光、ABA)[10-12]等功能。在植物響應(yīng)生物、非生物脅迫過(guò)程中,NAC轉(zhuǎn)錄因子通過(guò)調(diào)控多個(gè)下游基因的表達(dá)提高植物抗逆性。擬南芥 Arabidopsis thaliana L. NAC 家族中的ANAC019、ANAC055和ANAC072轉(zhuǎn)錄因子通過(guò)調(diào)控MYB2和MYB108轉(zhuǎn)錄因子的表達(dá)響應(yīng)脅迫、調(diào)節(jié)葉片的衰老[13]。ANAC096轉(zhuǎn)錄因子通過(guò)調(diào)控RD29A的表達(dá)提高轉(zhuǎn)基因擬南芥干旱和滲透脅迫抗性[2]。ChIP-Seq數(shù)據(jù)顯示大豆Glycine max cv. Williams 中有72個(gè)基因可能受NAC轉(zhuǎn)錄因子調(diào)控,RNA-Seq結(jié)果表明受NAC轉(zhuǎn)錄因子調(diào)控的差異表達(dá)基因包括脂肪氧化酶基因、果膠甲酯酶抑制劑基因、DEAD/DEAH解旋酶基因等[14]。
實(shí)驗(yàn)室前期從遼寧堿蓬Suaeda liaotungensis K. 中克隆了 SlNAC1基因,通過(guò)農(nóng)桿菌轉(zhuǎn)化法獲得了轉(zhuǎn)SlNAC1基因擬南芥,轉(zhuǎn)SlNAC1基因提高了擬南芥在鹽、干旱、冷脅迫下的存活率[15],認(rèn)為轉(zhuǎn)SlNAC1基因擬南芥抗逆性增強(qiáng)。本文以轉(zhuǎn)SlNAC1基因擬南芥為實(shí)驗(yàn)材料,通過(guò)基因芯片技術(shù)篩選其與野生型擬南芥的差異表達(dá)基因,希望從差異表達(dá)基因中確定NAC轉(zhuǎn)錄因子調(diào)控的下游基因,進(jìn)而分析 NAC轉(zhuǎn)錄因子的調(diào)控網(wǎng)絡(luò)。
1.1 實(shí)驗(yàn)材料
野生型擬南芥Arabidopsis thaliana L. 為哥倫比亞生態(tài)型 (Columbia-0) (命名為 WT) 和轉(zhuǎn)SlNAC1基因擬南芥 (命名為L(zhǎng)2)。
1.2 擬南芥幼苗培養(yǎng)與取材
取適量的WT和L2種子分別用70%乙醇浸泡30 s,ddH2O沖洗3遍,再用10%次氯酸鈉浸泡5 min,ddH2O沖洗7遍。滅菌后的種子分別播種于MS培養(yǎng)基中,置于培養(yǎng)箱中培養(yǎng) (22 ℃,光照16 h,黑暗8 h),至6片葉子后將其轉(zhuǎn)移至含有蛭石的培養(yǎng)缽中。用清水澆灌幼苗,每5 d澆灌1次,20 d后取樣。分別從WT和L2擬南芥株系的3個(gè)植株中取材,每株取1片葉子,每個(gè)株系共取3片葉子,迅速置于液氮中,–80 ℃保存。
1.3 芯片實(shí)驗(yàn)
采用TaKaRa RNAiso Plus試劑盒分別提取WT和L2葉片總RNA。NanoDrop ND-2000分光光度計(jì)及 Agilent Bioanalyzer 2100檢測(cè)總RNA的質(zhì)量,對(duì)總RNA中的mRNA進(jìn)行放大、標(biāo)記,用RNeasy Mini Kit純化標(biāo)記后的cRNA。按照Agilent表達(dá)譜芯片配套的雜交標(biāo)準(zhǔn)流程和配套試劑盒進(jìn)行雜交和洗滌。完成雜交的芯片采用 Agilent Microarray Scanner進(jìn)行掃描。用Feature Extraction software 10.7讀取數(shù)據(jù),最后對(duì)質(zhì)控合格的數(shù)據(jù)采用 Gene Spring Software 12.6.1進(jìn)行歸一化處理,算法為Quantile。以Fold change≥2或Fold change≤0.5為標(biāo)準(zhǔn)篩選差異表達(dá)基因。本實(shí)驗(yàn)由上海伯豪生物技術(shù)有限公司完成,所用芯片為 Agilent擬南芥全基因組4×44K芯片,每個(gè)樣品各做一張芯片。在Agilent表達(dá)譜芯片實(shí)驗(yàn)中,用10次重復(fù)探針點(diǎn)信號(hào)的CV值來(lái)計(jì)算芯片的穩(wěn)定性和技術(shù)的穩(wěn)定性,其質(zhì)控標(biāo)準(zhǔn)是平均CV<10%,相關(guān)系數(shù)r2>0.95。
