王 亞,來慶學(xué),朱軍杰,梁彥瑜
(南京航空航天大學(xué) 材料科學(xué)與技術(shù)學(xué)院,江蘇省能量轉(zhuǎn)換材料與技術(shù)重點實驗室,江蘇 南京 211106)
金屬-空氣電池陰極雙功能催化劑研究進(jìn)展
王 亞,來慶學(xué),朱軍杰,梁彥瑜*
(南京航空航天大學(xué) 材料科學(xué)與技術(shù)學(xué)院,江蘇省能量轉(zhuǎn)換材料與技術(shù)重點實驗室,江蘇 南京 211106)
可充電金屬-空氣電池因具有超高的能量密度被認(rèn)為是最有發(fā)展前景的能源存儲與轉(zhuǎn)換裝置之一.陰極電化學(xué)氧還原/生成反應(yīng)緩慢動力學(xué)是影響金屬-空氣電池性能的關(guān)鍵因素,因此其充放電過程需要雙功能催化劑進(jìn)行催化.在此我們詳細(xì)論述了近年來開發(fā)的新型雙功能催化劑,包括貴金屬、碳材料、過渡金屬氧化物和復(fù)合材料.其中,強耦合過渡金屬氧化物/納米碳復(fù)合物成為新一代具有高催化活性的氧催化材料.最后,基于目前所存在的問題提出了幾個未來可能的研究方向.
金屬-空氣電池;空氣陰極;雙功能催化劑;氧還原/生成反應(yīng)
能源和環(huán)境是現(xiàn)代社會面臨的兩大問題[1-3],可再生能源轉(zhuǎn)換是顯著降低化石燃料依賴的有效解決方案.目前,各國致力于提高各式電化學(xué)能源存儲與轉(zhuǎn)換裝置的容量和穩(wěn)定性,可充電鋰離子電池由于循環(huán)壽命長(>5 000圈)和能量轉(zhuǎn)換效率高(>90%)等優(yōu)點被認(rèn)為是最有前途的存儲技術(shù),但是能量密度低(理論值約400 Wh·kg-1)限制其長期應(yīng)用[4-5],因此,開發(fā)高能量密度的存儲技術(shù)迫在眉睫.金屬-空氣電池由于能量密度高、成本低和環(huán)境友好受到廣泛關(guān)注.金屬-空氣電池(圖1)具有開放的電池結(jié)構(gòu)[6],能持續(xù)供應(yīng)陰極活性材料(氧氣),因此具備超高的理論比能量密度(11 700 Wh·kg-1),是鋰離子電池的幾十倍,甚至能與汽油能源系統(tǒng)(13 000 Wh·kg-1)媲美[7-8],金屬-空氣電池是最有發(fā)展前景的能源存儲裝置之一.
圖1 可充電金屬-空氣電池示意圖[6]Fig.1 Schematic illustrations of a typical regenerative metal-air battery[6]
盡管金屬-空氣電池的研究已取得較大進(jìn)展,仍面臨很多挑戰(zhàn),主要包括陽極的利用率低和陰極的動力學(xué)過程緩慢、過電勢高和可逆性差,導(dǎo)致實際能量密度低[9],而且陰極反應(yīng)機理仍不是很明晰.毫無疑問,空氣電極是目前影響金屬-空氣電池性能的關(guān)鍵因素.圖2所示是典型的金屬-空氣電池充放電循環(huán)示意圖[10],氧還原反應(yīng)(ORR)和氧生成反應(yīng)(OER)的過電勢嚴(yán)重降低了金屬-空氣電池的輸出功率和循環(huán)效率.因此,想要發(fā)揮金屬-空氣電池的全部潛能,首先要闡明基礎(chǔ)的氧化學(xué)過程,其次發(fā)展高性能、低成本的雙效氧電極降低ORR和OER過電勢.為此,研究者們致力于探究陰極反應(yīng)機理,發(fā)展高效的雙功能催化劑材料和設(shè)計合理的電極結(jié)構(gòu).
本文主要介紹金屬-空氣電池的原理以及近年來取得的重大進(jìn)展,重點論述雙功能催化劑材料的種類和發(fā)展.內(nèi)容如下:1)陰極電化學(xué)反應(yīng)的基本原理,2)雙功能催化劑的種類和發(fā)展,3)未來的挑戰(zhàn)和發(fā)展.本文的目的是對極具發(fā)展前景的金屬-空氣電池進(jìn)行深入的理解.
圖2 金屬-空氣電池充放電循環(huán)示意圖[10]Fig.2 Discharge-charge loop for a metal-air battery[10]
金屬-空氣電池由金屬陽極、空氣陰極和電解液組成.不同種類的金屬-空氣電池涉及不同的電化學(xué)反應(yīng)和產(chǎn)物,取決于選擇的金屬、電解質(zhì)和催化材料[11-12].本節(jié)內(nèi)容中,金屬-空氣電池基礎(chǔ)的氧電化學(xué)反應(yīng)機理分為兩類:水系電解液體系和非水系電解液體系.
1.1 水系電解液體系
在酸性電解液中,金屬(例如Li、Mg、Zn)會發(fā)生劇烈反應(yīng),產(chǎn)生氫氣,同時釋放大量的熱,導(dǎo)致嚴(yán)重的陽極腐蝕和復(fù)雜的熱管理.而且,有些電催化材料在強酸環(huán)境下不穩(wěn)定,因此,金屬-空氣電池通常使用堿性電解液.在堿性電解液中,放電反應(yīng)如下:
氧的電化學(xué)過程相當(dāng)復(fù)雜,涉及一系列多步電子轉(zhuǎn)移的電化學(xué)反應(yīng)[13-16].目前普遍認(rèn)為,金屬表面進(jìn)行的ORR一般有兩種途徑:四電子轉(zhuǎn)移和二電子轉(zhuǎn)移.當(dāng)ORR按二電子轉(zhuǎn)移途徑反應(yīng)時,產(chǎn)物中除了有氫氧根離子外,還產(chǎn)生大量過氧化物,降低ORR效率,而且過氧化物具有強氧化作用,損壞電池隔膜而影響循環(huán)壽命,因此對于水系電解液而言,四電子轉(zhuǎn)移是實現(xiàn)高效ORR的主要途徑.此外, ORR路徑和機制會隨使用的催化材料發(fā)生改變.金屬-空氣電池充電時空氣電極發(fā)生的OER是ORR的逆過程,反應(yīng)機制也取決于電極材料.典型的OER催化劑二氧化釕(RuO2)和二氧化銥(IrO2)具有相當(dāng)高的活性,低的氧化電勢(約1.39和1.35 Vvs.RHE)[17]和高的導(dǎo)電性.一些過渡金屬氧化物也是高效的OER催化劑,尤其是尖晶石型氧化物(例如NiCo2O4),具體電化學(xué)活性將在第2部分討論.
1.2 非水系電解液體系
水系電解液體系具有廉價、來源廣泛和高離子電導(dǎo)率等優(yōu)點.但是,在水介質(zhì)中發(fā)生的電化學(xué)過程受析氫和析氧的限制具有較窄的電位區(qū)間,導(dǎo)致金屬-空氣電池實際電壓遠(yuǎn)低于高的理論電壓.而且金屬和水之間的反應(yīng)很危險[18-22].因此,非水系電解液金屬-空氣電池成為研究熱點.發(fā)生反應(yīng)如下(以鋰-空為例):
和水介質(zhì)中發(fā)生的ORR一樣,非質(zhì)子電解液里發(fā)生的陰極反應(yīng)也涉及多步反應(yīng).根據(jù)電化學(xué)分析,LAOIRE等提出以下可能的陰極反應(yīng)[23-24]:
除了上述機理外,催化劑表面性質(zhì)也對陰極反應(yīng)路徑產(chǎn)生很大的影響.通過比較有機電解液中玻碳電極、多晶Au和Pt電極的循環(huán)伏安曲線,LU等[25]表明還原機理和放電產(chǎn)物可能與催化劑有關(guān),認(rèn)為氧分子首先接受一個電子形成超氧自由基,該自由基與Li+結(jié)合生成表面吸附的LiO2.當(dāng)催化劑表面的吸附氧鍵能較弱時(例如碳),LiO2能快速得到電子還原為Li2O2;而當(dāng)吸附氧鍵能較強時(例如Pt),電子轉(zhuǎn)移受到阻礙,LiO2更易還原為Li2O.因此,催化劑的選擇對反應(yīng)歷程起著非常重要的作用.催化劑依賴的ORR活性[26-28]和路徑表明復(fù)合催化材料電極機制的研究可能比較復(fù)雜,催化劑的篩選應(yīng)予以更多關(guān)注.
金屬-空氣電池的氧電化學(xué)是極其復(fù)雜的過程,ORR和OER反應(yīng)受電解液、電極材料等影響.深入了解反應(yīng)機理、機理/活性與催化劑間的關(guān)系是理解金屬-空氣電池充放電起源的關(guān)鍵,對發(fā)展高活性空氣電極也具有重要的指導(dǎo)意義.
眾所周知,雙功能催化劑可以降低充放電反應(yīng)的過電勢,從而提高循環(huán)性能.雙功能催化劑通過兩種方式催化ORR和OER,一種是組合多功能組分,通過協(xié)同作用降低過電勢;另一種是對ORR和OER起到雙催化作用的單組分催化劑[29].近年來,發(fā)展雙功能催化劑已取得重大成就,大致分為以下4種:1)貴金屬及其合金,2)碳材料,3)過渡金屬氧化物,4)復(fù)合材料.
2.1 貴金屬及其合金
貴金屬催化劑Pt、Au、Ag、Pd等應(yīng)用的較多.貴金屬的d電子軌道通常都未填滿,表面易吸附反應(yīng)物且強度適中,因而具有很高的催化活性,同時還具有抗氧化、耐腐蝕和耐高溫等優(yōu)良特性,被認(rèn)為是最好的化學(xué)反應(yīng)催化劑.但貴金屬成本高且資源短缺,阻礙金屬-空氣電池產(chǎn)業(yè)化,這就要求在降低貴金屬用量的同時保證高活性和穩(wěn)定性,因此國內(nèi)外在貴金屬合金方面進(jìn)行了大量研究.
