廣東省肇慶市高要區(qū)金渡鎮(zhèn)第二中心小學(xué) 鄧廣洪
斯托利亞爾認(rèn)為:“數(shù)學(xué)教學(xué)也就是數(shù)學(xué)語言的教學(xué)”。因?yàn)檎Z言是思維的載體。思維依靠語言,語言促進(jìn)思維。學(xué)生對(duì)數(shù)學(xué)知識(shí)的分析、綜合、抽象、概括、判斷、推理,都必須依靠語言表達(dá)。而“培養(yǎng)學(xué)生邏輯思維能力和空間想象能力”是新課程標(biāo)準(zhǔn)對(duì)小學(xué)數(shù)學(xué)提出的基本要求,學(xué)生邏輯思維和空間想象等能力的表現(xiàn)離不開數(shù)學(xué)語言。因此,培養(yǎng)學(xué)生的思維能力,必須重視數(shù)學(xué)語言的訓(xùn)練。那么如何在數(shù)學(xué)教學(xué)中訓(xùn)練學(xué)生的語言能力,培養(yǎng)學(xué)生的思維呢?
小學(xué)生正處在形象思維向抽象思維過渡的階段。根據(jù)這個(gè)特點(diǎn),教師在教學(xué)中應(yīng)充分利用教材里的插圖及教具、學(xué)具等實(shí)物,進(jìn)行看物說話、看圖說意、看式說題的視說訓(xùn)練??梢宰寣W(xué)生先觀察主題圖、演示、圖形等,然后要求學(xué)生說一說,看到了什么,編一編小故事,提一提相關(guān)的數(shù)學(xué)問題,讓學(xué)生有話可說。
例如,在教學(xué)“9加幾”時(shí),依據(jù)教材內(nèi)容,教師引導(dǎo)學(xué)生觀察主題圖。
師:你看到了什么?
生:我看到同學(xué)們有的在跳繩、有的在跑步、有的在跳遠(yuǎn)、有的在踢毽子、還有的在數(shù)飲料。
師:你最喜歡什么項(xiàng)目?有幾人參加?
教師的問題提出后,學(xué)生紛紛發(fā)言。教師出示飲料圖問:你們看看盒子里有幾盒?盒子外有幾盒?你能提出一個(gè)數(shù)學(xué)問題嗎?
生:一共有幾盒?
學(xué)生列式后一起探究9加幾的計(jì)算方法。在解決了9 加4的方法后,教師問:運(yùn)動(dòng)場(chǎng)上還有許多數(shù)學(xué)問題,你能找出來嗎?
生:踢毽子和跳遠(yuǎn)的一共有多少人?
生:踢毽子和跳繩的一生共有多少人?
生:跳繩和跳遠(yuǎn)的一共有多少人?生:跳繩的比踢毽子的少多少人?生:踢毽子比跳繩的多多少人?讓學(xué)生在情境中去發(fā)現(xiàn),去尋找數(shù)學(xué)問題,成為一個(gè)數(shù)學(xué)問題的發(fā)現(xiàn)者,一方面可激發(fā)學(xué)生的學(xué)習(xí)興趣,另一方面讓學(xué)生感受到數(shù)學(xué)就在身邊。這樣的訓(xùn)練既豐富學(xué)生的感性認(rèn)識(shí),又培養(yǎng)了學(xué)生思維的形象性,為邏輯思維的發(fā)展打下良好的基礎(chǔ)。
在解決問題教學(xué)時(shí),可先讓學(xué)生進(jìn)行獨(dú)立思考,認(rèn)真分析,明確解決問題的數(shù)量關(guān)系,再進(jìn)行小組或師生交流,說一說解決思路與方法,要求學(xué)生有條理有根據(jù)的前后連貫、合乎邏輯規(guī)則地把自己的思維過程清楚準(zhǔn)確地表達(dá)出來。在對(duì)話交流中,拓展學(xué)生解題方法,理清學(xué)生解題思路,培養(yǎng)學(xué)生思維的邏輯性。
如在解答“學(xué)校有楊樹60棵,比松樹多20棵,楊樹和松樹一共有多少棵?”這一應(yīng)用題時(shí),要求學(xué)生用分析法說出解題的思維過程:要求楊樹和松樹一共有多少棵,必須知道楊樹和松樹各有多少棵,題目中“楊樹比松樹多20棵”就是“松樹比楊樹少20棵”,所以求松樹棵數(shù)應(yīng)列式為“60-20”,再加上楊樹棵數(shù)就得到楊樹和松樹的總棵數(shù)了。經(jīng)常進(jìn)行這樣的說理訓(xùn)練,可提高學(xué)生的語言表達(dá)能力,培養(yǎng)學(xué)生思維的邏輯性。