1.4 聚類分析
對(duì)差異表達(dá) 2倍以上基因中的 WRKY、DREB和MYB等轉(zhuǎn)錄因子運(yùn)用SAS在線分析系統(tǒng)進(jìn)行聚類分析,并用Tree View軟件來(lái)顯示聚類結(jié)果。
1.5 GO 富集分析
對(duì)差異表達(dá) 5倍以上基因進(jìn)行 GO富集分析,對(duì)細(xì)胞組分、分子功能和生物學(xué)過(guò)程中差異表達(dá)基因個(gè)數(shù)進(jìn)行統(tǒng)計(jì)并繪圖。滿足P<0.05條件的 GO term定義為在差異表達(dá)基因中顯著富集的GO term。
1.6 KEGG 富集分析
對(duì)差異表達(dá)2倍以上的基因進(jìn)行KEGG富集分析,把差異表達(dá)顯著的基因通路進(jìn)行富集(篩選的標(biāo)準(zhǔn)為P<0.05),統(tǒng)計(jì)涉及該通路的差異表達(dá)基因的個(gè)數(shù)、確定通路中的差異基因并對(duì)其進(jìn)行初步分析。
1.7 實(shí)時(shí)熒光定量PCR
為驗(yàn)證基因芯片結(jié)果的可靠性,根據(jù)差異表達(dá)基因的功能及差異表達(dá)倍數(shù),選擇5個(gè)差異表達(dá)基因 (上調(diào)表達(dá)基因4個(gè),下調(diào)表達(dá)基因1個(gè))進(jìn)行實(shí)時(shí)熒光定量 PCR。根據(jù)差異表達(dá)基因序列設(shè)計(jì)并合成引物 (由上海生工生物有限公司完成)。使用 PrimeScript?RT reagent Kit with gDNA Eraser (Perfect Real Time) 試劑盒(TaKaRa)進(jìn)行反轉(zhuǎn)錄。使用 TaKaRa SYBR?Premix Ex TaqTMⅡ (Tli RNaseH Plus) 試劑盒和 Thermal Cycler Dice Real time (TaKaRa) 進(jìn)行實(shí)時(shí)熒光定量PCR反應(yīng),以Atactin-2基因 (NM_112764)作為內(nèi)參基因。2-ΔΔCt法計(jì)算目的基因的相對(duì)表達(dá)量。每個(gè)樣品重復(fù)3次。
2.1 樣本總RNA提取與質(zhì)量檢測(cè)
提取樣本葉片總RNA并測(cè)定吸光度,WT樣本葉片總RNA濃度100.6 ng/μL,體積15 μL,總量 1.51 μg,A260/A280=1.85,28S/18S=1.4;L2樣本葉片總RNA濃度63.6 ng/μL,體積15 μL,總量 0.95 μg,A260/A280=1.88,28S/18S=1.6。樣本葉片總 RNA的 A260/A280吸光度比值均在1.8至2.0之間;樣本總RNA質(zhì)檢圖 (圖1) 顯示,各條帶清晰完整,且28S和18S條帶亮度接近2∶1,說(shuō)明提取的總RNA純度和完整性均較好,質(zhì)量檢測(cè)合格,達(dá)到后續(xù)的芯片實(shí)驗(yàn)要求。
2.2 芯片質(zhì)控與掃描
WT基因芯片 CV值為 7.35%,檢出率為58.67%;L2基因芯片CV值為6.02%,檢出率為59.01%。對(duì)芯片進(jìn)行熒光掃描,掃描圖 (圖 2)中雜交信號(hào)清晰、均衡且背景清晰,所以芯片結(jié)果真實(shí)可靠。
在野生型和轉(zhuǎn)SlNAC1基因擬南芥表達(dá)譜比較的線性歸一化后的散點(diǎn)圖 (圖 3) 中,X軸為WT熒光強(qiáng)度值,Y軸為L(zhǎng)2熒光強(qiáng)度值,每個(gè)數(shù)據(jù)點(diǎn)代表芯片上的一個(gè)基因點(diǎn)的雜交信號(hào)。絕大多數(shù)的點(diǎn)密集分布于 y=x直線附近灰色區(qū)域中,表示在WT與L2之間沒(méi)有明顯的差異,信號(hào)值差異Fold Change=1。落在圖形中位線兩側(cè)靠近Y軸的點(diǎn)表明該基因在L2中表達(dá)上調(diào),靠近X軸的點(diǎn)表明該基因在L2中表達(dá)下調(diào),信號(hào)值差異Fold Change>2。