YANG課題組系統(tǒng)研究貴金屬在非水系鋰-空電池的應(yīng)用,發(fā)現(xiàn)Au/C能有效催化ORR而Pt/C能有效催化OER(圖3).有趣的是,PtAu/C展現(xiàn)出優(yōu)異的雙功能活性,以及在可充電鋰-氧電池中具有高的循環(huán)性能[30].KO等[31]合成各種碳支撐的金屬及其合金(Pt、Pd、Ir、Ru、Pt-Pd、Pd-Ir和Pt-Ru),并將其作為鋰-空電池陰極催化劑.Pt-Ru、Pt-Pd和Pd-Ir電流密度為0.2 mA·cm-2時的初始放電容量分別是346、153和135 mAh·g-1,因此,他們研究表明不同金屬合金催化劑產(chǎn)生與純金屬催化劑不同的行為特征.為了降低貴金屬成本,還可以用便宜的過渡金屬修飾Pt.例如:KIM等[32]合成碳支撐的Pt3Co合金納米材料,電流密度為100 mA·g-1時,Pt3Co/KB、Pt/KB和 KB的過電勢分別為135、635和1 085 mV.作者認(rèn)為提升的性能與Pt催化位點最外層LiO2減小的吸附能有關(guān),同時,合金催化劑趨于產(chǎn)生無定型Li2O2,在充電過程中更易分解.LEE等[33]基于密度泛函理論研究Pt-Cu合金催化劑的電化學(xué)性能,與Pt (111)和Pt3Cu (111)相比,PtCu (111)顯著降低鋰氧電池ORR/OER過電勢,由于PtCu (111)表面帶較多的負(fù)電荷,與Li-O中間體的結(jié)合力較弱.這是首次表明充電過電勢受合金催化劑表面電荷特征影響,為設(shè)計高效的鋰氧電池催化劑提供新思路.
盡管貴金屬及其合金在電化學(xué)活性和穩(wěn)定性方面都是最高效的催化劑,成本高和資源稀缺阻礙其商業(yè)化.因此,需要探索和研究具有低成本、高活性和穩(wěn)定性的電催化材料.為此提出兩種不同的方案:通過增加貴金屬的利用率減少催化劑載量;發(fā)展非貴金屬電催化劑.與貴金屬催化劑相比,非貴金屬催化劑由于高豐度和低成本廣受關(guān)注.
圖3 (a) C和PtAu/C在0.04 mA·cm-2下第三圈充放電曲線,(b) C (電流密度85 mA·g-1) 和Au/C、Pt/C和PtAu/C (電流密度100 mA·g-1) 首次充放電曲線[30]Fig.3 (a) Charge/discharge profiles of carbon and PtAu/C in the third cycle at 0.04 mA·cm-2,(b) First charge/discharge profiles of carbon at 85 mA·g-1 and of Au/C,Pt/C,and PtAu/C at 100 mA·g-1 [30]
2.2 碳材料
碳材料具有高導(dǎo)電性和大比表面積,已廣泛應(yīng)用在金屬-空氣電池,通常作為電極材料構(gòu)造有孔的電極,也可以作為催化ORR/OER雙功能催化劑[34].與ORR不同,碳表面OER具體的反應(yīng)機理尚不明確,而且碳材料在OER高壓下電化學(xué)性能不穩(wěn)定,但碳基催化劑的發(fā)展持續(xù)順利推進(jìn).碳材料可以劃分為以下3類:商業(yè)碳材料、功能化碳材料和摻雜的碳,下面將給予詳細(xì)的討論.
2.2.1 商業(yè)碳材料
商業(yè)碳材料(例如導(dǎo)電炭黑、科琴黑KB、Vulcan XC-72和BP 2000等)已被研究為非水系金屬-空氣電池的陰極材料[35-37].MEINI等[38]報道了碳材料的表面積與放電容量有著密切聯(lián)系.例如:碳材料Vulcan XC72 和 BP 2000的表面積依次為240 和1 509 m2·g-1,對應(yīng)的放電容量分別是183和 517 mAh·g-1.
商業(yè)碳材料作為金屬-空氣電池的陰極具有可行性,但在投入實際應(yīng)用前也面臨許多問題,例如:低的放電電壓、高的充電電壓、差的倍率性能和循環(huán)性能[39-41].因此,商業(yè)碳材料通常作為非水系金屬-空氣電池陰極導(dǎo)電劑或者催化劑載體,而不是反應(yīng)位點[42-44].
2.2.2 功能化碳材料
不同于商業(yè)碳材料高OER電位下發(fā)生碳腐蝕導(dǎo)致催化活性衰減,功能化碳材料在非水系金屬-空氣電池陰極反應(yīng)中展現(xiàn)出優(yōu)異的性能,由于其獨特的結(jié)構(gòu)和大量的缺陷/空位.功能化碳材料包括一維(1D)納米管、2D石墨和石墨烯、3D納米多孔結(jié)構(gòu)碳.
碳納米管(CNTs)包括單壁碳納米管[45]和多壁碳納米管[46],已被研究為非水系金屬-空氣電池陰極材料,具有高化學(xué)和熱穩(wěn)定性、高強度和高導(dǎo)電性等優(yōu)點.TIAN等[47]報道CNT@NCNT作為高效的無金屬納米碳電催化劑,碳納米管由于高比表面作為全面暴露表面活性位的平臺,褶皺的摻氮碳層外延生長在圓柱形CNT外表面,此獨特的結(jié)構(gòu)使其表面聚集活性位,降低ORR/OER間過電勢,成為有前景的雙功能電催化劑.
石墨烯是由碳原子構(gòu)成的單層二維蜂窩狀晶格結(jié)構(gòu)的一種新型碳材料,具有大表面積(理論上單層是2 630 m2·g-1)、高導(dǎo)電性以及熱和化學(xué)穩(wěn)定性等優(yōu)點[48-50],近年來石墨烯由于放電容量高和循環(huán)效率高已成為有前景的金屬-空氣電池陰極材料.YOO和ZHOU[51]以無金屬石墨烯納米片(GNS)作為混合可充電鋰-氧電池的催化劑,其充放電間過電勢只有0.56 V,表明GNSs能有效降低ORR和OER過電勢,此高性能來源于邊緣和表面缺陷位引起的sp3雜化,這些邊緣和表面缺陷利于空氣中的氧氣分解為氧原子,然后遷移到GNS表面,與H2O分子結(jié)合形成OH-.
對于非水系鋰-空電池而言,不溶性放電產(chǎn)物L(fēng)i2O2堆積在空氣電極活性位處會堵塞孔,從而降低電池性能.因此,研究者們致力于優(yōu)化非水系鋰-空電池空氣電極的微觀結(jié)構(gòu)[52].SAKAUSHI等[53]用SiO2模板法制備介孔摻氮的碳,具有高的雙功能ORR/OER活性和穩(wěn)定性,在鋰-空電池中展現(xiàn)出極低的充電過電勢(0.45 V),是目前鋰-空電池非貴金屬催化劑中過電勢最低值.其實,電極結(jié)構(gòu)的設(shè)計對于提高能量轉(zhuǎn)換過程尤為重要[54-56].多孔碳材料通常用粘合劑緊密聚集在電極上,導(dǎo)致低的O2擴散率和有限的Li2O2沉積空間,最終引發(fā)碳材料低的利用率以及鋰-氧電池低的容量和倍率性能.為此,ZHANG課題組[56]原位溶膠凝膠法構(gòu)造自支撐分級多孔的碳(FHPC),最大化多孔碳材料的利用率和反應(yīng)物的傳輸.圖4a展示最初泡沫鎳的大孔骨架,原位合成后碳薄片垂直于骨架表面(圖4b),形成相互連接的通道貫穿整個電極,高倍放大圖觀察到碳薄片由無數(shù)小的納米孔組成(圖4c和4d).FHPC作為鋰-氧電池陰極展現(xiàn)出高的比容量和優(yōu)異的倍率性能.電流密度為0.2 mA·cm-2時,容量高達(dá)11 060 mAh·g-1,是商業(yè)KB碳的兩倍;甚至當(dāng)電流密度為2 mA·cm-2時,容量達(dá)到2 020 mAh·g-1(圖4e).FHPC如此卓越的性能來源于自支撐結(jié)構(gòu)疏松填充的碳,為Li2O2沉積提供充足的空隙容積且增加碳的有效利用.同時,分級多孔結(jié)構(gòu)加速O2擴散、電解液的浸潤和反應(yīng)物的物質(zhì)傳輸.類似的,ZHU等[57]用酚醛樹脂作為碳源,通過簡單碳化法在泡沫鎳上直接生長碳納米管(CNT/NF),具有高的倍率性能和杰出的循環(huán)穩(wěn)定性.
圖4 SEM圖:(a) 初始泡沫鎳,(b-d) FHPC電極,(e) FHPC電極電流密度從0.2 mA·cm-2到2 mA·cm-2的放電曲線[56]Fig.4 SEM images of (a) the pristine nickel foam,(b-d) the FHPC electrode,(e) Discharge curves of FHPC electrode at different current densities ranging from 0.2 mA·cm-2 to 2 mA·cm-2 [56]
2.2.3 摻雜碳
碳材料摻雜定量的非金屬元素(例如N、B、S、P)可以提升電化學(xué)性能,因為異原子摻雜會改變碳材料的化學(xué)和電子性質(zhì)[58-60],形成缺陷和官能團(tuán)[61].
碳納米管具有高比表面積,能充分地暴露活性位點,且嵌入氮會引入活性位點,參與氧分子O-O鍵的斷裂.YADAV等[62]通過改變前驅(qū)體和生長條件制備不同直徑的竹狀碳氮納米管(CNNTs),發(fā)現(xiàn)ORR/OER性能與納米管直徑和氮官能團(tuán)都密切相關(guān),摻氮降低CNNTs氧吸附能且增強導(dǎo)電性.因此,需協(xié)調(diào)納米管直徑和氮官能團(tuán)兩種因素以獲得高效的雙功能催化劑.LI等[63]通過氨氣熱處理化妝棉合成3D彎曲多孔的摻氮碳微管海綿(NCMT),由中空多孔的石墨化碳微管相互交錯而成,如此獨特的結(jié)構(gòu)提供高密度活性位和快速電子轉(zhuǎn)移能力,因此NCMT是迄今為止最杰出的ORR/OER催化劑,在柔性能源存儲與轉(zhuǎn)換領(lǐng)域有巨大的應(yīng)用前景.