課堂教學(xué)中訓(xùn)練速說,這是一種跳躍性、活潑性、轉(zhuǎn)移性很強(qiáng)的思維形式,它要求學(xué)生反應(yīng)靈敏,思維敏捷,能迅速正確地說出得數(shù)、講解算理、敘述計(jì)算過程。教學(xué)中,教師應(yīng)該加強(qiáng)口算的基本功訓(xùn)練,教給學(xué)生一些基本的速算方法,通過視算、聽算、口算、敘述、說理等訓(xùn)練逐步培養(yǎng)學(xué)生的速說能力。
例如,125×48,教師不僅要求學(xué)生迅速說出得數(shù)并敘述計(jì)算過程,最好還能讓學(xué)生說出幾種不同的解題思路:125×48 125×8×6或125×(40+8)或(125×8)×(48÷8)。教學(xué)中還要開展多種形式的速說比賽,如“看誰說得又對(duì)又快”、“說思路比速度”等,訓(xùn)練學(xué)生養(yǎng)成認(rèn)真看題、細(xì)心聽題的良好習(xí)慣,從而培養(yǎng)學(xué)生思維的敏捷性。
當(dāng)學(xué)生回答問題不完整、不全面的時(shí)候,教師要求學(xué)生補(bǔ)說。教學(xué)中可以利用根據(jù)條件或算式補(bǔ)問題、根據(jù)問題或算式補(bǔ)條件等方法來訓(xùn)練學(xué)生回答完整、用語規(guī)范。例如,根據(jù)“小華有12張郵票,小明有4張郵票”,可以補(bǔ)充哪些問題?一般同學(xué)都想到求總數(shù)與求相差數(shù),我讓學(xué)生開動(dòng)腦筋,看誰補(bǔ)充得多、補(bǔ)充得好。于是有的同學(xué)提出:“小華的郵票張數(shù)是小明郵票張數(shù)的幾倍?”“小明的郵票張數(shù)是小華郵票的幾分之幾?”顯然,問題已從求和、求差深入到倍數(shù)關(guān)系。還有的同學(xué)提出:“小華給小明多少張,兩人的郵票張數(shù)就相等了?”這樣的問題更具有創(chuàng)造性。通過這樣的補(bǔ)說,使學(xué)生的回答更完整,培養(yǎng)了學(xué)生思維的深刻性。
同一個(gè)問題,可以從不同角度進(jìn)行思考,敘述解題思路,同一個(gè)意思也可以用不同的語言來表達(dá)。
如光明機(jī)械廠去年計(jì)劃生產(chǎn)機(jī)床1800臺(tái),實(shí)際頭2個(gè)月就生產(chǎn)了計(jì)劃的照這樣計(jì)算,可提前幾個(gè)月完成任務(wù)?
可以引導(dǎo)學(xué)生用多種形式來敘述:
(l)用一般應(yīng)用題解法。先求出實(shí)際每月生產(chǎn)機(jī)床的臺(tái)數(shù):1800×÷2,再用1800除以實(shí)際每月生產(chǎn)的臺(tái)數(shù)就是實(shí)際用的時(shí)間,計(jì)劃用的時(shí)間減去實(shí)際用的時(shí)間,就是提前的時(shí)間,可以這樣列式:12-1800÷
(2)用“工程問題”的解法。把計(jì)劃生產(chǎn)的總臺(tái)數(shù)看作單位“1”,是實(shí)際工效,=10是實(shí)際用的時(shí)間,12-10=2(個(gè)月),即是提前的時(shí)間,計(jì)算式子為:
(3)用分?jǐn)?shù)應(yīng)用題的解法。把實(shí)際完成計(jì)劃任務(wù)所用的時(shí)間看作單位“1”。2個(gè)月完成了全部工作量的,則實(shí)際完成全部工作的時(shí)間為再用計(jì)劃用的時(shí)間減去實(shí)際用的時(shí)間就是提前的時(shí)間。即12-10=2(個(gè)月),綜合式為:
以上幾種列式總體的解題思路都是用計(jì)劃用的時(shí)間一實(shí)際用的時(shí)間=提前時(shí)間。但在具體解答中,從不同角度去分析,去敘述,得出不同的解法,不僅能使學(xué)生的語言表達(dá)能力得到鍛煉,而且還訓(xùn)練了學(xué)生的求異思維,培養(yǎng)了學(xué)生思維的靈活性。