圖 1 WT與 L2樣本總 RNA Agilent Bioanalyzer 2100質(zhì)檢圖Fig. 1 QC results of total RNA samples of WT and L2 Arabidopsis by Agilent Bioanalyzer 2100. Nt: nucleotide. FU: fluorescence value. (A) The fluorescence value of ladder under different nucleotide. (B) The fluorescence value of WT under different nucleotide. (C) The fluorescence value of L2 under different nucleotide. (D) QC results of total RNA samples of WT and L2.
圖2 WT (左) 與L2 (右) 基因芯片掃描圖Fig. 2 The results of gene chip scanning of WT (left) and L2 (right) Arabidopsis.
圖3 WT與L2芯片數(shù)據(jù)散點(diǎn)圖Fig. 3 Scatter plot of cluster expression between WT and L2.
2.3 差異表達(dá)基因統(tǒng)計(jì)
在轉(zhuǎn)SlNAC1基因擬南芥43 604個(gè)基因中檢測(cè)到3 046個(gè)基因差異表達(dá)2倍以上,上調(diào)與下調(diào)2倍以上基因的詳細(xì)分布情況見(jiàn)表1。其中,9個(gè)基因上調(diào) 30倍以上 (表 2),4個(gè)基因下調(diào)300倍以上 (表3)。
表1 轉(zhuǎn)SlNAC1基因擬南芥差異表達(dá)基因上調(diào)、下調(diào)倍數(shù)分布個(gè)數(shù)表Table 1 The number of genes up-regulated and down-regulated in transgenic SlNAC1 Arabidopsis from twice to the most compared to WT
表2 轉(zhuǎn)SlNAC1基因擬南芥差異表達(dá)上調(diào)30倍以上基因Table 2 The genes up-regulated more than 30 times in transgenic SlNAC1 Arabidopsis compared to WT
表3 轉(zhuǎn)SlNAC1基因擬南芥差異表達(dá)下調(diào)300倍以上基因Table 3 The genes down-regulated more than 300 times in transgenic SlNAC1 Arabidopsis compared to WT
2.4 聚類分析
在差異表達(dá) 2倍以上基因中,通過(guò)關(guān)鍵詞“WRKY”、“DREB”和“MYB”等檢索出 61個(gè)轉(zhuǎn)錄因子 (22個(gè)WRKY、5個(gè)bZIP、1個(gè)DREB、4個(gè)ERF、21個(gè)MYB、2個(gè)MYC、6個(gè)RAP) 進(jìn)行層級(jí)聚類分析。層級(jí)聚類分析圖 (圖 4) 中黑色代表該基因在兩個(gè)樣本中表達(dá)水平?jīng)]有變化,左上和右下的深色區(qū)域代表升高,右上和左下的淺色區(qū)域代表降低;顏色的深淺程度代表基因表達(dá)水平升高或降低的程度,可明顯看出深色、淺色形成顯著的4大塊,說(shuō)明兩組形成了明顯的聚類群。層級(jí)聚類分析顯示,基因表達(dá)存在著明顯不同的聚類。
圖4 61個(gè)差異表達(dá)轉(zhuǎn)錄因子聚類熱圖Fig. 4 The cluster heatmap of 61 differential expression transcription factors.