異原子摻雜能有效提升石墨烯作為雙功能催化劑的電化學(xué)穩(wěn)定性.LI等[61]首次介紹摻氮的石墨烯納米片(N-GNSs)應(yīng)用于鋰-空電池,電流密度為75、150 和300 mA·g-1時的放電容量分別為11 660、6 640 和 3 960 mAh·g-1,遠(yuǎn)超越純GNSs電極.摻雜其他元素(例如B、P和S)也可以增強電催化活性.VINEESH等[64]用B4C作為前驅(qū)體制備高產(chǎn)量的摻硼石墨烯(B-G),展現(xiàn)出優(yōu)異的雙功能催化活性.B4C結(jié)構(gòu)轉(zhuǎn)化為石墨烯的過程還伴隨著原位摻雜B,形成來源于非電催化活性材料的電催化活性材料,擴展在各種能源相關(guān)技術(shù)的應(yīng)用前景.近來,共摻雜已成為提高碳活性的研究方案.QU等[65]簡單熱解氧化石墨烯、聚多巴胺和2-巰基乙醇混合物制備N、S共摻雜介孔碳納米片,展現(xiàn)出優(yōu)異的雙功能活性.DAI等[66]在植酸存在下熱解聚苯胺氣凝膠大規(guī)模生產(chǎn)三維氮磷共摻介孔碳泡沫(NPMC),展現(xiàn)出優(yōu)異的ORR和OER電催化性能.ORR和OER過電勢分別為0.44 V和0.39 V,都低于最優(yōu)的催化劑(圖5a,5b),而且在可充電鋅-空電池中展現(xiàn)出卓越的穩(wěn)定性(循環(huán)600圈,圖5d).通過密度泛函理論表明N、P共摻雜和石墨烯邊緣缺陷對雙功能電催化活性至關(guān)重要.XIA等[67]發(fā)現(xiàn)一個特性描述符可以準(zhǔn)確地描述共摻雜碳納米材料的ORR/OER性能,認(rèn)為共摻雜碳基催化劑性能的提升來源于雙摻雜物間的相互作用.當(dāng)兩個異原子摻雜在石墨結(jié)構(gòu)里且彼此接近時,p電子云發(fā)生重疊且相互作用,在相鄰碳原子上產(chǎn)生比單元素?fù)诫s更多的活性位,從而降低ORR/OER過電勢,表明共摻雜是發(fā)展高活性無金屬碳基雙功能催化劑的有效途徑.
圖5 摻N、P石墨烯 (a) ORR和 (b) OER過電勢對OH* 吸附能和對 O*、OH* 吸附能差異的火山圖, 鋅-空電池空氣電極NPMC-1000 (c) 充放電極化曲線和 (d) 充放電循環(huán)曲線 (電流密度2 mA·cm-2) [66]Fig.5 (a) ORR and (b) OER volcano plots of overpotential η versus adsorption energy of OH* and the difference between the adsorption energy of O* and OH* for N,P-doped graphene,(c) Charge and discharge polarization curves and (d) Discharge/charge cycling curves of Zn-air battery using NPMC-1000 for the air electrodes at a current density of 2 mA·cm-2[66]
2.3 過渡金屬氧化物
過渡金屬氧化物具有高豐度、低成本和環(huán)境友好等優(yōu)點,已廣泛應(yīng)用為金屬-空氣電池陰極催化劑.過渡金屬元素具有多價態(tài),可以形成各種不同晶體結(jié)構(gòu)的氧化物.本節(jié)中將根據(jù)過渡金屬氧化物的組分和結(jié)構(gòu)介紹4種氧化物電催化劑.
2.3.1 單金屬氧化物
錳氧化物由于價態(tài)可變、結(jié)構(gòu)豐富和環(huán)境友好已廣受關(guān)注.OGASAWARA等[68]在2006年首次將MnO2引入鋰-空電池陰極,自此以后許多研究致力于評估和優(yōu)化MnOx作為空氣電極催化劑[69-72].晶體結(jié)構(gòu)、形貌和結(jié)構(gòu)等影響錳氧化物催化性能的因素將在本節(jié)予以討論.
MnO2由于具有多種晶相和形貌被廣泛研究為陰極催化劑.MENG等[73]研究MnO2不同的晶體結(jié)構(gòu)(α-MnO2、β-MnO2、δ-MnO2和無定型MnO2(AMO))對雙功能氧催化活性的影響(圖6a).此外,各種形貌的MnO2(例如納米線、納米片和納米顆粒)在合成不同晶體結(jié)構(gòu)MnO2時被合成(圖6b-g).ORR/OER活性順序:α-MnO2> AMO >β-MnO2>δ-MnO2(圖6h和i),表明晶體結(jié)構(gòu)和形貌是決定氧電化學(xué)整體活性的重要因素.為了進(jìn)一步提高M(jìn)nO2的催化性能,結(jié)構(gòu)修飾已經(jīng)被發(fā)展和探究.ZHANG等[74]以普魯士藍(lán)類配合物為前驅(qū)體合成分級多孔的δ-MnO2納米盒,形成的電極具有低過電勢、高倍率性能和優(yōu)異循環(huán)穩(wěn)定性,歸因于分級多孔的結(jié)構(gòu)和大比表面積.除此以外,ZHENG等[75]基于密度泛函理論研究α-MnO2表面,發(fā)現(xiàn)表面氧位點比暴露的金屬位點發(fā)揮更重要的作用.表面氧密度越大,Li2O2分散越均勻,形成顆粒小,利于ORR和OER.此報道為非質(zhì)子鋰-氧電池ORR催化機制提供新視角.
其他形式的錳氧化物也被應(yīng)用為金屬-空氣電池陰極催化劑.例如:GORLIN 等[76]制備納米結(jié)構(gòu)的錳氧化物(Ⅲ)薄膜,雙功能性能與貴金屬媲美,利用原位X射線吸收光譜研究MnxOy的活性位,發(fā)現(xiàn)無序相Mn3Ⅱ,Ⅲ,ⅢO4利于ORR,而混合的MnⅢ,Ⅳ氧化物與OER活性相關(guān),表明催化劑表面的氧化態(tài)對于促進(jìn)高活性至關(guān)重要.KUO等[77]強調(diào)表面結(jié)晶度對電催化活性的影響,制備八面體納米顆粒、納米花和納米多豆莢結(jié)構(gòu)的MnO.其中,更易暴露(100)面的納米多豆莢的ORR/OER催化性能都優(yōu)于納米花結(jié)構(gòu)的MnO.
圖6 (a) MnO2各種晶相示意圖,MnO2納米結(jié)構(gòu)SEM圖:(b) α-MnO2-HT (水熱合成),(c) α-MnO2-SF (無溶劑合成), (d) 摻Ni的α-MnO2-HT (無溶劑合成),(e) AMO (無定型),(f) β-MnO2,(g) δ-MnO2,(h) ORR和 (i) OER極化曲線(在O2飽和的0.1 mol/L KOH溶液里,掃描速率5 mV·s-1和1 600 rpm轉(zhuǎn)速下獲得) [73]Fig.6 (a) Various crystal phases of manganese oxide,SEM images of manganese oxide nanostructures:(b) α-MnO2-HT (hydrothermal synthesis),(c) α-MnO2-SF (solvent-free synthesis),(d) Ni-doped α-MnO2-HT (solvent-free synthesis),(e) AMO (amorphous),(f) β-MnO2 and (g) δ-MnO2,(h) ORR and (i) OER polarization curves of MnO2 nanostructures obtained at 1 600 rpm with a scan rate of 5 mV·s-1 in O2-saturated 0.1 mol/L KOH solution[73]
2.3.2 尖晶石型金屬氧化物
尖晶石型氧化物的通式是AB2O4,其中A是二價金屬離子(例如Mg、Fe、Co、Ni、Mn、Zn),B是三價金屬離子(例如Al、Fe、Co、Cr、Mn).尖晶石型氧化物由于制備簡易、形貌多變和穩(wěn)定性高成為最受關(guān)注的金屬基雙功能催化劑之一.
Co3O4作為高效ORR/OER雙功能催化劑備受關(guān)注,由于多價態(tài)鈷離子充當(dāng)可逆吸-脫附氧過程中給-受體吸附位,具有雙功能活性[78].RIAZ等[79]制備納米片、納米針和納米花形貌的Co3O4電極,發(fā)現(xiàn)性能與Co3O4電極的結(jié)構(gòu)密切相關(guān).電流密度為20 mA·gcatalyst-1時的放電容量增加順序依次為:納米片(1 127 mAh·gcatalyst-1)< 納米花(1 930 mAh·gcatalyst-1)< 納米針(2 280 mAh·gcatalyst-1).ZHANG等[80]以普魯士藍(lán)類配合物納米立方體為前驅(qū)體合成分級多孔的Co3O4納米盒,在鋰-氧電池中展現(xiàn)出低過電勢、高倍率性能和優(yōu)異循環(huán)穩(wěn)定性.WU等[81]水熱合成自支撐分級多孔Co3O4超薄納米片,具有低過電勢和優(yōu)異的循環(huán)性能.納米片排列形成的大孔使得活性物質(zhì)與電解液充分接觸以及提供足夠的Li2O2存儲空間,介孔提供充足的ORR/OER催化活性位.基于這些研究表明:具有特殊結(jié)構(gòu)的單金屬尖晶石氧化物展現(xiàn)出高效的雙功能催化活性.
通常,用第二種金屬陽離子對單金屬尖晶石氧化物進(jìn)行組分改性可以調(diào)整對氧催化起重要作用的性能(例如:晶體結(jié)構(gòu)和導(dǎo)電性).例如MnxCo3-xO4[82-83]、NixCo3-xO4[84-85]、CuxCo3-xO4[86]和ZnxCo3-xO4[87]已被報道為雙功能空氣電極材料.除成分以外,催化劑的納米結(jié)構(gòu)也極大地影響活性.PENG等[83]溶劑熱合成3D分級多孔NiCo2O4核殼微球,類似向日葵(圖7a),由多孔納米片構(gòu)成(圖7b).如此獨特的結(jié)構(gòu)提高催化位點的利用率,同時加快電子和反應(yīng)物擴散.SP(導(dǎo)電炭黑)的充放電過電勢為1.87 V,比NiCo2O4/SP高640 mV(圖7c),而且NiCo2O4/SP電極在鋰氧電池中展現(xiàn)出優(yōu)異的循環(huán)穩(wěn)定性.類似的,WANG等[88]用硬模板法制備分級NiCo2O4中空納米球,由超薄納米片構(gòu)成,與普通刺猬狀NiCo2O4相比,具有更低過電勢和優(yōu)異循環(huán)穩(wěn)定性.此外,Mn基尖晶石氧化物也展現(xiàn)出卓越的ORR和OER雙功能催化活性,由于錳元素高豐度、低成本和環(huán)境友好等諸多優(yōu)點.CHEN等[89]分別用NaH2PO2和NaBH4作為還原劑,室溫快速合成兩種不同晶體結(jié)構(gòu)的尖晶石(四方和立方CoxMn3-xO4).有趣的是,立方Co-Mn-O尖晶石的ORR催化能力比四方尖晶石強,而四方尖晶石的OER催化能力優(yōu)于立方相,DFT理論計算表明相依賴的電催化行為源于兩相表面不同的氧吸附結(jié)合能.這為合理設(shè)計尖晶石型ORR/OER雙功能催化劑提供重要的指導(dǎo).