2.5 GO 富集分析
對(duì)轉(zhuǎn)SlNAC1基因擬南芥差異表達(dá)5倍以上的基因 (770個(gè)) 進(jìn)行GO富集分析,按主要的功能分類,細(xì)胞組分 (GO: 0005575 cellular component) 相關(guān)基因586個(gè),占33.05%;分子功能 (GO: 0003674 molecular function) 相關(guān)基因602個(gè),占33.95%;生物學(xué)過(guò)程 (GO: 0008150 biological process) 相關(guān)基因585個(gè),占33.00%。細(xì)胞組分主要涉及細(xì)胞、細(xì)胞成分和細(xì)胞器等;分子功能主要涉及參與催化活性、結(jié)合和轉(zhuǎn)錄調(diào)節(jié)活性等;生物學(xué)過(guò)程主要涉及細(xì)胞過(guò)程、新陳代謝和響應(yīng)刺激等 (圖5)。細(xì)胞組分相關(guān)基因經(jīng)富集統(tǒng)計(jì)差異不顯著 (P>0.05)。分子功能相關(guān)基因中,238個(gè)差異表達(dá)基因具有催化活性相關(guān)功能 (GO: 0003824 catalytic activity),富集統(tǒng)計(jì)差異極顯著 (P=0.0017);62個(gè)差異表達(dá)基因具有轉(zhuǎn)錄調(diào)節(jié)活性相關(guān)功能 (GO: 0030528 transcription regulator activity),富集統(tǒng)計(jì)差異顯著 (P=0.0132);14個(gè)差異表達(dá)基因具有酶調(diào)節(jié)活性功能 (GO: 0030234 enzyme regulator activity),富集統(tǒng)計(jì)差異顯著 (P=0.0342)。生物學(xué)過(guò)程相關(guān)基因中,142個(gè)差異表達(dá)基因響應(yīng)刺激 (GO: 0050896 response to stimulus),富集統(tǒng)計(jì)差異極顯著 (P=0);43個(gè)差異表達(dá)基因參與多個(gè)生物學(xué)過(guò)程 (GO: 0051704 multi-organism process),富集統(tǒng)計(jì)差異極顯著(P=0)。
圖5 差異表達(dá)基因GO分析圖Fig. 5 GO analysis graph of differentially expressed genes.
2.6 KEGG 信號(hào)通路分析
對(duì)3 046個(gè)差異表達(dá)基因進(jìn)行KEGG信號(hào)通路分析,這些基因涉及到 88個(gè)富集但差異顯著性不同的信號(hào)通路,其中差異極顯著 (P<0.01)的信號(hào)通路有7個(gè) (表4),差異顯著(0.01
2.7 實(shí)時(shí)熒光定量PCR驗(yàn)證差異表達(dá)基因
表4 差異表達(dá)基因KEGG富集分析 (P<0.01)Table 4 KEGG analysis of differentially expressed genes (P<0.01)
表5 實(shí)時(shí)熒光定量PCR與基因芯片的基因表達(dá)比較Table 5 The comparison of gene expression level between qRT-PCR and gene chip
為了驗(yàn)證基因芯片結(jié)果的可靠性,本研究挑選了5個(gè)差異表達(dá)基因 (上調(diào)表達(dá)基因4個(gè),下調(diào)表達(dá)基因1個(gè)) 進(jìn)行實(shí)時(shí)熒光定量PCR驗(yàn)證,結(jié)果顯示,雖然各基因的表達(dá)倍數(shù)在基因芯片和實(shí)時(shí)熒光定量PCR中不同,但是總體趨勢(shì)相同 (表5),因此基因芯片的結(jié)果可靠。
在植物生長(zhǎng)發(fā)育和響應(yīng)生物及非生物脅迫過(guò)程中,轉(zhuǎn)錄因子起著重要作用,通過(guò)調(diào)控多個(gè)下游基因的表達(dá)提高植物抗逆性。轉(zhuǎn)SlNAC1基因擬南芥3 046個(gè)差異表達(dá)2倍以上基因中共篩選到61個(gè)轉(zhuǎn)錄因子。植物中的MYB轉(zhuǎn)錄因子參與植物體內(nèi)的眾多生理反應(yīng),能調(diào)控植物的生長(zhǎng)發(fā)育,誘導(dǎo)植物參與非生物脅迫的應(yīng)答。