2.3.3 鈣鈦礦型金屬氧化物
BRUCE等[26]首次使用La0.8Sr0.2MnO3作為非水系鋰-氧電池的催化劑,但效能不理想.后來, XU等[41]結(jié)合電紡和熱處理制備多孔的La0.75Sr0.25MnO3納米管(PNT-LSM),展現(xiàn)出優(yōu)異的往返效率、倍率性能和循環(huán)穩(wěn)定性.在鋰-氧電池中,PNT-LSM/KB的充電電壓比KB低200 mV,庫侖效率約100%,而且在1 000 mAh·g-1容量限制下維持124圈.如此杰出的性能來源于PNT-LSM特殊多孔的結(jié)構(gòu),多孔的管狀結(jié)構(gòu)提供更多傳輸氧和電解質(zhì)的通道,加速放電產(chǎn)物的分解,因此提高O2電極的可逆性.YANG等報道許多鈣鈦礦型氧化物作為雙功能催化劑[96-98].其中,電子和離子導(dǎo)體Ba0.5Sr0.5Co0.8Fe0.2O3-δ備受關(guān)注,摻雜或混合可以進(jìn)一步提高其ORR/OER活性.JUNG等[99]報道一種新型結(jié)構(gòu)摻La的Ba0.5Sr0.5Co0.8Fe0.2O3-δ催化劑(La0.3(Ba0.5Sr0.5)0.7Co0.8Fe0.2O3-δ)(圖9a),菱形的LaCoO3納米顆粒(~10 nm)分布在立方Ba0.5Sr0.5Co0.8Fe0.2O3-δ表面,展現(xiàn)出與RuO2可比的ORR活性(圖9b)以及優(yōu)于IrO2的OER活性(圖9c).此后JUNG等[100]開創(chuàng)性研究納米鈣鈦礦Lax(Ba0.5Sr0.5)1-xCo0.8Fe0.2O3-δ氧化物,以納米粒子方式在可充電金屬-空氣電池領(lǐng)域?qū)で笸黄?眾所周知,鈣鈦礦氧化物的電化學(xué)氧催化程度與表面陽離子密切相關(guān),其實這取決于氧化物中氧原子的缺陷程度.在此方面,CHEN等[101]結(jié)合溶膠凝膠法和1 300 ℃真空熱處理制備具有氧缺陷的六邊形晶體結(jié)構(gòu)BaTiO3-x(h-BaTiO3-x),與900 ℃ 空氣熱處理制備的四方相t-BaTiO3相比,h-BaTiO3-x具有部分占據(jù)的氧位點,展現(xiàn)出卓越的雙功能活性.中子分析表明:BaTiO3-x的真實化學(xué)式是BaTiO2.76,雙功能催化活性來源于氧缺陷,加速反應(yīng)物吸附和電荷轉(zhuǎn)移.這篇文章強調(diào)鈣鈦礦氧化物結(jié)構(gòu)和氧含量的重要性,其可以通過熱處理溫度和氛圍參數(shù)來控制.
圖7 多孔的NiCo2O4核殼微球 (a) 低倍和 (b) 高倍FESEM圖,(c) NiCo2O4/SP和純碳電極在鋰氧電池中首次充放電曲線 (電流密度為200 mA·gcarbon-1)[83]Fig.7 (a) Low-magnified and (b) high-magnified FESEM images of porous NiCo2O4 core-shell microspheres,(c) First charge-discharge curves of Li-O2 cells with NiCo2O4/SP and bare carbon electrodes at a current density of 200 mA·gcarbon-1[83]
盡管鈣鈦礦氧化物在金屬-空氣電池的應(yīng)用備受關(guān)注,陽離子部分取代效應(yīng)的機理尚不明確.除ABO3以外,雙鈣鈦礦氧化物(A2B2O6,8b)[102]和層狀鈣鈦礦氧化物(圖8c)[103]很少被研究為金屬-空氣電池陰極催化劑.因此,未來需要更系統(tǒng)地研究鈣鈦礦型催化劑來提高ORR/OER的催化性能和促進(jìn)金屬-空氣電池的發(fā)展[104].
圖8 (a) 立方鈣鈦礦結(jié)構(gòu)[90],(b) 雙鈣鈦礦結(jié)構(gòu)[102],(c) 層狀鈣鈦礦結(jié)構(gòu)[103]Fig.8 (a) Cubic perovskite structure[90],(b) Double perovskite structure[102],(c) Layered perovskite structure[103]
圖9 (a) 雙功能催化劑La0.3(Ba0.5Sr0.5)0.7Co0.8Fe0.2O3-δ (La0.3-5582)示意圖,(b,c) 80% La0.3-5582與20% KB復(fù)合物和其他對比催化劑:(b) ORR和 (c) OER活性[99]Fig.9 (a) Illustration of the bifunctional catalyst:La0.3(Ba0.5Sr0.5)0.7Co0.8Fe0.2O3-δ (La0.3-5582),(b) ORR and (c) OER activ-ities of 80% La0.3-5582 on 20% Ketjen Black (KB) composite and other typical catalysts for comparison[99]
2.4 復(fù)合材料
如上所述,陰極材料需要催化ORR/OER的高效催化劑,還要具備大比表面積和大孔容量來儲存更多的放電產(chǎn)物.但是單材料很難完全滿足以上要求,因此,含復(fù)合材料的混合電極已成為提高金屬-空氣電池性能的趨勢[105].
2.4.1 貴金屬及其氧化物/納米碳復(fù)合物
貴金屬及其氧化物與納米碳復(fù)合滿足金屬-空氣電池陰極材料要求[106].功能化的碳在復(fù)合物中起重要作用,不僅提供大比表面積,而且促進(jìn)表面催化劑材料的分散,從而增強催化性能.而且,功能化的碳具有空位和缺陷促進(jìn)陰極反應(yīng).
碳納米管作為典型的功能化碳材料,已廣泛應(yīng)用于混合電極.LI等[107]用化學(xué)濕選法合成多壁碳納米管紙支撐的Ru催化劑(Ru/MWCNTP),與MWCNTP電極相比,Ru/MWCNTP降低充電電壓約0.68 V.MA等[108]用測控濺射法制備貴金屬(Ru和Pd)催化的碳納米管,在鋰-氧電池中展現(xiàn)出超高的循環(huán)效率和持久的循環(huán)壽命.但原位電化學(xué)質(zhì)譜和非原位光譜分析表明:催化的鋰-氧電池并沒有按照預(yù)想的鋰-氧反應(yīng)進(jìn)行操作,充電過程中伴隨著CO2的產(chǎn)生,而且可逆性低于CNT.這篇報道為使用貴金屬催化劑的非質(zhì)子鋰-氧電池的氧電化學(xué)提供新的視角,同時例證定量測定氧電化學(xué)對于追求真正可充電鋰-氧電池的重要性.此外,鈦的碳化物和氮化物由于超強的耐腐蝕性和高導(dǎo)電性被研究為催化載體.ROCA-AYATS等[109]用乙二醇法合成碳氮化鈦擔(dān)載的 Pt3M(M = Ru、Ir、Ta)納米材料, Pt3Ru/TiCN 展現(xiàn)出最優(yōu)異的ORR/OER活性和穩(wěn)定性,歸因于支撐物的促進(jìn)作用,TiCN穩(wěn)定活性相和抑制釕溶解.Pt3Ru/TiCN 在一體式可再生燃料電池中具有很大的應(yīng)用潛力.
YILMAZ等[110]合成多壁碳納米管支撐的二氧化釕(RuO2/MWCNTs),0.05 mA·cm-2電流密度下的充電電壓為3.48 V,低于MWCNTs的3.91 V.分析表明:RuO2納米顆粒促進(jìn)低結(jié)晶度的過氧化鋰層覆蓋在MWCNTs表面,而在純MWCNTs表面形成大的Li2O2顆粒(圖10).獨特的過氧化鋰結(jié)構(gòu)提供與導(dǎo)電CNT電極大的接觸面積和許多缺陷,在OER低電位下更易分解.這是首次發(fā)現(xiàn)金屬氧化物在轉(zhuǎn)變Li2O2晶體結(jié)構(gòu)和形貌方面發(fā)揮作用,顯著降低OER過程中的能量損失.
圖10 (a) CNT和 (b) RuO2/CNT陰極Li2O2形成示意圖,(c) CNT和 (d) RuO2/CNT首次放電TEM圖[110]Fig.10 Schematic illustration of the Li2O2 formation process in (a) CNT and (b) RuO2/CNT cathodes, TEM images of first-discharged (c) CNT and (d) RuO2/CNT cathodes[110]
2.4.2 過渡金屬氧化物/納米碳復(fù)合物
具有混合價的過渡金屬氧化物有替代貴金屬基礎(chǔ)電催化劑的潛力[111],但低的導(dǎo)電性和嚴(yán)重的團(tuán)聚限制其ORR/OER活性,因此,分散催化劑于導(dǎo)電基質(zhì)上形成復(fù)合物是有效的方法,而且催化劑和導(dǎo)電基質(zhì)間的協(xié)同作用能產(chǎn)生卓越的催化性能[112-114].
近來,CAO等[115]在石墨烯納米片上原位合成α-MnO2納米線(α-MnO2/GNSs),展現(xiàn)出卓越的ORR和OER催化活性.電流密度200 mA·g-1時的放電容量為11 520 mAh·g-1,遠(yuǎn)高于α-MnO2和GNSs混合物的7 200 mAh·g-1.除了錳氧化物以外,F(xiàn)e氧化物[116-118]、Co氧化物[119-121]、Ni氧化物[122]和Zn氧化物[123]與G或CNT的復(fù)合材料也被研究為雙功能氧催化劑.