NAC轉(zhuǎn)錄因子ANAC019和ANAC055通過(guò)調(diào)控MYB2、MYB21、MYB108、MYB112和MYB116的表達(dá)提高擬南芥抗逆性[13],推測(cè) SlNAC1可能通過(guò)調(diào)控MYB6 (上調(diào)2.37倍)、MYB30 (上調(diào)3.23倍)、MYB96 (上調(diào)2.17倍)和MYB105 (上調(diào)4.57倍) 等MYB轉(zhuǎn)錄因子基因的表達(dá)提高轉(zhuǎn)基因擬南芥抗逆性。WRKY是植物特有的轉(zhuǎn)錄因子之一,具有參與植物生長(zhǎng)發(fā)育、生物和非生物脅迫響應(yīng)和激素信號(hào)轉(zhuǎn)導(dǎo)等多種生物學(xué)功能,擬南芥WRKY57轉(zhuǎn)錄因子參與調(diào)控外源植物激素茉莉酸和生長(zhǎng)素所介導(dǎo)的植物葉片衰老信號(hào)途徑之間的交叉調(diào)控通路[16],在轉(zhuǎn)SlNAC1基因擬南芥中,SlNAC1調(diào)控WRKY22 (上調(diào)6.80倍)、WRKY28 (上調(diào)6.04倍)、WRKY53 (上調(diào)6.02倍) 和WRKY56 (上調(diào)6.04倍) 等的表達(dá),共同調(diào)控?cái)M南芥生長(zhǎng)的抗逆性。
堿性亮氨酸拉鏈 (Basic region leucine zipper motif, bZIP) 類轉(zhuǎn)錄因子普遍存在于動(dòng)植物及微生物中,參與植物生長(zhǎng)、種子成熟、衰老等生物學(xué)過(guò)程,能提高植物抵抗各種不良環(huán)境(病原體入侵、高溫、冷害、高鹽等) 的能力[17-18],推測(cè)SlNAC1通過(guò)調(diào)控bZIP5 (上調(diào)31.72倍) 等 bZIP類轉(zhuǎn)錄因子基因的表達(dá)提高轉(zhuǎn)基因擬南芥抗逆性。植物營(yíng)養(yǎng)貯存蛋白質(zhì) (Vegetative storage proteins, VSP) 是植物防御相關(guān)的重要蛋白之一,在擬南芥中發(fā)現(xiàn)VSP1和VSP2兩種,受機(jī)械創(chuàng)傷、茉莉酸、昆蟲的咬食和滲透脅迫等誘導(dǎo)[19-20]。在轉(zhuǎn)SlNAC1基因擬南芥中,VSP1和VSP2基因分別下調(diào)表達(dá)1081.32、452.33倍,有可能會(huì)導(dǎo)致轉(zhuǎn)基因擬南芥防御能力降低。
KEGG富集分析表明,植物激素信號(hào)轉(zhuǎn)導(dǎo)、植物病原體相互作用、苯丙氨酸代謝、DNA復(fù)制等 7個(gè)信號(hào)通路富集度極顯著。植物激素具有參與調(diào)控種子萌發(fā)、細(xì)胞分裂、組織和器官建成、開(kāi)花與結(jié)實(shí)等作用[21],不同種類植物激素間相互作用對(duì)植物的生長(zhǎng)發(fā)育至關(guān)重要。MYC2是bHLH (Basic-helix-loop-helix) 轉(zhuǎn)錄因子家族成員,參與調(diào)控茉莉酸信號(hào)通路與其他植物激素 (脫落酸、水楊酸、赤霉素和生長(zhǎng)素)間的交叉對(duì)話,MYC2還調(diào)節(jié)茉莉酸介導(dǎo)的蟲害和病原體防御反應(yīng)[22]。MYC2參與植物激素信號(hào)轉(zhuǎn)導(dǎo)通路,SlNAC1可能通過(guò)調(diào)控MYC2 (上調(diào)2.26倍) 的表達(dá)影響植物激素信號(hào)轉(zhuǎn)導(dǎo)通路,影響轉(zhuǎn)基因擬南芥的抗逆性。MYC2參與植物病原體相互作用通路,SlNAC1可能通過(guò)調(diào)控MYC2的表達(dá)影響植物病原體相互作用通路,增強(qiáng)轉(zhuǎn)基因擬南芥的抗病性。SlNAC1與ANAC062和ANAC091同屬于TIP亞家族[23],ANAC062、ANAC091能提高擬南芥抗病性[24-26],推測(cè)SlNAC1可能具有抗病功能。
目前關(guān)于NAC調(diào)控網(wǎng)絡(luò)的研究報(bào)道較少,本文以轉(zhuǎn) SlNAC1基因和野生型擬南芥為實(shí)驗(yàn)材料,利用基因芯片技術(shù)篩選出與脅迫相關(guān)的差異表達(dá)基因、轉(zhuǎn)錄因子及相關(guān)的代謝通路。SlNAC1通過(guò)調(diào)控這些相關(guān)基因的表達(dá)提高轉(zhuǎn)基因擬南芥的抗逆性。
REFERENCES
[1] Wang ZY, Dane F. NAC (NAM/ATAF/CUC) transcription factors in different stresses and their signaling pathway. Acta Physiol Plant, 2013, 35(5): 1397-1408.