另一種復(fù)合型雙功能氧催化劑由尖晶石型化物和碳材料組成,例如 DAI課題組合成的Co3O4-N-rmGO(摻氮氧化程度低的還原氧化石墨烯)(圖11a)[124],展現(xiàn)出卓越的ORR/OER活性,成為高性能非貴金屬雙功能催化劑(圖11c).X射線近邊結(jié)構(gòu)吸收測試(XANES)發(fā)現(xiàn):與N-rmGO相比,Co3O4-N-rmGO復(fù)合物C的K邊緣峰強度在約288 eV處明顯增加(圖11d),表明在復(fù)合物界面存在Co-O-C 和Co-N-C鍵,以及催化劑和基質(zhì)間形成協(xié)同作用.而且,GO的氧化程度也對復(fù)合物性能產(chǎn)生重要影響[125],傳統(tǒng)的GO氧化不能兼顧無機物-碳間耦合作用和復(fù)合物的導(dǎo)電性,因此,調(diào)控石墨烯適中的氧化程度同時提供豐富的官能團(tuán)和導(dǎo)電性是達(dá)到高ORR/OER性能的關(guān)鍵.復(fù)合材料結(jié)構(gòu)的合理設(shè)計對氧電催化活性至關(guān)重要.LI等[126]制備石榴狀Co3O4納米晶-摻氮部分石墨化碳框架復(fù)合催化劑,獨特的結(jié)構(gòu)使其具有豐富活性位、強協(xié)同耦合作用和快速電子轉(zhuǎn)移能力,是高效的ORR/OER催化劑.類似的,YAN等[127]用SiO2球作為模板合成共價耦合的FeCo2O4-中空結(jié)構(gòu)還原氧化石墨烯球(FCO/HrGOS).與純FCO和HrGOS相比,F(xiàn)CO/HrGOS復(fù)合物展現(xiàn)杰出的電催化活性,ORR性能與20% Pt/C催化劑媲美,OER活性也勝過RuO2/C,歸因于FCO和HrGOS間共價耦合作用.而且,3D中空結(jié)構(gòu)的石墨烯球提供高比表面積,同時促進(jìn)電解液中氧和反應(yīng)物的有效傳輸.YAN等[128]簡易制備CoFe2O4納米顆粒/氮、硫雙摻雜3D還原氧化石墨烯復(fù)合物(CFO/NS-rGO),展現(xiàn)出優(yōu)異的雙功能活性,歸因于CFO和NS-rGO間耦合作用和分級多孔的結(jié)構(gòu).
鈣鈦礦氧化物和碳材料的復(fù)合物在氧電催化方面的應(yīng)用也備受關(guān)注.LEE等[129]合成相互交錯的核冠結(jié)構(gòu)雙功能催化劑(IT-CCBC),多孔交錯的網(wǎng)狀NCNTs很好的覆蓋LaNiO3納米顆粒.與純LaNiO3納米顆粒和NCNT相比,IT-CCBC展現(xiàn)出高的ORR/OER活性和出色的電化學(xué)穩(wěn)定性,其獨特的形貌以及LaNiO3和NCNT間的協(xié)同作用提升可充電鋅-空電池的性能.此外,La0.58Sr0.4Fe0.2Co0.8O3/NCNT復(fù)合物[130]和Nd0.5Sr0.5CoO3-δ納米線/云狀石墨烯納米片[131]等都具有ORR/OER雙功能活性,應(yīng)用于可充電金屬-空氣電池.
圖11 (a) Co3O4-N-rmGO復(fù)合物的TEM圖,插圖是石墨烯擔(dān)載Co3O4納米晶的電子衍射圖,(b) Co3O4-N-rmGO復(fù)合物的XPS圖,(c)分散在碳紙上Co3O4-N-rmGO復(fù)合物、Co3O4納米晶和Pt/C催化劑的ORR和OER活性 (O2飽和的0.1 mol/L KOH), (d) Co3O4-N-rmGO和N-rmGO的C的K邊緣XANES圖[124]Fig.11 (a) TEM images of the Co3O4-N-rmGO hybrid.The electron diffraction pattern of the Co3O4 nanocrystals on graphene is showed in the inset,(b) XPS spectrum of the Co3O4-N-rmGO hybrid,(c) ORR and OER activities of the Co3O4-N-rmGO hybrid,Co3O4 nanocrystal,and Pt/C catalysts dispersed on carbon fiber paper in O2-saturated 0.1 mol/L KOH,(d) C K-edge XANES of the Co3O4-N-rmGO hybrid and N-rmGO[124]
2.4.3 M-N/C復(fù)合物
過渡金屬和雜環(huán)氮配位化合物形成另一種復(fù)合物,展現(xiàn)優(yōu)異的ORR/OER催化活性[132-134].SUN等[135]報道有機電解液溶解的酞菁鐵(FePc)作為鋰-空電池溶液相雙功能催化劑,提出ORR和OER反應(yīng)機制:FePc是碳導(dǎo)體以及Li2O2位點間傳輸O2-和電子的載體,由于Li2O2的生長和分解都未與碳接觸,電催化性能明顯提升.后來發(fā)現(xiàn)簡單熱解含過渡金屬、碳和氮前驅(qū)體材料可以制備催化活性物種M-Nx/C,這為涉及廉價前驅(qū)體材料的研究提供了新方向.
LI等[136]通過高溫?zé)崽幚矸ㄖ苽涓缓?石墨烯管的N-Fe-MOF催化劑,含納米籠的金屬有機框架(MOF)和雙氰胺分別作為模板和碳氮前驅(qū)體,研究發(fā)現(xiàn):N-Fe-MOF的放電電壓約2.80 V,遠(yuǎn)高于Pt/C催化劑(2.71 V).而且在電流密度為50 mA·g-1時,最高放電容量為5 300 mAh·g-1.這篇報道為使用MOF新模板合成碳基納米復(fù)合物高效ORR/OER催化劑提供新視野.MENG等[137]熱解長在碳布上串有珍珠狀ZIF-67的聚吡咯納米纖維網(wǎng),原位耦合Co4N和交錯的N-C纖維,形成3D自支撐柔性氧電極Co4N/CNW/CC,具有優(yōu)異的ORR/OER活性和穩(wěn)定性,歸因于Co4N和Co-N-C間協(xié)同效應(yīng)以及3D連通導(dǎo)電網(wǎng)狀結(jié)構(gòu).自支撐柔性氧電極Co4N/CNW/CC在便攜式和可穿戴式電子設(shè)備領(lǐng)域具有廣泛的應(yīng)用前景.
金屬-空氣電池具有超高能量密度已成為最有發(fā)展前景的能源存儲與轉(zhuǎn)換技術(shù)之一[138],但在投入實際商業(yè)化應(yīng)用之前還有許多問題亟需解決[139-142],如:放電容量低、實際能量密度低和循環(huán)性能差等.因此,尋找活性高和穩(wěn)定性好的ORR/OER雙功能催化劑至關(guān)重要.貴金屬及其合金通常具有高活性和穩(wěn)定性,但成本高和豐度低;對于碳基材料而言,適當(dāng)?shù)膿诫s能有效提高催化性能,但是碳在OER過程高電位下易腐蝕導(dǎo)致衰減;過渡金屬氧化物多價態(tài)、低成本、環(huán)境友好,但導(dǎo)電性差,因此,過渡金屬氧化物-納米碳復(fù)合材料成為新一代具有高催化活性的氧催化材料,兩者間的強耦合作用顯著提升電化學(xué)活性和穩(wěn)定性.
雙功能催化劑的開發(fā)及應(yīng)用面臨可充電金屬-空氣電池性能價格比和穩(wěn)定性問題.因此,尋求新的電極材料和設(shè)計特殊的結(jié)構(gòu)降低陰極過電勢,是未來發(fā)展可充電金屬-空氣電池的首要任務(wù).可充電金屬-空氣電池陰極的未來發(fā)展方向是:
1)通過新穎的制備方法,探索出新的陰極材料.
2)合理地設(shè)計雙功能催化劑的形貌和組分.設(shè)計形貌可以增加活性位暴露程度和孔隙率,從而提升催化性能.另一方面,微調(diào)催化劑的組分可以調(diào)整活性位的電子結(jié)構(gòu),優(yōu)化反應(yīng)過程中與氧分子的相互作用.
3)電極結(jié)構(gòu)的合理設(shè)計也對催化劑的運用和能量轉(zhuǎn)換效率的提高至關(guān)重要.金屬-空氣電池的電化學(xué)反應(yīng)包含氧擴散和放電產(chǎn)物的沉積,因此,需要優(yōu)化空氣電極的多孔結(jié)構(gòu)和催化劑的分布以實現(xiàn)反應(yīng)物的快速傳輸.
4)理論計算和實驗相結(jié)合,深入研究充放電過程催化劑表面的氧反應(yīng)機理,明確各種催化劑活性位,這是發(fā)展高效和長壽命電池的先決條件.
[1] ARMAND M,TARASCON J M.Building better batteries [J].Nature,2008,451(7179):652-657.
[2] BRUCE P G,FREUNBERGER S A,HARDWICK L J,et al.Li-O2and Li-S batteries with high energy storage [J].Nature Materials,2012,11(1):19-29.
[3] BRUCE P G,SCROSATI B,TARASCON J M.Nanomaterials for rechargeable lithium batteries [J].Angewandte Chemie International Edition,2008,47(16):2930-2946.
[4] WANG J,LI Y,SUN X.Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium-air batteries [J].Nano Energy,2013,2(4):443-467.
[5] WAGNER F T,LAKSHMANAN B,MATHIAS M F.Electrochemistry and the future of the automobile [J].The Journal of Physical Chemistry Letters,2010,1(14):2204-2219.
[6] NG J W D,GORLIN Y,HATSUKADE T,et al.A precious-metal-free regenerative fuel cell for storing renewable electricity [J].Advanced Energy Materials,2013,3(12):1545-1550.
[7] ABRAHAM K M,JIANG Z.A polymer electrolyte-based rechargeable lithium/oxygen battery [J].Journal of the Electrochemical Society,1996,143(1):1-5.
[8] GIRISHKUMAR G,MCCLOSKEY B,LUNTZ A C,et al.Lithium-air battery:Promise and challenges [J].The Journal of Physical Chemistry Letters,2010,1(14):2193-2203.
[9] KINOSHITA K.Electrochemical oxygen technology [M].New York:Wiley,1992:104-105.
[10] CAO R,LEE J S,LIU M L,et al.Recent progress in non-precious catalysts for metal-air batteries [J].Advanced Energy Materials,2012,2(7):816-829.
[11] NEBURCHILOV V,WANG H J,MARTIN J J,et al.A review on air cathodes for zinc-air fuel cells [J].Journal of Power Sources,2010,195(5):1271-1291.
[12] PADBURY R,ZHANG X W.Lithium-oxygen batteries-limiting factors that affect performance [J].Journal of Power Sources,2011,196(10):4436-4444.
[13] CHRISTENSEN P A,HAMNETT A,LINARES-MOYA D.Oxygen reduction and fuel oxidation in alkaline solution [J].Physical Chemistry Chemical Physics,2011,13(12):5206-5214.
[14] JORISSEN L.Bifunctional oxygen/air electrodes [J].Journal of Power Sources,2006,155(1):23-32.
[15] SPENDELOW J S,WIECKOWSKI A.Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media [J].Physical Chemistry Chemical Physics,2007,9(21):2654-2675.
[16] VIELSTICH W,LAMM A,GASTEIGER H.Handbook of fuel cells-fundamentals,technology and applications [M].Chichester:Wiley,2003:111-112.
[17] RASIYAH P,TSEU C C.The role of the lower metal oxide/higher metal oxide couple in oxygen evolution reactions [J].Journal of the Electrochemical Society,1984,131(4):803-808.
[18] HASEGAWA S,IMANISHI N,ZHANG T,et al.Study on lithium/air secondary batteries-stability of nasicon-type lithium ion conducting glass-ceramics with water [J].Journal of Power Sources,2009,189(1):371-377.
[19] NIMON Y S,VISCO S J.Active metal/aqueous electrochemical cells and systems:US,7645543 [P].2010-04-29.
[20] VISCO S J,KATZ B D,NIMON Y S,et al.Protected active metal electrode and battery cell structures with non-aqueous interlayer architecture:US,7282295 [P].2007-10-16.
[21] WANG Y G,ZHOU H S.A lithium-air fuel cell using copper to catalyze oxygen-reduction based on copper-corrosion mechanism [J].Chemical Communications,2010,46(34):6305-6307.
[22] ZHANG T,IMANISHI N,SHIMONISHI Y,et al.A novel high energy density rechargeable lithium/air battery [J].Chemical Communications,2010,46(10):1661-1663.
[23] LAOIRE C O,MUKERJEE S,ABRAHAM K M,et al.Elucidating the mechanism of oxygen reduction for lithium-air battery applications [J].The Journal of Physical Chemistry C,2009,113(46):20127-20134.
[24] LAOIRE C O,MUKERJEE S,ABRAHAM K M,et al.Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium-air battery [J].The Journal of Physical Chemistry C,2010,114(19):9178-9186.
[25] LU Y C,GASTEIGER H A,CRUMLIN E,et al.Electrocatalytic activity studies of select metal surfaces and implications in Li-air batteries [J].Journal of the Electrochemical Society,2010,157(9):A1016-A1025.
[26] DEBART A,BAO J,ARMSTRONG G,et al.An O2cathode for rechargeable lithium batteries:The effect of a catalyst [J].Journal of Power Sources,2007,174(2):1177-1182.
[27] GIORDANI V,FREUNBERGER S A,BRUCE P G,et al.H2O2decomposition reaction as selecting tool for catalysts in Li-O2cells [J].Electrochemical and Solid-State Letters,2010,13(12):A180-A183.
[28] LU Y C,GASTEIGER H A,PARENT M C,et al.The influence of catalysts on discharge and charge voltages of rechargeable li-oxygen batteries [J].Electrochemical and Solid-State Letters,2010,13(6):A69-A72.
[29] LIU C T,JACKOVITZ J F.Bifunctional gas diffusion electrodes employing wettable,non-wettable layered structure using the mud-caking concept:US,5318862 [P].1994-06-07.
[30] LU Y C,XU Z C,GASTEIGER H A,et al.Platinum-gold nanoparticles:A highly active bifunctional electrocatalyst for rechargeable lithium-air batteries [J].Journal the American Chemical Society,2010,132(35):12170-12171.
[31] KO B K,KIM M K,KIM S H,et al.Synthesis and electrocatalytic properties of various metals supported on carbon for lithium-air battery [J].Journal of Molecular Catalysis A:Chemical,2013,379(1):9-14.
[32] KIM B G,KIM H J,BACK S,et al.Improved reversibility in lithium-oxygen battery:Understanding elementary reactions and surface charge engineering of metal alloy catalyst [J].Scientific Reports,2014,4:4225.
[33] LEE M,HWANG Y,YUN K H,et al.Greatly improved electrochemical performance of lithium-oxygen batteries with a bimetallic platinum-copper alloy catalyst [J].Journal of Power Sources,2015,288:296-301.
[34] SHAO Y Y,PARK S,XIAO J,et al.Electrocatalysts for nonaqueous lithium-air batteries:Status,challenges,and perspective [J].ACS Catalysis,2012,2(5):844-857.
[35] GAO Y,WANG C,PU W H,et al.Preparation of high-capacity air electrode for lithium-air batteries [J].International Journal of Hydrogen Energy,2012,37(17):12725-12730.
[36] LI Y L,WANG J J,LI X F,et al.Superior energy capacity of graphene nanosheets for a nonaqueous lithium-oxygen battery [J].Chemical Communications,2011,47(33):9438-9440.
[37] ZHAO G,ZHANG L,PAN T,et al.Preparation of NiO/multiwalled carbon nanotube nanocomposite for use as the oxygen cathode catalyst in rechargeable Li-O2batteries [J].Journal of Solid State Electrochemistry,2013,17(6):1759-1764.
[38] MEINI S,PIANA M,BEYER H,et al.Effect of carbon surface area on first discharge capacity of Li-O2cathodes and cycle-life behavior in ether-based electrolytes [J].Journal of the Electrochemical Society,2012,159(12):A2135-A2142.
[39] CUI Y M,WEN Z Y,LIANG X,et al.A tubular polypyrrole based air electrode with improved O2diffusivity for Li-O2batteries [J].Energy & Environmental Science,2012,5(7):7893-7897.
[40] XIAO J,HU J Z,WANG D Y,et al.Investigation of the rechargeability of Li-O2batteries in non-aqueous electrolyte [J].Journal of Power Sources,2011,196(13):5674-5678.
[41] XU J J,XU D,WANG Z L,et al.Synthesis of perovskite-based porous La0.75Sr0.25MnO3nanotubes as a highly efficient electrocatalyst for rechargeable lithium-oxygen batteries [J].Angewandte Chemie International Edition,2013,52(14):3887-3890.
[42] CHENG H,SCOTT K.Carbon-supported manganese oxide nanocatalysts for rechargeable lithium-air batteries [J].Journal of Power Sources,2010,195(5):1370-1374.
[43] LI F J,OHNISHI R,YAMADA Y,et al.Carbon supported tin nanoparticles:An efficient bifunctional catalyst for non-aqueous Li-O2batteries [J].Chemical Communications,2013,49(12):1175-1177.
[44] QIN Y,LU J,DU P,et al.In situ fabrication of porous-carbon-supportedα-MnO2nanorods at room temperature:Application for rechargeable Li-O2batteries [J].Energy & Environmental Science,2013,6(2):519-531.
[45] IIJIMA S,ICHIHASHI T.Single-shell carbon nanotubes of 1-nm diameter [J].Nature,1993,364(6430):603-605.
[46] IIJIMA S.Helical microtubules of graphitic carbon [J].Nature,1991,354(6348):56-58.
[47] TIAN G L,ZHANG Q,ZHANG B S,et al.Toward full exposure of “active sites”:Nanocarbon electrocatalyst with surface enriched nitrogen for superior oxygen reduction and evolution reactivity [J].Advanced Functional Materials,2014,24(38):5956-5961.
[48] GEIM A K.Graphene:Status and prospects [J].Science,2009,324(5934):1530-1534.
[49] SOIN N,ROY S S,LIM T H,et al.Microstructural and electrochemical properties of vertically aligned few layered graphene (FLG) nanoflakes and their application in methanol oxidation [J].Materials Chemistry and Physics,2011,129(3):1051-1057.
[50] STOLLER M D,PARK S J,ZHU Y W,et al.Graphene-based ultracapacitors [J].Nano Letters,2008,8(10):3498-3502.
[51] YOO E,ZHOU H S.Li-air rechargeable battery based on metal-free graphene nanosheet catalysts [J].Acs Nano,2011,5(4):3020-3026.
[52] MIRZAEIAN M,HALL P J.Preparation of controlled porosity carbon aerogels for energy storage in rechargeable lithium oxygen batteries [J].Electrochimica Acta,2009,54(28):7444-7451.
[53] SAKAUSHI K,FELLINGER T P,ANTONIETTI M.Bifunctional metal-free catalysis of mesoporous noble carbons for oxygen reduction and evolution reactions [J].ChemSusChem,2015,8(7):1156-1160.
[54] ETACHERI V,SHARON D,GARSUCH A,et al.Hierarchical activated carbon microfiber (ACM) electrodes for rechargeable Li-O2batteries [J].Journal of Materials Chemistry A,2013,1(16):5021-5030.
[55] LIN X J,ZHOU L,HUANG T,et al.Hierarchically porous honeycomb-like carbon as a lithium-oxygen electrode [J].Journal of Materials Chemistry A,2013,1(4):1239-1245.
[56] WANG Z L,XU D,XU J J,et al.Graphene oxide gel-derived,free-standing,hierarchically porous carbon for high-capacity and high-rate rechargeable Li-O2batteries [J].Advanced Functional Materials,2012,22(17):3699-3705.
[57] ZHU Q C,DU F H,XU S M,et al.Hydroquinone resin induced carbon nanotubes on Ni foam as binder-free cathode for Li-O2batteries [J].ACS Applied Materials & Interfaces,2016,8(6):3868-3873.
[58] CHEN Y G,WANG J J,LIU H,et al.Nitrogen doping effects on carbon nanotubes and the origin of the enhanced electrocatalytic activity of supported Pt for proton-exchange membrane fuel cells [J].The Journal of Physical Chemistry C,2011,115(9):3769-3776.