[2] Xu ZY, Kim SY, Hyeon DY, et al. The Arabidopsis NAC transcription factor ANAC096 cooperates with bZIP-type transcription factors in dehydration and osmotic stress responses. Plant Cell, 2013, 25(11): 4708-4724.
[3] Souer E, van Houwelingen A, Kloos D, et al. The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell, 1996, 85(2): 159-170.
[4] Aida M, Ishida T, Fukaki H, et al. Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell, 1997, 9(6): 841-857.
[5] Riechmann JL, Heard J, Martin G, et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science, 2000, 290(5499): 2105-2110.
[6] Takasaki H, Maruyama K, Takahashi F, et al. SNAC-As, stress-responsive NAC transcription factors, mediate ABA-inducible leaf senescence. Plant J, 2015, 84(6): 1114-1123.
[7] He X, Qu BY, Li WJ, et al. The nitrate-inducible NAC transcription factor TaNAC2-5A controls nitrate response and increases wheat yield. Plant Physiol, 2015, 169(3): 1991-2005.
[8] Ning YQ, Ma ZY, Huang HW, et al. Two novel NAC transcription factors regulate gene expression and flowering time by associating with the histone demethylase JMJ14. Nucleic Acids Res, 2015, 43(3): 1469-1484.
[9] Wang FT, Lin RM, Feng J, et al. TaNAC1 acts as a negative regulator of stripe rust resistance in wheat, enhances susceptibility to Pseudomonas syringae, and promotes lateral root development in transgenic Arabidopsis thaliana. Front Plant Sci, 2015, 6: 108-124.
[10] Sakuraba Y, Kim YS, Han SH, et al. The Arabidopsis transcription factor NAC016 promotes drought stress responses by repressing AREB1 transcription through a trifurcate feed-forward regulatory loop involving NAP. Plant Cell, 2015, 27(6): 1771-1787.
[11] Sakuraba Y, Piao W, Lim JH, et al. Rice ONAC106 inhibits leaf senescence and increases salt tolerance and tiller angle. Plant Cell Physiol, 2015, 56(12): 2325-2339.
[12] Yang X, Hu YX, Li XL, et al. Molecular characterization and function analysis of SlNAC2 in Suaeda liaotungensis K. Gene, 2014, 543(2): 190-197.
[13] Hickman R, Hill C, Penfold CA, et al. A local regulatory network around three NAC transcription factors in stress responses and senescence in Arabidopsis leaves. Plant J, 2013, 75(1): 26-39.
[14] Shamimuzzaman M, Vodkin L. Genome-wide identification of binding sites for NAC and YABBY transcription factors and co-regulated genes during soybean seedling development by ChIP-Seq and RNA-Seq. BMC Genomics, 2013, 14(1): 477-493.
[15] Li XL, Yang X, Hu YX, et al. A novel NAC transcription factor from Suaeda liaotungensis K. enhanced transgenic Arabidopsis drought, salt, and cold stress tolerance. Plant Cell Rep, 2014, 33(5): 767-778.
[16] Jiang YJ, Liang G, Yang SZ, et al. Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid- and auxin-mediated signaling in jasmonic acid-induced leaf senescence. Plant Cell, 2014, 26(1): 230-245.
[17] Nijhawan A, Jain M, Tyagi AK, et al. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol, 2008, 146(2): 333-350.