[59] GENG D S,LIU H,CHEN Y G,et al.Non-noble metal oxygen reduction electrocatalysts based on carbon nanotubes with controlled nitrogen contents [J].Journal of Power Sources,2011,196(4):1795-1801.
[60] LIU H,ZHANG Y,LI R Y,et al.Structural and morphological control of aligned nitrogen-doped carbon nanotubes [J].Carbon,2010,48(5):1498-1507.
[61] LI Y L,WANG J J,LI X F,et al.Nitrogen-doped graphene nanosheets as cathode materials with excellent electrocatalytic activity for high capacity lithium-oxygen batte-ries [J].Electrochemistry Communications,2012,18(1):12-15.
[62] YADAV R M,WU J J,KOCHANDRA R,et al.Carbon nitrogen nanotubes as efficient bifunctional electrocatalysts for oxygen reduction and evolution reactions [J].ACS Applied Materials & Interfaces,2015,7(22):11991-12000.
[63] LI J C,HOU P X,ZHAO S Y,et al.A 3D bi-functional porous N-doped carbon microtube sponge electrocatalyst for oxygen reduction and oxygen evolution reactions [J].Energy & Environmental Science,2016,9:3079-3084.
[64] VINEESH T V,KUMAR M P,TAKAHASHI C,et al.Bifunctional electrocatalytic activity of boron-doped graphene derived from boron carbide [J].Advanced Energy Materials,2015,5(17):1500658.
[65] QU K,ZHENG Y,DAI S,et al.Graphene oxide-polydopamine derived N,S-codoped carbon nanosheets as superior bifunctional electrocatalysts for oxygen reduction and evolution [J].Nano Energy,2016,19:373-381.
[66] ZHANG J T,ZHAO Z H,XIA Z H,et al.A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions [J].Nature Nanotechnology,2015,10(5):444-452.
[67] ZHAO Z H,XIA Z H.Design principles for dual-element-doped carbon nanomaterials as efficient bifunctional catalysts for oxygen reduction and evolution reactions [J].ACS Catalysis,2016,6(3):1553-1558.
[68] OGASAWARA T,DEBART A,HOLZAPFEL M,et al.Rechargeable Li2O2electrode for lithium batteries [J].Journal of the American Chemical Society,2006,128(4):1390-1393.
[69] CHENG F Y,ZHANG T R,ZHANG Y,et al.Enhancing electrocatalytic oxygen reduction on MnO2with vacancies [J].Angewandte Chemie International Edition,2013,52(9):2474-2477.
[70] GORLIN Y,CHUNG C J,NORDLUND D,et al.Mn3O4supported on glassy carbon:An active non-precious metal catalyst for the oxygen reduction reaction [J].ACS Catalysis,2012,2(12):2687-2694.
[71] PICKRAHN K L,PARK S W,GORLIN Y,et al.Active mnox electrocatalysts prepared by atomic layer deposition for oxygen evolution and oxygen reduction reactions [J].Advanced Energy Materials,2012,2(10):1269-1277.
[72] TOMPSETT D A,PARKER S C,BRUCE P G,et al.Nanostructuring ofβ-MnO2:The important role of surface to bulk ion migration [J].Chemistry of Materials,2013,25(4):536-541.
[73] MENG Y T,SONG W Q,HUANG H,et al.Structure-property relationship of bifunctional MnO2nanostructures:Highly efficient,ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media [J].Journal of the American Chemical Society,2014,136(32):11452-11464.
[74] ZHANG J,LUAN Y,LYU Z,et al.Synthesis of hierarchical porousδ-MnO2nanoboxes as an efficient catalyst for rechargeable Li-O2batteries [J].Nanoscale,2015,7(36):14881-14888.
[75] ZHENG Y,SONG K,JUNG J,et al.Critical descriptor for the rational design of oxide-based catalysts in rechargeable Li-O2batteries:Surface oxygen density [J].Chemistry of Materials,2015,27(9):3243-3249.
[76] GORLIN Y,LASSALLE-KAISER B,BENCK J D,et al.In situ X-ray absorption spectroscopy investigation of a bifunctional manganese oxide catalyst with high activity for electrochemical water oxidation and oxygen reduction [J].Journal of the American Chemical Society,2013,135(23):8525-8534.
[77] KUO C H,MOSA I M,THANNEERU S,et al.Facet-dependent catalytic activity of MnO electrocatalysts for oxygen reduction and oxygen evolution reactions [J].Chemical Communications,2015,51(27):5951-5954.
[78] HAMDANI M,SINGH R N,CHARTIER P.Co3O4and Co- based spinel oxides bifunctional oxygen electrodes [J].International Journal of Electrochemical Sciety,2010,5(4):556-577.
[79] RIAZ A,JUNG K N,CHANG W,et al.Carbon-free cobalt oxide cathodes with tunable nanoarchitectures for rechargeable lithium-oxygen batteries [J].Chemical Communications,2013,49(53):5984-5986.
[80] ZHANG J,LYU Z,ZHANG F,et al.Facile synthesis of hierarchical porous Co3O4nanoboxes as efficient cathode catalysts for Li-O2batteries [J].Journal of Materials Chemistry A,2016,4(17):6350-6356.
[81] WU F,ZHANG X,ZHAO T,et al.Hierarchical mesoporous/macroporous Co3O4ultrathin nanosheets as free-standing catalysts for rechargeable lithium-oxygen batteries [J].Journal of Materials Chemistry A,2015,3(34):17620-17626.
[82] MENEZES P W,INDRA A,SAHRAIE N R,et al.Cobalt-manganese-based spinels as multifunctional materials that unify catalytic water oxidation and oxygen reduction reactions [J].ChemSusChem,2015,8(1):164-171.
[83] PENG S J,HU Y X,LI L L,et al.Controlled synthesis of porous spinet cobaltite core-shell microspheres as high-performance catalysts for rechargeable Li-O2batteries [J].Nano Energy,2015,13:718-726.
[84] PRABU M,KETPANG K,SHANMUGAM S.Hierarchical nanostructured NiCo2O4as an efficient bifunctional non-precious metal catalyst for rechargeable zinc-air batteries [J].Nanoscale,2014,6(6):3173-3181.
[85] PRICE S W T,THOMPSON S J,LI X H,et al.The fabrication of a bifunctional oxygen electrode without carbon components for alkaline secondary batteries [J].Journal of Power Sources,2014,259(7):43-49.
[86] LIU Y,CAO L J,CAO C W,et al.Facile synthesis of spinel CuCo2O4nanocrystals as high-performance cathode catalysts for rechargeable Li-air batteries [J].Chemical Communications,2014,50(93):14635-14638.
[87] TAN Y,WU C C,LIN H,et al.Insight the effect of surface Co cations on the electrocatalytic oxygen evolution properties of cobaltite spinels [J].Electrochimica Acta,2014,121(3):183-187.
[88] WANG J,FU Y,XU Y,et al.Hierarchical NiCo2O4hollow nanospheres as high efficient bi-functional catalysts for oxygen reduction and evolution reactions [J].Internoctional Journal of Hydrogen Energy,2016,41(21):8847-8854.
[89] CHENG F Y,SHEN J A,PENG B,et al.Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts [J].Nature Chemistry,2011,3(1):79-84.
[90] CHRONEOS A,VOVK R V,GOULATIS I L,et al.Oxygen transport in perovskite and related oxides:A brief review [J].Journal of Alloys and Compdounds,2010,494(1/2):190-195.
[91] TANAKA H,MISONO M.Advances in designing perovskite catalysts [J].Current Opinion in Solid State and Materials Science,2001,5(5):381-387.
[92] ZHANG H M,SHIMIZU Y,TERAOKA Y,et al.Oxygen sorption and catalytic properties of La1-xSrxCo1-yFeyO3perovskite-type oxides [J].Journal of Catalysis,1990,121(2):432-440.
[93] KANNAN A M,SHUKLA A K,SATHYANARAYANA S.Oxide-based bifunctional oxygen electrode for rechargeable metal/air batteries [J].Journal of Power Sources,1989,25(2):141-150.
[94] SWETTE L L,KACKLEY N D.Oxygen electrodes for rechargeable alkaline fuel cells.Ⅱ [J].Journal of Power Sources,1990,29(3/4):423-436.
[95] SWETTE L L,KACKLEY N D.Oxygen electrodes for rechargeable alkaline fuel cells.Ⅲ [J].Journal of Power Sources,1991,36(3):323-339.
[96] GALLANT B M,KWABI D G,MITCHELL R R,et al.Influence of Li2O2morphology on oxygen reduction and evolution kinetics in Li-O2batteries [J].Energy & Environmental Science,2013,6(8):2518-2528.
[97]LEONARD D N,KUMAR A,JESSE S,et al.Nanoscale probing of voltage activated oxygen reduction/evolution reactions in nanopatterned (LaxSr1-x)CoO3-cathodes [J].Advance Energy Materials,2013,3(6):788-797.
[98] RISCH M,STOERZINGER K A,MARUYAMA S,et al.La0.8Sr0.2MnO3-δdecorated with Ba0.5Sr0.5Co0.8Fe0.2O3-δ:A bifunctional surface for oxygen electrocatalysis with enhanced stability and activity [J].Journal of the American Chemical Society,2014,136(14):5229-5232.
[99] JUNG J I,JEONG H Y,LEE J S,et al.A bifunctional perovskite catalyst for oxygen reduction and evolution [J].Angewandte Chemie International Edition,2014,53(18):4582-4586.
[100] JUNG J I,RISCH M,PARK S,et al.Optimizing nanoparticle perovskite for bifunctional oxygen electrocatalysis [J].Energy & Environmental Science,2016,9(1):176-183.
[101] CHEN C F,KING G,DICKERSON R M,et al.Oxygen-deficient BaTiO3-xperovskite as an efficient bifunctional oxygen electrocatalyst [J].Nano Energy,2015,13:423-432.
[102] MANDAL T K,GOPALAKRISHNAN J.New route to ordered double perovskites:Synthesis of rock salt oxides,Li4MWO6,and their transformation to Sr2MWO6(M:Mg,Mn,Fe,Ni) via metathesis [J].Chemistry of Materials,2005,17(9):2310-2316.
[103] SCHAAK R E,MALLOUK T E.Perovskites by design:A toolbox of solid-state reactions [J].Chemistry of Materials,2002,14(4):1455-1471.