[18] Jakoby M, Weisshaar B, Dr?ge-Laser W, et al. bZIPtranscription factors in Arabidopsis. Trends Plant Sci, 2002, 7(3): 106-111.
[19] Berqer S, Mitchell-Olds T, Stotz HU. Local and differential control of vegetative storage protein expression in response to herbivore damage in Arabidopsis thaliana. Physiol Plant, 2002, 114(1): 85-91.
[20] Liu Y, Ahn JE, Datta S, et al. Arabidopsis vegetative storage protein is an anti-insect acid phosphatase. Plant Physiol, 2005, 139(3): 1545-1556.
[21] Waadt R, Hsu PK, Schroeder JI. Abscisic acid and other plant hormones: methods to visualize distribution and signaling. Bioessays, 2015, 37(12): 1338-1349.
[22] Kazan K, Manners JM. MYC2: the master in action. Mol Plant, 2013, 6(3): 686-703.
[23] Ooka H, Satoh K, Doi K, et al. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res, 2003, 10(6): 239-247.
[24] Truman W, de Zabala MT, Grant M. Type III effectors orchestrate a complex interplay between transcription networks to modify basal defence responses during pathogenesis and resistance. Plant J, 2006, 46(1): 14-33.
[25] Yang ZT, Lu SJ, Wang MJ, et al. A plasma membrane-tethered transcription factor, NAC062/ ANAC062/NTL6, mediates the unfolded protein response in Arabidopsis. Plant J, 2014, 79(6): 1033-1043.
[26] Ren T, Qu F, Morris TJ. HRT gene function requires interaction between a NAC protein and viral capsid protein to confer resistance to turnip crinkle virus. Plant Cell, 2000, 12(10): 1917-1926.
(本文責(zé)編 郝麗芳)
Gene chip analysis of differentially expressed genes in transgenic SlNAC1 Arabidopsis
Jingyang Yu, Qianqian Li, Yang Jiao, and Qiuli Li
College of Life Science, Liaoning Normal University, Dalian 116081, Liaoning, China
Studies have shown that some plant-specific NAC (NAM, ATAF1/2, CUC2) transcription factors may increase plants resistance to stress. We screened the genes differentially expressed in transgenic SlNAC1 Arabidopsis compared to the wild type by cDNA microarry, to provide scientific basis for studying the genes related to abiotic stress responses intransgenic Arabidopsis. There were 3 046 genes differentially expressed more than twice in the total 43 604 genes of transgenic SlNAC1 Arabidopsis. Gene ontology analysis was used on genes differentially expressed more than five-fold. Genes relevant to cellular components occupied 33.05%, genes correlated with molecular function accounted for 33.95% and genes pertinent to biological process constituted a 33.00% portion. The genes differentially expressed more than twice were processed through kyoto encyclopedia of genes and genomes pathways enrichment (KEGG) analysis. The total 2 431 genes were involved in 88 different signaling pathways. The screened genes related to abiotic stress responses provide direction and theoretical support for the following research on the downstream genes regulated by NAC and construction of the regulatory networks.
differential expression, transgenosis, abiotic stress resistance, transcription factor, Gene ontology analysis, KEGG
Qiuli Li. Tel/Fax: +86-411-85827073; E-mail: skyliqiuli@163.com
10.13345/j.cjb.160230
Received: June 14, 2016; Accepted: September 19, 2016
Supported by: National Natural Science Fundation of China (No. 31340052), Scientific Research Project of Liaoning Province Education Department (No. L201683655).
國(guó)家自然科學(xué)基金 (No. 31340052),遼寧省教育廳科技研究項(xiàng)目 (No. L201683655) 資助。
時(shí)間:2016-09-26
http://www.cnki.net/kcms/detail/11.1998.Q.20160926.1501.003.html
于靜洋, 李倩倩, 焦楊, 等. 基因芯片技術(shù)篩選轉(zhuǎn)SlNAC1基因擬南芥差異表達(dá)基因. 生物工程學(xué)報(bào), 2017, 33(1): 111–121.
Yu JY, Li QQ, Jiao Y, et al. Gene chip analysis of differentially expressed genes in transgenic SlNAC1 Arabidopsis. Chin J Biotech, 2017, 33(1): 111–121.