[104] ZHONG M,XIANXIA Y,LIN L,et al.The double perovskite oxide Sr2CrMoO6-δas an efficient electrocatalyst for rechargeable lithium air batteries [J].Chemical Communications,2014,50(94):14855-14858.
[105] WANG H,YANG Y,LIANG Y,et al.Rechargeable Li-O2batteries with a covalently coupled MnCo2O4-graphene hybrid as an oxygen cathode catalyst [J].Energy & Environmental Science,2012,5(7):7931-7935.
[106] WANG L,ZHAO X,LU Y,et al.CoMn2O4spinel nanoparticles grown on graphene as bifunctional catalyst for lithium-air batteries [J].Journal of the Electrochemical Society,2011,158(12):A1379-A1382.
[107] LI F,CHEN Y,TANG D M,et al.Performance-improved Li-O2battery with Ru nanoparticles supported on binder-free multi-walled carbon nanotube paper as cathode [J].Energy & Environmental Science,2014,7(5):1648-1652.
[108] MA S,WU Y,WANG J,et al.Reversibility of noble metal-catalyzed aprotic Li-O2batteries [J].Nano Letters,2015,15(12):8084-8090.
[109] ROCA-AYATS M,HERREROS E,GARCIA G,et al.Promotion of oxygen reduction and water oxidation at Pt-based electrocatalysts by titanium carbonitride [J].Applied Catalysis B-Environmental,2016,183:53-60.
[110] YILMAZ E,YOGI C,YAMANAKA K,et al.Promoting formation of noncrystalline Li2O2in the Li-O2battery with RuO2nanoparticles [J].Nano Letters,2013,13(10):4679-4684.
[111] XIE X,LI Y,LIU Z Q,et al.Low-temperature oxidation of Co catalysed by Co3O4nanorods [J].Nature,2009,458(7239):746-749.
[112] GUO S,ZHANG S,WU L,et al.Co/CoO nanoparticles assembled on graphene for electrochemical reduction of oxygen [J].Angewandte Chemie International Edition,2012,51(47):11770-11773.
[113] TAN Y,XU C,CHEN G,et al.Facile synthesis of manganese-oxide-containing mesoporous nitrogen-doped carbon for efficient oxygen reduction [J].Advanced Functional Materials,2012,22(21):4584-4591.
[114] WANG H,DAI H.Strongly coupled inorganic-nano-carbon hybrid materials for energy storage [J].Chemical Society Reviews,2013,42(7):3088-3113.
[115] CAO Y,WEI Z,HE J,et al.α-MnO2nanorods grown in situ on graphene as catalysts for Li-O2batteries with excellent electrochemical performance [J].Energy & Environmental Science,2012,5(12):9765-9768.
[116] ANDERSEN N I,SEROV A,ATANASSOV P.Metal oxides/CNT nano-composite catalysts for oxygen reduction/oxygen evolution in alkaline media [J].Applied Catalysis B-Environmental,2015,163:623-627.
[117] CHEN W,ZHANG Z,BAO W,et al.Hierarchical mesoporousγ-Fe2O3/carbon nanocomposites derived from metal organic frameworks as a cathode electrocatalyst for rechargeable Li-O2batteries [J].Electrochimica Acta,2014,134:293-301.
[118] JEE S,CHOI W,AHN C H,et al.Enhanced oxygen reduction and evolution by in-situ decoration of hematite nanoparticles on carbon nanotube cathode for high-capacity nonaqueous lithium-oxygen batteries [J].Journal of Materials Chemistry A,2015,3(26):13767-13775.
[119] LI Y,GONG M,LIANG Y,et al.Advanced zinc-air batteries based on high-performance hybrid electrocatalysts [J].Nature Communications,2013,4(5):1805.
[120] MAO S,WEN Z,HUANG T,et al.High-performance bi-functional electrocatalysts of 3D crumpled graphene-cobalt oxide nanohybrids for oxygen reduction and evolution reactions [J].Energy & Environmental Science,2014,7(2):609-616.
[121] MASA J,XIA W,SINEV I,et al.MnxOy/NC and CoxOy/NC nanoparticles embedded in a nitrogen-doped carbon matrix for high-performance bifunctional oxygen electrodes [J].Angewandte Chemie International Edition,2014,53(32):8508-8512.
[122] LIU X,LIU W,KO M,et al.Metal (Ni,Co)-metal oxides/graphene nanocomposites as multifunctional electrocatalysts [J].Advanced Functional Materials,2015,25(36):5799-5808.
[123] YIN J,CARLIN J M,KIM J,et al.Synergy between metal oxide nanofibers and graphene nanoribbons for rechargeable lithium-oxygen battery cathodes [J].Advanced Energy Materials,2015,5(4):1401412.
[124] LIANG Y,LI Y,WANG H,et al.Co3O4nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction [J].Nature Materials,2011,10(10):780-786.
[125] LIANG Y,LI Y,WANG H,et al.Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis [J].Journal of the American Chemical Society,2013,135(6):2013-2036.
[126] LI G,WANG X,FU J,et al.Pomegranate-inspired design of highly active and durable bifunctional electrocatalysts for rechargeable metal-air batteries [J].Angewandte Chemie International Edition,2016,55(16):4977-4982.
[127] YAN W,YANG Z,BIAN W,et al.FeCo2O4/hollow graphene spheres hybrid with enhanced electrocatalytic activities for oxygen reduction and oxygen evolution reaction [J].Carbon,2015,92:74-83.
[128] YAN W,CAO X,TIAN J,et al.Nitrogen/sulfur dual-doped 3D reduced graphene oxide networks-supported CoFe2O4with enhanced electrocatalytic activities for oxygen reduction and evolution reactions [J].Carbon,2016,99:195-202.
[129] LEE D U,PARK H W,PARK M G,et al.Synergistic bifunctional catalyst design based on perovskite oxide nanoparticles and intertwined carbon nanotubes for rechargeable zinc-air battery applications [J].ACS Applied Materials & Interfaces,2015,7(1):902-910.
[130] ELUMEEVA K,MASA J,SIERAU J,et al.Perovskite-based bifunctional electrocatalysts for oxygen evolution and oxygen reduction in alkaline electrolytes [J].Electrochimica Acta,2016,208:25-32.
[131] KIM C,GWON O,JEON I Y,et al.Cloud-like graphene nanoplatelets on Nd0.5Sr0.5CoO3-δnanorods as an efficient bifunctional electrocatalyst for hybrid Li-air batteries [J].Journal of Materials Chemistry A,2016,4(4):467-474.
[132] WU G,MORE K L,JOHNSTON C M,et al.High-performance electrocatalysts for oxygen reduction derived from polyaniline,iron,and cobalt [J].Science,2011,332(6028):443-447.
[133] YOO E,ZHOU H.Fe phthalocyanine supported by graphene nanosheet as catalyst in Li-air battery with the hybrid electrolyte [J].Journal of Power Sources,2013,244(4):429-434.
[134] YUAN X,ZENG X,ZHANG H J,et al.Improved performance of proton exchange membrane fuel cells withp-toluenesulfonic acid-doped Co-ppy/C as cathode electrocatalyst [J].Journal of the American Chemical Society,2010,132(6):1754-1755.
[135] SUN D,SHEN Y,ZHANG W,et al.A solution-phase bifunctional catalyst for lithium-oxygen batteries [J].Journal of the American Chemical Society,2014,136(25):8941-8946.
[136] LI Q,XU P,GAO W,et al.Graphene/graphene-tube nanocomposites templated from cage-containing metal-organic frameworks for oxygen reduction in Li-O2batteries [J].Advanced Materials,2014,26(9):1378-1386.
[137] MENG F,ZHONG H,DI B,et al.In situ coupling of strung Co4N and intertwined N-C fibers towards free-standing bifunctional cathode for robust,efficient,and flexible Zn-air batteries [J].Journal of the American Chemical Society,2016,138(32):10226-10231.
[138] ZHOU H.New energy storage devices for post lithium-ion batteries [J].Energy Environ Sci,2013,6(8):2256.
[139] ADAMS J,KARULKAR M,ANANDAN V.Evaluation and electrochemical analyses of cathodes for lithium-air batteries [J].Journal of Power Sources,2013,239(10):132-143.
[140] GRANDE L,PAILLARD E,HASSOUN J,et al.The lithium/air battery:Still an emerging system or a practical reality? [J].Advanced Materials,2015,27(5):784-800.
[141] LI F,ZHANG T,ZHOU H.Challenges of non-aqueous Li-O2batteries:Electrolytes,catalysts,and anodes [J].Energy & Environmental Science,2013,6(4):1125-1141.
[142] PARK M,SUN H,LEE H,et al.Lithium-air batteries:Survey on the current status and perspectives towards automotive applications from a battery industry standpoint [J].Advanced Energy Materials,2012,2(7):780-800.
[責(zé)任編輯:吳文鵬]
Progress in cathodic bi-functional catalysts for metal-air battries
WANG Ya,LAI Qingxue,ZHU Junjie,LIANG Yanyu*
(JiangsuKeyLaboratoryofMaterialsandTechnologyforEnergyConversion,CollegeofMaterialsScienceandTechnology,NanjingUniversityofAeronauticsandAstronautics,Nanjing211106,Jiangsu,China)
Rechargeable metal-air batteries are considered as one of the most promising energy storage and conversion devices due to their ultrahigh energy density.Slow kinetics of cathodic electrochemical oxygen reduction/evolution reactions is a key factor affecting the performance of metal-air batteries,which requires a bi-functional catalyst to facilely realize the charge and discharge processes of a metal-air battery.In this review,we discuss the novel bi-functional catalysts developed in recent years,including precious metals,carbon materials,transition metal oxides,and hybrid materials.Among them,transition metal oxide/nanocarbon strong coupled hybrid materials have been developed as a new gene-ration of oxygen catalytic material with promising catalytic activity.Finally,several possible research directions in future are proposed based on the existing problem.
metal-air battery; air cathode; bi-functional catalyst; oxygen reduction/evolution reaction
2016-10-15.
國家自然科學(xué)基金項目(21273114),中央高?;究蒲袠I(yè)務(wù)費(NE2015003),江蘇省“六大人才高峰”高層次人才項目(2013-XNY-010),江蘇高校優(yōu)勢學(xué)科建設(shè)工程資助項目.
王 亞(1992-),女,碩士生,研究方向為化學(xué)電源與電極材料.*
,E-mail:liangyy403@126.com.
O643.36
A
1008-1011(2017)01-0001-18